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0. Introduction. For a given pair of metric spaces Xi = (Xi, ρi),
i = 1, 2, there are various possible product metrics, i.e. metrics which induce
the product topology in X1 × X2. Evidently, for the multiplicativity of a
topological property the choice of a product metric is inessential. But, in
general, it is essential for the multiplicativity of a metric property.

Following the idea of Olȩdzki and Spież [4], we are concerned with metrics
induced by functions from (R+)2 to R+. Five families (F0, F1, F̃1, F2, and
F ′2) of such functions are defined in Section 1; their role is described in
Section 2. The next two sections, 3 and 4, are devoted to F-multiplicativity
of different classes of metric spaces for F being one of the families F1, F̃1,
F2, and F ′2. It seems interesting that to decide whether a given class M is
f -multiplicative or not, it often suffices to examine the space (R4, f̂(ρ, ρ)),
where ρ is the Euclidean metric in R2 and f̂(ρ, ρ) is the induced metric in
R4 (compare 4.3 and 4.8).

We use the terminology and notation of [3]; in particular, a space (X, ρ)
is said to be strongly arcwise connected if any two distinct points x, y ∈ X
can be joined in X by an arc with a finite length; let ρ∗ denote the intrinsic
metric determined by ρ in a strongly arcwise connected space (X, ρ), i.e.
ρ∗(x, y) is the infimum of the lengths of all arcs joining x and y in (X, ρ).
By Bρ(a, ε) we denote the ball in (X, ρ) with centre a and radius ε, i.e.

Bρ(a, ε) := {x ∈ X; ρ(x, a) < ε};

by Mρ(a, b) we denote the set of midpoints of the pair (a, b):

Mρ(a, b) := {x ∈ X; ρ(a, x) = 1
2ρ(a, b) = ρ(x, b)} .

We are concerned with the following classes of metric spaces:

FC — the class of finitely compact spaces (X ∈ FC iff every bounded
sequence in X has a convergent subsequence; compare [1]),

GA — the class of geometrically acceptable spaces ((X, ρ) ∈ GA iff (X, ρ)
is strongly arcwise connected and ρ∗ is topologically equivalent
to ρ; compare [2] and [3]),
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IM — the class of spaces with intrinsic metrics ((X, ρ) ∈ IM iff ρ∗ = ρ),
MC — the class of metrically convex spaces (X ∈ MC iff every pair of

points a, b in X can be joined by a metric segment, i.e. by an
isometric image of the interval [0, ρ(a, b)]; compare [1], [3]),

SMC — the class of strongly metrically convex spaces (X ∈ SMC iff every
pair of points of X can be joined by a unique metric segment),

MidC — the class of Mid-convex spaces ((X, ρ) ∈ MidC iff Mρ(a, b) 6= ∅
for every a, b ∈ X),

SMidC — the class of strongly Mid-convex spaces ((X, ρ) ∈ SMidC iff
Mρ(a, b) is a singleton for every a, b ∈ X, i.e. Mρ is an ope-
ration),

NL — the class of linear spaces with metric induced by a norm,
SNL — the subclass of NL consisting of spaces with strictly convex balls

(i.e. balls with no segments on the boundary).

Let us note the following

0.1. Lemma. MC ∩ SMidC = SMC.

P r o o f. The inclusion ⊃ is evident. We prove ⊂. Let X = (X, ρ) be
a metrically convex and strongly Mid-convex metric space. Let L1 and L2

be metric segments in X with endpoints a,b. Then, evidently, there is a
set A ⊂ L1 ∩ L2 which is dense in both arcs L1 and L2 (A is obtained by
iterating the midpoint operation Mρ). Thus L1 = L2.

