COLLOQUIUM MATHEMATICUM

VOL. LXII

1991

FASC. I

ON METRIC PRODUCTS

BҮ

IRMINA HERBURT AND MARIA MOSZYŃSKA (WARSZAWA)

0. Introduction. For a given pair of metric spaces $X_i = (X_i, \rho_i)$, i = 1, 2, there are various possible product metrics, i.e. metrics which induce the product topology in $X_1 \times X_2$. Evidently, for the multiplicativity of a topological property the choice of a product metric is inessential. But, in general, it is essential for the multiplicativity of a metric property.

Following the idea of Olędzki and Spież [4], we are concerned with metrics induced by functions from $(\mathbb{R}^+)^2$ to \mathbb{R}^+ . Five families $(\mathcal{F}_0, \mathcal{F}_1, \tilde{\mathcal{F}}_1, \mathcal{F}_2, \text{ and } \mathcal{F}'_2)$ of such functions are defined in Section 1; their role is described in Section 2. The next two sections, 3 and 4, are devoted to \mathcal{F} -multiplicativity of different classes of metric spaces for \mathcal{F} being one of the families $\mathcal{F}_1, \tilde{\mathcal{F}}_1,$ \mathcal{F}_2 , and \mathcal{F}'_2 . It seems interesting that to decide whether a given class \mathcal{M} is f-multiplicative or not, it often suffices to examine the space $(\mathbb{R}^4, \hat{f}(\rho, \rho))$, where ρ is the Euclidean metric in \mathbb{R}^2 and $\hat{f}(\rho, \rho)$ is the induced metric in \mathbb{R}^4 (compare 4.3 and 4.8).

We use the terminology and notation of [3]; in particular, a space (X, ρ) is said to be *strongly arcwise connected* if any two distinct points $x, y \in X$ can be joined in X by an arc with a finite length; let ρ^* denote the intrinsic metric determined by ρ in a strongly arcwise connected space (X, ρ) , i.e. $\rho^*(x, y)$ is the infimum of the lengths of all arcs joining x and y in (X, ρ) . By $B_{\rho}(a, \varepsilon)$ we denote the ball in (X, ρ) with centre a and radius ε , i.e.

$$B_{\rho}(a,\varepsilon) := \{ x \in X; \rho(x,a) < \varepsilon \};$$

by $M_{\rho}(a, b)$ we denote the set of midpoints of the pair (a, b):

$$M_{\rho}(a,b) := \{x \in X; \rho(a,x) = \frac{1}{2}\rho(a,b) = \rho(x,b)\}.$$

We are concerned with the following classes of metric spaces:

- FC the class of *finitely compact* spaces ($X \in FC$ iff every bounded sequence in X has a convergent subsequence; compare [1]),
- GA the class of geometrically acceptable spaces $((X, \rho) \in GA \text{ iff } (X, \rho)$ is strongly arcwise connected and ρ^* is topologically equivalent to ρ ; compare [2] and [3]),

- IM the class of spaces with intrinsic metrics $((X, \rho) \in \text{IM iff } \rho^* = \rho)$,
- MC the class of *metrically convex* spaces ($X \in MC$ iff every pair of points a, b in X can be joined by a metric segment, i.e. by an isometric image of the interval $[0, \rho(a, b)]$; compare [1], [3]),
- SMC the class of *strongly metrically convex* spaces ($X \in$ SMC iff every pair of points of X can be joined by a unique metric segment),
- MidC the class of *Mid-convex* spaces $((X, \rho) \in MidC \text{ iff } M_{\rho}(a, b) \neq \emptyset$ for every $a, b \in X$),
- SMidC the class of strongly Mid-convex spaces $((X, \rho) \in \text{SMidC iff} M_{\rho}(a, b)$ is a singleton for every $a, b \in X$, i.e. M_{ρ} is an operation),
- NL the class of linear spaces with metric induced by a norm,
- SNL the subclass of NL consisting of spaces with strictly convex balls (i.e. balls with no segments on the boundary).

Let us note the following

0.1. LEMMA. $MC \cap SMidC = SMC$.

Proof. The inclusion \supset is evident. We prove \subset . Let $\mathbf{X} = (X, \rho)$ be a metrically convex and strongly Mid-convex metric space. Let L_1 and L_2 be metric segments in \mathbf{X} with endpoints a,b. Then, evidently, there is a set $A \subset L_1 \cap L_2$ which is dense in both arcs L_1 and L_2 (A is obtained by iterating the midpoint operation M_{ρ}). Thus $L_1 = L_2$.

