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On two new functional equations
for generalized Joukowski transformations

by M. Baran (Kraków) and H. Haruki (Waterloo, Ont.)

Abstract. The purpose of this paper is to solve two functional equations for gener-
alized Joukowski transformations and to give a geometric interpretation to one of them.
Here the Joukowski transformation means the function 1

2 (z+z−1) of a complex variable z.

1. Introduction and statement of the results. A function

Azp +Bz−p ,

where A,B are arbitrary complex constants and p is an arbitrary integer, is
said to be a generalized Joukowski transformation (see [4], [5], [7], [8]). In
[8] the following functional equation for the generalized Joukowski transfor-
mations was studied:

(1) |f(reiθ)|2 + |f(1)|2 = |f(r)|2 + |f(eiθ)|2

for all real r (> 0) and θ. For (1) the following theorem was proved:

Theorem A. Suppose that a complex-valued function f of a complex
variable z is analytic for 0 < |z| < +∞ and is either analytic or has a pole
at z = 0. Then the only solution of (1) is given by

f(z) = Azp +Bz−p ,

where A,B are arbitrary complex constants and p is an arbitrary integer.

In this paper we consider the following two new functional equations
which the generalized Joukowski transformations satisfy:

(2) |f(reiθ) + f(1)| = |f(r) + f(eiθ)|
and

(3) |f(reiθ)− f(1)| = |f(r)− f(eiθ)| ,
where r and θ are real variables with r > 0.
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Let f(z) = Azp +Bz−p. By Theorem A we obtain

|f(reiθ)|2 + |f(1)|2 = |f(r)|2 + |f(eiθ)|2 .
Furthermore, after some calculations, we have

Re(f(reiθ)f(1)) = Re(f(r)f(eiθ)) .

Since
|A+B|2 = |A|2 + |B|2 + 2 Re(AB)

and
|A−B|2 = |A|2 + |B|2 − 2 Re(AB)

hold for all complex numbers A, B, we see that the generalized Joukowski
transformations satisfy (2) and (3).

The purpose of this paper is to solve (2) and (3), i.e., to prove the
following two theorems and to present a geometric interpretation of (3) (see
Section 4).

Theorem 1. Suppose that a complex-valued function f of a complex
variable z is analytic for 0 < |z| < +∞. Then the only solution of (2) is
given by

f(z) = Azp +Bz−p ,

where A,B are arbitrary complex constants and p is an arbitrary integer.

Theorem 2. Suppose that a complex-valued function f of a complex
variable z is analytic for 0 < |z| < +∞. Then the only solution of (3) is
given by

f(z) = Azp +Bz−p + C ,

where A,B,C are arbitrary complex constants and p is an arbitrary integer.

Thus, by Theorems 1 and 2 we find that the generalized Joukowski trans-
formations are characterized up to an additive complex constant C by (2),
(3), respectively.

2. Lemma. To prove Theorems 1 and 2 we shall apply the following
lemma:

Lemma. Suppose that a complex-valued function f of a complex variable
z is analytic for 0 < |z| < +∞ and is a solution of (2). Then g(z) def= f(1/z)
is also a complex-valued function of z and is analytic for 0 < |z| < +∞.
Furthermore, g is a solution of (2).

P r o o f. We have only to prove that g is a solution of (2). Replacing r
and θ by 1/r and −θ, respectively, in (2) and observing that

1
z

=
1
reiθ

=
1
r
e−iθ
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yields the desired result.

3. Proof of Theorems 1 and 2

P r o o f o f T h e o r e m 1. We may assume that f is not a complex
constant. Since, by hypothesis, f is analytic for 0 < |z| < +∞, we can
expand f in a Laurent series for 0 < |z| < +∞. We show that it can be
expressed by

(4) f(z) =
∑
|n|≤p

anz
n

for 0 < |z| < +∞, where p is a positive integer, i.e., neither z = ∞ nor
z = 0 is an essential singularity. Let

(5) h(r) = |f(r)| .

Then either h(r) → +∞ as r → +∞ or there exists a sequence {rn} such
that

(6) h(rn) = O(1) (n = 1, 2, 3, . . .) as n→ +∞ .

In the first case we have for 0 < |z| < +∞, by (2), (5) and by the triangle
inequality,

|f(z)| ≥ h(r)− |f(eiθ)| − |f(1)| ≥ h(r)− |f(eiθ)| ≥ h(r)−M ,

where z = reiθ, M = sup|θ|≤π |f(eiθ)| + |f(1)|. By the assumption of the
first case there exists R > 0 such that h(r) > M + 1 for r > R. Hence
|f(z)| > 1 for |z| > R. This contradicts the Picard Theorem.

In the second case we have, by (2), (6) and the triangle inequality,

|f(rneiθ)| ≤ |f(rn)|+ |f(eiθ)|+ |f(1)| = h(rn) + |f(eiθ)|+ |f(1)|

≤ K + sup
|θ|≤π

|f(eiθ)|+ |f(1)| def= M (n = 1, 2, . . .) ,

for all real θ. Here K is a positive real constant. Hence we obtain

|f(rneiθ)| ≤M (n = 1, 2, . . .)

for all real θ. By this inequality and Riemann’s Theorem (in a sharp form)
concerning removable singularities f becomes analytic at z = ∞. This is a
contradiction. Summarizing the above, z =∞ is not an essential singularity
for f . Similarly, we can prove that z = 0 is not an essential singularity for
f . Thus (4) holds for some positive integer p in 0 < |z| < +∞. We may
assume that at least one of ap and a−p is nonzero. We discuss three cases.