1. Some sets of real functions. Let R+ be the set of non-negative
reals and let ∼ be the proportionality relation in R2. We shall deal with the
following conditions on f : (R+)2 → R+ :

F.0. |si − ti| ≤ ri ≤ si + ti for i = 1, 2 ⇒ f(r1, r2) ≤ f(s1, s2) + f(t1, t2)
for every ri, si, ti ∈ R+;

F.1. f(t1, t2) = 0 ⇔ t1 = t2 = 0;

F.2. f is subadditive, i.e. f(t + s) ≤ f(t) + f(s) for every t, s ∈ (R+)2;

F.2′. f is strictly subadditive, i.e. f is subadditive and

f(t + s) = f(t) + f(s) ⇒ t ∼ s for every t, s ∈ (R+)2 ;

F.3. f is totally increasing, i.e. for every r = (r1, r2) and t = (t1, t2),

ri ≤ ti for i = 1, 2 ⇒ f(r) ≤ f(t) ;

F.4.1. f is continuous at (0, 0);

F.4.2. f is homogeneous, i.e. for every t ∈ (R+)2 and α ∈ R+,

f(αt) = αf(t) .
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Let us define five sets of functions:

F0 := {f : (R+)2 → R+; f satisfies F.0 and F.1},
Fi := {f ∈ F0; f satisfies F.4.i.} for i = 1, 2,
F̃1 := {f : (R+)2 → R+; f satisfies F.1, F.2, F.3, F.4.1},
F ′2 := {f : (R+)2 → R+; f satisfies F.1, F.2′, F.3, F.4.2}.
The set F2 can be characterized as follows:

1.1. F2 = {f : (R+)2 → R; f satisfies F.1, F.2, F.3, F.4.2} (1).

P r o o f. The inclusion ⊃ is obvious. To verify ⊂ it suffices to prove

F.0 ∧ F.4.2 ⇒ F.2 ∧ F.3 .

Taking r = s + t in F.0, we get F.2. To obtain F.3, we assume ri ≤ ui for
i = 1, 2 and take si = ti = 1

2ui in F.0.

Using 1.1, we easily obtain

1.2. F ′2 ⊂ F2 ⊂ F̃1 ⊂ F1 ⊂ F0.

It can be shown that all the inclusions in 1.2 are proper. We shall need
the following three lemmas:

1.3. Lemma. If f ∈ F1, then

(i) f is continuous;
(ii) for every (t(n))n∈N in (R+)2, limn f(t(n)) = 0 ⇒ limn t(n) = (0, 0).

P r o o f. (i) By F.0 it follows that

|ti − si| ≤ ri ≤ ti + si for i = 1, 2
⇒ |f(t1, t2)− f(s1, s2)| ≤ f(r1, r2) ≤ f(t1, t2) + f(s1, s2) .

Setting ri = |ti − si|, we obtain

|f(t1, t2)− f(s1, s2)| ≤ f(|t1 − s1|, |t2 − s2|)(1)
for every (t1, t2), (s1, s2) ∈ (R+)2 .

Take (s1, s2) ∈ (R+)2 and ε > 0. Since f is continuous at (0, 0), by F.1
there exist δ1, δ2 > 0 such that

∀t1, t2 ∈ R+ |ti − si| < δi for i = 1, 2 ⇒ f(|t1 − s1|, |t2 − s2|) < ε .

Thus (1) yields the continuity at (s1, s2).

(ii) Let

(2) lim
n

f(t(n)
1 , t

(n)
2 ) = 0

(1) By 1.1, F2 is the set of functions considered in [4], p. 245.
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and suppose that ((t(n)
1 , t

(n)
2 ))n∈N is not convergent to (0,0). Then we can

assume that (t(n)
1 )n∈N is either divergent to ∞ or convergent to t1 6= 0,

whence

(3) ∃s1 ∃n0 ∀n > n0 0 < s1 ≤ 2t
(n)
1 .

Thus, by F.0, f(s1, 0) ≤ 2f(t(n)
1 , t

(n)
2 ), which, by (2) and (3), contradicts

F.1.

1.4. Lemma. If f is continuous and subadditive, then the following con-
ditions are equivalent :

(i) f is homogeneous;
(ii) f( 1

2 t) = 1
2f(t) for every t ∈ (R+)2.

P r o o f. The implication (i)⇒(ii) is obvious.
Assume (ii); to prove (i) it suffices to show that for every α ∈ R+

(1) f(αt) ≤ αf(t) for t ∈ (R+)2 .

Let k ∈ N; since

1
k

=
∞∑

n=1

αn

2n
for some αn ∈ {0, 1}, n ∈ N ,

by F.2 and the continuity of f we obtain (1) for α rational. Using again
continuity, we get (1) for every α ∈ R+.

1.5. Lemma. For every f ∈ F2 the following conditions are equivalent :

(i) f ∈ F ′2;
(ii) r = s+ t∧ f(s) = f(t) = 1

2f(r) ⇒ s = t = 1
2r, for all r, s, t ∈ (R+)2.

P r o o f. (i)⇒(ii). Suppose

(1) r = s + t and f(s) = f(t) = 1
2f(r) .

Then f(s + t) = f(s) + f(t), whence, by F.2′,

(2) s = αt for some α ∈ R+ .

If s = (0, 0) or t = (0, 0), then (ii) holds. Let s 6= (0, 0) 6= t. By F.4.2
and (2), f(s) = αf(t), whence, by F.1, α = 1. Thus, by (i) and (2),
s = t = 1

2r.

(ii)⇒(i). First, notice that (ii) implies

(3)α r = s + t ∧ f(s) = αf(r) ∧ f(t) = (1− α)f(r)
⇒ s = αr ∧ t = (1− α)r

for every α ∈ [0, 1].
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Indeed, (ii) coincides with (3)α for α = 1
2 . By F.4.2, (3)α ⇒ (3)α/2;

evidently (3)α ⇒ (3)1−α. Thus (3)α holds for α = m/2n for m,n ∈ N∪{0},
whence it holds for every α ∈ [0, 1] because f is continuous.

By 1.1, it remains to prove

(4) f(s + t) = f(s) + f(t) ⇒ s ∼ t .

Let f(s + t) = f(s) + f(t) and r = s + t. Then f(s) = αf(r) for some
α ∈ [0, 1]; thus, (3)α yields s = αr and t = (1− α)r, which proves (4).

2. Geometric characterizations of F1, F2, and F ′2. Every
f : (R+)2 → R+ induces the function f̂ which assigns to any pair of metrics
ρ1, ρ2 in X1, X2, respectively, the function

f̂(ρ1, ρ2) = ρf : (X1 ×X2)2 → R+

defined by the formula

ρf ((x1, x2), (y1, y2)) := f(ρ1(x1, y1), ρ2(x2, y2)) .

The following two statements characterize F0 and F1:

2.1. Theorem. For every f : (R+)2 → R+ the following conditions are
equivalent :

(i) f ∈ F0;
(ii) for every pair of metric spaces (Xi, ρi), i = 1, 2, the function

f̂(ρ1, ρ2) is a metric in X1 ×X2;
(iii) is ρ is the Euclidean metric in R2, then f̂(ρ, ρ) is a metric in R4.

The proof is routine.

As a consequence of 2.1, 1.2, and 1.3(ii), we obtain

2.2. Theorem. For every f : (R+)2 → R+ the following conditions are
equivalent :

(i) f ∈ F1;
(ii) for every pair of metric spaces (Xi, ρi), i = 1, 2, the function

f̂(ρ1, ρ2) is a product metric in X1 ×X2;
(iii) if ρ is the Euclidean metric in R2, then f̂(ρ, ρ) is a product metric

in R4.

The next two statements reflect the role of F2 and F ′2:
2.3. Theorem. For every f ∈ F1 the following conditions are equivalent :

(i) f ∈ F2;
(ii) for every pair of metric spaces (Xi, ρi), i = 1, 2,

Mρ1(a1, b1)×Mρ2(a2, b2) ⊂ Mf̂(ρ1,ρ2)
((a1, a2), (b1, b2))

for every ai, bi ∈ Xi, i = 1, 2;
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(iii) if ρ is the Euclidean metric in R, then

Mρ(a1, b1)×Mρ(a2, b2) ⊂ Mf̂(ρ,ρ)((a1, a2), (b1, b2))

for every ai, bi ∈ R, i = 1, 2.

The proof of the implication (i)⇒(ii) is routine; (ii)⇒(iii) is obvious;
(iii)⇒(i) follows from 1.3 and 1.4.