C a s e 1: p ≥ 2 and

(7) ap 6= 0 .
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By (2) and by the identity |γ|2 = γγ (for all complex γ) we obtain

(f(reiθ) + f(1))(f(reiθ) + f(1)) = (f(r) + f(eiθ))(f(r) + f(eiθ)) .

By (4) we have( ∑
|n|≤p

anr
neinθ + f(1)

)( ∑
|n|≤p

anr
ne−inθ + f(1)

)
=
( ∑
|n|≤p

anr
n + f(eiθ)

)( ∑
|n|≤p

anr
n + f(eiθ)

)
.

Equating the coefficients of rn on both sides for p+ 1 ≤ n ≤ 2p− 1 (p ≥ 2)
yields

(8)
p∑

k=n−p

akan−ke
i(2k−n)θ =

p∑
k=n−p

akan−k

for all real θ, and for n = p

(9) ape
ipθ(a0 + f(1)) + ape

−ipθ(a0 + f(1))

= ap(a0 + f(eiθ)) + ap(a0 + f(eiθ))

for all real θ. Since eikθ (k ∈ Z) are linearly independent, by (8) we obtain

(10) akan−k = 0

for all k satisfying n− p ≤ k ≤ p and

(11) 2k − n 6= 0

with p+ 1 ≤ n ≤ 2p− 1 (p ≥ 2).
If we set k = p in (10), then, by the fact that k = p satisfies (11)

and by (7), we have an−p = 0 for p + 1 ≤ n ≤ 2p − 1 (p ≥ 2), and so
a1 = a2 = . . . = ap−1 = 0. By (4) we obtain

f(z) = a−pz
−p +

p−1∑
n=1

a−nz
−n + a0 + apz

p .

Substituting the above into (9) yields

(12) ap(f(1) + a0 − ap − a−p)eipθ + ap(f(1) + a0 − ap − a−p)e−ipθ

= ap

p−1∑
n=1

a−ne
inθ + ap

p−1∑
n=1

a−ne
−inθ + 2(a0ap + a0ap) .

Since eikθ (k ∈ Z) are linearly independent, by (12) we obtain apa−n = 0
for 1 ≤ n ≤ p− 1, and so, by (7),

(13) a−1 = a−2 = . . . = a−p+1 = 0 .
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By (13), we have

(14) f(z) = a−pz
−p + a0 + apz

p .

By (12), (13), (14) we obtain

a0ape
ipθ + a0ape

−ipθ = a0ap + a0ap .

Since eipθ, e−ipθ, 1 are linearly independent, we obtain a0ap = 0 and so, by
(7), a0 = 0. By (14) we thus have

f(z) = a−pz
−p + apz

p .

C a s e 2: ap = 0 and a−p 6= 0 with p ≥ 2. We consider

(15) g(z) = f(1/z) .

By the lemma g is a solution of (2). Applying our result of Case 1 to g
yields

g(z) = apz
−p + a−pz

p = 0 · z−p + a−pz
p = a−pz

p .

C a s e 3: p = 1. In this case, by (4) we obtain f(z) = a−1z
−1 +a0 +a1z.

Using a similar method to that of Case 1 yields a0 = 0.

By a similar method to that of solving (2) we can prove Theorem 2.

4. A geometric interpretation of the functional equation (3).
Before presenting a geometric interpretation of the functional equation (3)
we state the following definition:

Definition (see [9], p. 308). (i) Points on two confocal ellipses which
have the same eccentric angles are called corresponding points.

(ii) Points on two confocal hyperbolas which have the same eccentric
angles are called corresponding points.

Now we give a preliminary consideration about mapping properties of
the Joukowski transformation w = f(z) = 1

2 (z + 1/z) (see [1], [2], [3], [6]).
(i) The family of concentric circles with common centre at z = 0 are

transformed by w = f(z) = 1
2 (z + 1/z) into the family of confocal ellipses

with common foci at 1 and −1.
(ii) The family of rays emanating from z = 0 are transformed by w =

f(z) = 1
2 (z + 1/z) into the family of confocal hyperbolas with common foci

at 1 and −1.
We may now present a geometric interpretation of the functional equa-

tion (3), i.e., we shall prove geometrically by using the following theorem
(see [9], p. 308) that w = f(z) = 1

2 (z + 1/z) is a solution of (3).

Theorem B. (i) Consider two arbitrary ellipses E1 and E2 of a family
of confocal ellipses. If P,Q are any corresponding points on E1 and if R,S
are any corresponding points on E2, then PR = QS.
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(ii) Consider two arbitrary hyperbolas H1 and H2 of a family of confocal
hyperbolas. If P,Q are any corresponding points on H1 and if R,S are any
corresponding points on H2, then PR = QS.

We discuss two cases. In the first case, we set f(z) = 1
2 (z + 1/z) and

z = reiθ where r (> 0), θ are real with r 6= 1 and consider another point
seiθ where s (> 0) is real with s 6= 1. It is easy to see that the two points
f(reiθ), f(seiθ) are corresponding points on the two ellipses

x2

( 1
2 (r + 1/r))2

+
y2

( 1
2 (r − 1/r))2

= 1

and
x2

( 1
2 (s+ 1/s))2

+
y2

( 1
2 (s− 1/s))2

= 1 ,

respectively. (Their same eccentric angle is θ.) Similarly, the two points
f(r), f(s) are also corresponding points on the same two ellipses, respec-
tively. (Their same eccentric angle is 0.) Hence, by Theorem B(i) we obtain

|f(reiθ)− f(s)| = |f(r)− f(seiθ)| .
Letting s→ 1 yields

|f(reiθ)− f(1)| = |f(r)− f(eiθ)| .
Consequently, f(z) = 1

2 (z + 1/z) is a solution of (3).
The second case, when we use Theorem B(ii), can be handled similarly.
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