2.4. Theorem. For every f ∈ F1 the following conditions are equivalent :

(i) f ∈ F ′2;
(ii) for every pair of metric spaces (Xi, ρi), i = 1, 2,

Mρ1(a1, b1)×Mρ2(a2, b2) = Mf̂(ρ1,ρ2)
((a1, a2), (b1, b2))

for every ai, bi ∈ Xi, i = 1, 2;
(iii) if ρ is the Euclidean metric in R, then

Mρ(a1, b1)×Mρ(a2, b2) = Mf̂(ρ,ρ)((a1, a2), (b1, b2))

for every ai, bi ∈ R, i = 1, 2.

P r o o f. (i)⇒(ii). Let ρf = f̂(ρ1, ρ2), a = (a1, a2), b = (b1, b2). Since
F ′2 ⊂ F2, by 2.3 it suffices to prove

(1) Mρf
(a, b) ⊂ Mρ1(a1, b1)×Mρ2(a2, b2) .

We can assume a 6= b. Take x = (x1, x2) ∈ Mρf
(a, b); let si = ρi(ai, xi),

ti = ρi(xi, bi), ri = ρi(ai, bi) for i = 1, 2 and t = (t1, t2), s = (s1, s2),
r = (r1, r2). Then ri = si + ti for i = 1, 2 and f(s) = f(t) = 1

2f(r), whence,
by 1.5, s = t = 1

2r. Thus xi ∈ Mρi(ai, bi), which proves (1).
(ii)⇒(iii) is obvious.
(iii)⇒(i). By 2.3 and 1.5, it suffices to prove

(2) r = s + t ∧ f(s) = f(t) = 1
2f(r) ⇒ s = t = 1

2r ,

for every r, s, t ∈ (R+)2. Take r, s, t ∈ (R+)2 satisfying the antecedent of (2).
For i = 1, 2 there exist ai, bi, ci ∈ R such that ρ(ai, ci) = si, ρ(bi, ci) = ti,
and ρ(ai, bi) = ri. Let a = (a1, a2), b = (b1, b2), c = (c1, c2). From the
assumption on s, t, r it follows that c ∈ Mf̂(ρ,ρ)(a, b), whence, by (iii),
ci ∈ Mρ(ai, bi), which proves (2).

3. On f-multiplicativity of some metric properties. Applying
2.1, for arbitrary f ∈ F0 we can define the f -product X1 ×f X2 of metric
spaces X1, X2:

If Xi = (Xi, ρi) for i = 1, 2, then

X1 ×f X2 := (X1 ×X2, f̂(ρ1, ρ2)) .

We are only interested in product metrics. Therefore, we admit the following
definitions (compare 2.2):
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Let f ∈ F1. A class M of metric spaces is f -multiplicative if and only if

X1,X2 ∈M⇒ X1 ×f X2 ∈M for every pair (X1,X2) .

Let F ⊂ F1. The class M is F-multiplicative whenever M is f -multipli-
cative for every f ∈ F .

Every class M determines the maximal subfamily of F1 for which M is
multiplicative:

FM := {f ∈ F1; M is f -multiplicative} .

Of course, if M is a topological invariant, then, by 2.2, M is F1-multiplica-
tive if and only if M is f -multiplicative for f(t1, t2) =

√
(t1)2 + (t2)2.

It is easy to prove that

3.1. The class of complete metric spaces is F̃1-multiplicative.

Let us notice that

3.2. The class FC of finitely compact spaces is F2-multiplicative but not
F̃1-multiplicative.

P r o o f. To prove that FC is F2-multiplicative it is enough to show that
if A is a bounded set in X1 ×f X2, then A ⊂ A1 × A2 for some sets Ai

bounded in Xi for i = 1, 2. Let

(1) A ⊂ Bf̂(ρ1,ρ2)
(a, α) for some a = (a1, a2) ∈ X1 ×X2 and α > 0 .

If

β = α max{(f(1, 0))−1, (f(0, 1))−1} and Ai = Bρi(ai, β) for i = 1, 2 ,

then, by F.3 and F.4.2, for every t1, t2 ∈ R+

t1f(1, 0) ≤ f(t1, t2) and t2f(0, 1) ≤ f(t1, t2) ,

whence, by (1), A ⊂ A1 ×A2.
To show that FC is not F̃1-multiplicative, consider f defined by the

formula
f(t1, t2) = t1 + t2(1 + t2)−1 .

Evidently f ∈ F1. The Euclidean line R = (R, ρ) is finitely compact, while
R×f R is not; indeed, the sequence ((0, n))n∈N is bounded in (R2, f̂(ρ, ρ)),
but has no convergent subsequence.

In our terminology Theorem 3.7 of Oldzki and Spież [4] can be formu-
lated as follows:

3.3. If f ∈ F2, then for every pair of metric spaces Xi = (Xi, ρi) ∈ GA,
i = 1, 2, the function f̂(ρ1, ρ2) is a product metric in X1 ×X2 and

(f̂(ρ1, ρ2))∗ = f̂(ρ∗1, ρ
∗
2) .

In fact, they proved the following slightly stronger statement:
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3.4. Let Xi = (Xi, ρi) ∈ GA for i = 1, 2.

(i) If f ∈ F1 and X1 ×f X2 ∈ GA, then (f̂(ρ1, ρ2))∗ ≥ f̂(ρ∗1, ρ
∗
2).

(ii) If f ∈ F2, then X1 ×f X2 ∈ GA and (f̂(ρ1, ρ2))∗ = f̂(ρ∗1, ρ
∗
2).

We shall prove

3.5. Proposition. If f ∈ F̃1 ∩ FGA, then the following conditions are
equivalent :

(i) (f̂(ρ1, ρ2))∗ = f̂(ρ∗1, ρ
∗
2) for every (Xi, ρi) ∈ GA, i = 1, 2;

(ii) the class IM is f-multiplicative;
(iii) the class MC is f-multiplicative.

P r o o f. The implication (i)⇒(ii) is obvious.
(ii)⇒(i). Assume (ii) and let Xi = (Xi, ρi) ∈ GA for i = 1, 2. Then

(1) (f̂(ρ∗1, ρ
∗
2))

∗ = f̂(ρ∗1, ρ
∗
2) .

By F.3, f̂(ρ∗1, ρ
∗
2) = f̂(ρ1, ρ2), whence

(2) (f̂(ρ∗1, ρ
∗
2))

∗ ≥ (f̂(ρ1, ρ2))∗ ;

by 3.4(i)

(3) (f̂(ρ1, ρ2))∗ ≥ f̂(ρ∗1, ρ
∗
2) .

By (1)–(3), we obtain (i).
In what follows we use the notation |L|ρ for the length of an arc L in a

metric space (X, ρ).
(ii)⇒(iii). Assume (ii) and let Xi = (Xi, ρi) ∈ MC for i = 1, 2. Let

ρf = f̂(ρ1, ρ2). To prove (iii) it suffices to show that for every ai, bi ∈ Xi

the points a = (a1, a2) and b = (b1, b2) can be joined in Xi×f X2 by an arc
L with |L|ρf

= ρf (a, b).
By the assumption on ρi, there exists an arc Li ⊂ Xi with endpoints ai

and bi and with |Li|ρi = ρi(ai, bi), i = 1, 2. Let ρ′i = ρi|(Li)2, i = 1, 2, and
ρ′f = f̂(ρ′1, ρ

′
2). Then

(4) ρ′f = ρf |(L1 × L2)2 .

Evidently (Li, ρ
′
i) ∈ MC ⊂ IM for i = 1, 2, whence, by (ii),

(5) (L1 × L2, ρ
′
f ) ∈ IM .

Since (L1 × L2, ρ
′
f ) is compact, by Th. 28.1, p. 70 of [1], condition (5)

implies

(6) (L1 × L2, ρ
′
f ) ∈ MC .

By (6), there is an arc L ⊂ L1 × L2 joining a and b, with |L|ρ′
f

= ρ′f (a, b).
Thus, by (4),

|L|ρf
= |L|ρ′

f
= ρ′f (a, b) = ρf (a, b) .
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(iii)⇒(ii). Assume (iii) and let Xi = (Xi, ρi) ∈ IM, i.e. ρi = ρ∗i for
i = 1, 2. Let ρf = f̂(ρ1, ρ2). We have to prove that (ρf )∗ = ρf . Let
a, b ∈ X1 ×X2, a = (a1, a2), b = (b1, b2). It suffices to prove that there is a
sequence (L(n))n∈N of arcs joining a and b in X1 ×X2 such that

(7) lim
n
|L(n)|ρf

= ρf (a, b) .

Since ρ∗i = ρi, there is a sequence (L(n)
i )n∈N of arcs joining ai and bi in Xi

such that

(8) lim
n
|L(n)

i |ρi = ρi(ai, bi), i = 1, 2 .

Let ρ
(n)
i = (ρi|(L(n)

i )2)∗ for i = 1, 2, n ∈ N. Evidently

(9) |L(n)
i |ρi = ρ

(n)
i (ai, bi) for i = 1, 2, n ∈ N .

Let

(10) ρ
(n)
f = f̂(ρ(n)

1 , ρ
(n)
2 ) .

By Th. 28.1 of [1], the compactness of L
(n)
i implies (L(n)

i , ρ
(n)
i ) ∈ MC,

whence, by (iii),

(L(n)
1 × L

(n)
2 , ρ

(n)
f ) ∈ MC .

Let now L(n) be an arc joining a and b in L
(n)
1 × L

(n)
2 such that

(11) |L(n)|
ρ
(n)
f

= ρ
(n)
f (a, b) .

Applying in turn (11), (10), 1.2 and 1.3(i), (9), and (8), we obtain

lim
n
|L(n)|

ρ
(n)
f

= lim
n

ρ
(n)
f (a, b) = lim

n
f(ρ(n)

1 (a1, b1), ρ
(n)
2 (a2, b2))

= f(lim
n

ρ
(n)
1 (a1, b1), lim

n
ρ
(n)
2 (a2, b2))

= f(lim
n
|L(n)

1 |ρ1 , lim
n
|L(n)

2 |ρ2) = f(ρ1(a1, b1), ρ2(a2, b2)) ,

i.e.

(12) lim
n
|L(n)|

ρ
(n)
f

= ρf (a, b) .

Since ρ
(n)
i ≥ ρi|(L(n)

i )2, by F.3 and (10) we infer that

ρ
(n)
f ≥ f̂(ρ1|(L(n)

1 )2, ρ2|(L(n)
2 )2) .

Hence

(13) |L(n)|ρf
≤ |L(n)|

ρ
(n)
f

for every n ∈ N .

Finally,

(14) ρf (a, b) ≤ (ρf )∗(a, b) ≤ lim
n
|L(n)|ρf

.
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Conditions (12)–(14) imply (7). This completes the proof.

Let us now consider the following three examples:

3.6. Example. Let f(t1, t2) =
√

t1 + t2 for t1, t2 ∈ R+. Evidently
f ∈ F̃1 −F2. We shall prove that GA is not f -multiplicative.

Let I = [0, 1] ⊂ R and let ρ be the Euclidean metric. Take X1 = (I, ρ)
and X2 = ({0}, ρ). Evidently Xi ∈ GA for i = 1.2. We have X1 ×f X2 =
(I × {0}, ρf ), where

ρf ((x1, 0), (y1, 0)) =
√

ρ(x1, y1) for x1, y1 ∈ I .

The points (0, 0) and (1, 0) cannot be joined in X1×f X2 by an arc of finite
length. Indeed, let In,k = [k/n, (k + 1)/n] for n ∈ N and k = 0, . . . , n − 1;
then |In,k|ρf

=
√

1/n, whence

n−1∑
k=0

|In,k|ρf
= n

√
1/n =

√
n ,

and thus |I × {0}|ρf
is infinite. Therefore X1 ×f X2 is not geometrically

acceptable.

3.7. Example. Let f(t1, t2) =
√

t1 + t2 for t1, t2 ∈ R+. It is easy to
check that f ∈ F̃1 − F2. We shall prove that IM, MC, and MidC are not
f -multiplicative.

Let ρ be the Euclidean metric in [0,1]; let Xi = ([0, 1], ρ) for i = 1, 2 and
let ρf = f̂(ρ, ρ). Clearly X1 and X2 are convex, whence ρ is an intrinsic
metric. On the other hand, X1×f X2 is not convex; moreover, X1×f X2 is
not Mid-convex, because for every x ∈ [0, 1]2, if ρf (a, x)+ρf (x, b) = ρf (a, b),
then x = a or x = b. Since X1 ×f X2 is compact, by Th. 28.1 of [1] it
follows that ρf is not an intrinsic metric.

3.8. Example. Let f(t1, t2) = t1 + t2 for t1, t2 ∈ R+. Then f ∈ F2−F ′2.
Clearly the Euclidean line R is strongly Mid-convex (it is even strongly
convex), while R×f R is not.

We complete this section with two corollaries.

3.9. Corollary. The classes GA, IM, MC, and MidC are F2-multi-
plicative but not F1-multiplicative.

P r o o f. For the class GA the statement follows from 3.4(ii) and 3.6; for
IM and MC it follows from 3.4(ii), 3.5, and 3.7; for MidC it follows from 2.3
and 3.7.

3.10. Corollary. The classes SMidC and SMC are F ′2-multiplicative
but not F2-multiplicative.
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P r o o f. For the class SMidC we use 2.4 and 3.8; for SMC we use 0.1,
3.8, and 3.9.

4. Products of normed linear spaces. We are now concerned with
normed linear spaces. Every f : (R+)2 → R+ induces a function f̌ which
assigns to any pair of norms ‖ ‖1, ‖ ‖2 in linear spaces E1, E2, respectively,
the function

f̌(‖ ‖1, ‖ ‖2) = ‖ ‖f : E1 × E2 → R+

defined by the formula

‖(x1, x2)‖f := f(‖x1‖1, ‖x2‖2) .

Evidently

4.1. If (Ei, ‖ ‖i) is a normed linear space and ρi is the metric induced by
the norm ‖ ‖i for i = 1, 2, then for every f : (R+)2 → R+ and x, y ∈ E1×E2

f̂(ρ1, ρ2)(x, y) = ‖x− y‖f .

As a direct consequence of 4.1 we obtain

4.2. Let ρi be the metric induced by a norm ‖ ‖i in Ei, i = 1, 2. For
every f : (R+)2 → R+

(i) if f̌(‖ ‖1, ‖ ‖2) is a norm in E1 × E2, then f̂(ρ1, ρ2) is the metric
induced by this norm;

(ii) if f satisfies F.4.2 and f̂(ρ1, ρ2) is a metric in E1 × E2, then
f̌(‖ ‖1, ‖ ‖2) is the norm which induces this metric.

We can now characterize F2 as follows:

4.3. Theorem. For every f : (R+)2 → R+ the following conditions are
equivalent :

(i) f ∈ F2;
(ii) the class NL is f-multiplicative;
(iii) if ρ is the Euclidean metric in R2, then f̂(ρ, ρ) is induced by a norm

in R4.

P r o o f. The implication (i)⇒(ii) follows from 2.1 and 4.2(ii).
(ii)⇒(iii) is obvious.
(iii)⇒(i). By 2.1, f ∈ F0; it remains to verify F.4.2. Let ρf = f̂(ρ, ρ).

By assumption, ρf is induced by a norm ‖ ‖ in R4. Take (t1, t2) ∈ (R+)2 and
let 0 = (0, . . . , 0) ∈ R4. Then ti = ρ((0, 0), xi) for some xi ∈ R2, i = 1, 2,
and for any α ∈ R+

f(α(t1, t2)) = f(ρ((0, 0), αx1), ρ((0, 0), αx2)) = ρf (0, α(x1, x2))
= ‖α(x1, x2)‖ = αf(t1, t2) .

This proves F.4.2.



132 I . HERBURT AND M. MOSZYŃSKA

By 4.3, the family F2 coincides with the family of all functions for which
NL is multiplicative:

4.4. Corollary. F2 = FNL.

We are now going to prove the analogue of 4.4 for F ′2 and the class SNL.
Let us start with two simple lemmas:

4.5. Lemma. If ρ is induced by a norm in a linear space E, then Mρ(a, b)
is affine convex for every a, b ∈ E.

P r o o f. First notice that in (E, ρ)

(1) every closed, affine Mid-convex set is affine convex.

By the continuity of ρ,

(2) for every a, b the set Mρ(a, b) is closed (2).

Thus, it suffices to prove that for every a, b ∈ E the set Mρ(a, b) is affine
Mid-convex, i.e.

(3) c1, c2 ∈ Mρ(a, b) ⇒ 1
2 (c1 + c2) ∈ Mρ(a, b) .

The proof of (3) is left to the reader.

4.6. Lemma. If ρ is induced by a norm in a linear space E, then trans-
lations and central symmetries are isometries of (E, ρ).

Let us now establish

4.7. Proposition. For every normed linear space (E, ‖ ‖) and the met-
ric ρ induced by ‖ ‖ the following conditions are equivalent :

(i) balls are strictly convex ;
(ii) the space (E, ρ) is strongly convex.

P r o o f. (i)⇒(ii). Clearly (E, ρ) is metrically convex, since every affine
segment is a metric segment. Thus, by 0.1, it suffices to prove

(1) ∀a, b ∈ E Mρ(a, b) is a singleton .

Suppose there are a, b, c1, c2 such that a 6= b, c1 6= c2, and ci ∈ Mρ(a, b)
for i = 1, 2. Then, by 4.5, ∆(c1, c2) ⊂ Mρ(a, b). Let α = ρ(b, ci). Then
∆(c1, c2) ⊂ ∂Bρ(b, α), contrary to (i).

(ii)⇒(i). By 4.6, it suffices to prove that there exists a strictly convex
ball. Let B0 = Bρ(a, 1) for some a ∈ E. Suppose that B0 is not strictly
convex, i.e. there are distinct points p, q with ∆(p, q) ⊂ ∂B0. Let r =
1
2 (p + q); take the symmetry σr with respect to r and let b = σr(a). Then,
by 4.6, σr(B0) = Bρ(b, 1). It is easy to check that p, q ∈ Mρ(a, b), contrary
to (ii).

(2) Condition (2) holds in an arbitrary metric space.
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We are now ready to prove

4.8. Theorem. For every f : (R+)2 → R+ the following conditions are
equivalent :

(i) f ∈ F ′2;
(ii) the class SNL is f-multiplicative;
(iii) if ρ is the Euclidean metric in R2, then (R4, f̂(ρ, ρ)) ∈ SNL.

P r o o f. Applying 4.7 and 3.10 we obtain the implication (i)⇒(ii).
(ii)⇒(iii) is obvious.
(iii)⇒(i). Assume (iii). By 4.7, the metric f̂(ρ, ρ) is strongly convex,

whence for every a, b ∈ R4

(1) Mf̂(ρ,ρ)(a, b) = { 1
2 (a + b)} .

Let a = (a1, a2), b = (b1, b2), ai, bi ∈ R2 for i = 1, 2. Clearly, Mρ(ai, bi) =
{ 1

2 (ai + bi)} for i = 1, 2, which, together with (1), implies

(2) Mρ(a1, b1)×Mρ(a2, b2) = Mf̂(ρ,ρ)(a, b) .

Since, by 4.3, f ∈ F2, and thus, by 1.2, f ∈ F1, from 2.4 and (2) it follows
that f ∈ F ′2.

By 4.8, the family F ′2 coincides with the family of all functions for which
SNL is multiplicative:

4.9. Corollary. F ′2 = FSNL.

REFERENCES

[1] L. M. Blumentha l, Theory and Applications of Distance Geometry , Clarendon
Press, Oxford 1953.

[2] K. Borsuk, On intrinsic isometries, Bull. Acad. Polon. Sci. Sér. Sci. Math. 29 (1981),
83–90.
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