1. Some sets of real functions. Let \mathbb{R}^+ be the set of non-negative reals and let \sim be the proportionality relation in \mathbb{R}^2 . We shall deal with the following conditions on $f : (\mathbb{R}^+)^2 \to \mathbb{R}^+$:

- F.0. $|s_i t_i| \le r_i \le s_i + t_i \text{ for } i = 1, 2 \Rightarrow f(r_1, r_2) \le f(s_1, s_2) + f(t_1, t_2)$ for every $r_i, s_i, t_i \in \mathbb{R}^+$;
- F.1. $f(t_1, t_2) = 0 \iff t_1 = t_2 = 0;$
- F.2. f is subadditive, i.e. $f(t+s) \leq f(t) + f(s)$ for every $t, s \in (\mathbb{R}^+)^2$;
- F.2'. f is strictly subadditive, i.e. f is subadditive and

$$f(t+s) = f(t) + f(s) \implies t \sim s \text{ for every } t, s \in (\mathbb{R}^+)^2;$$

F.3. f is totally increasing, i.e. for every $r = (r_1, r_2)$ and $t = (t_1, t_2)$,

$$r_i \leq t_i \text{ for } i = 1, 2 \Rightarrow f(r) \leq f(t);$$

- F.4.1. f is continuous at (0,0);
- F.4.2. f is homogeneous, i.e. for every $t \in (\mathbb{R}^+)^2$ and $\alpha \in \mathbb{R}^+$, $f(\alpha t) = \alpha f(t)$.

Let us define five sets of functions:

$$\begin{split} \mathcal{F}_{0} &:= \{ f : (\mathbb{R}^{+})^{2} \to \mathbb{R}^{+}; \ f \text{ satisfies F.0 and F.1} \}, \\ \mathcal{F}_{i} &:= \{ f \in \mathcal{F}_{0}; \ f \text{ satisfies F.4.i.} \} \text{ for } i = 1, 2, \\ \widetilde{\mathcal{F}}_{1} &:= \{ f : (\mathbb{R}^{+})^{2} \to \mathbb{R}^{+}; \ f \text{ satisfies F.1, F.2, F.3, F.4.1} \}, \\ \mathcal{F}'_{2} &:= \{ f : (\mathbb{R}^{+})^{2} \to \mathbb{R}^{+}; \ f \text{ satisfies F.1, F.2', F.3, F.4.2} \}. \end{split}$$

The set \mathcal{F}_2 can be characterized as follows:

1.1. $\mathcal{F}_2 = \{ f : (\mathbb{R}^+)^2 \to \mathbb{R}; f \text{ satisfies F.1, F.2, F.3, F.4.2} \} (^1).$

 $\Pr{o\,o\,f.}$ The inclusion \supset is obvious. To verify \subset it suffices to prove

 $F.0 \wedge F.4.2 \Rightarrow F.2 \wedge F.3$.

Taking r = s + t in F.0, we get F.2. To obtain F.3, we assume $r_i \leq u_i$ for i = 1, 2 and take $s_i = t_i = \frac{1}{2}u_i$ in F.0.

Using 1.1, we easily obtain

1.2. $\mathcal{F}'_2 \subset \mathcal{F}_2 \subset \widetilde{\mathcal{F}}_1 \subset \mathcal{F}_1 \subset \mathcal{F}_0.$

It can be shown that all the inclusions in 1.2 are proper. We shall need the following three lemmas:

1.3. LEMMA. If $f \in \mathcal{F}_1$, then

(i) f is continuous;

(ii) for every $(t^{(n)})_{n \in \mathbb{N}}$ in $(\mathbb{R}^+)^2$, $\lim_{n \to \infty} f(t^{(n)}) = 0 \Rightarrow \lim_{n \to \infty} t^{(n)} = (0, 0)$.

Proof. (i) By F.0 it follows that

$$\begin{aligned} |t_i - s_i| &\leq r_i \leq t_i + s_i \quad \text{for } i = 1, 2 \\ &\Rightarrow |f(t_1, t_2) - f(s_1, s_2)| \leq f(r_1, r_2) \leq f(t_1, t_2) + f(s_1, s_2) \,. \end{aligned}$$

Setting $r_i = |t_i - s_i|$, we obtain

(1)
$$|f(t_1, t_2) - f(s_1, s_2)| \le f(|t_1 - s_1|, |t_2 - s_2|)$$

for every $(t_1, t_2), (s_1, s_2) \in (\mathbb{R}^+)^2$.

Take $(s_1, s_2) \in (\mathbb{R}^+)^2$ and $\varepsilon > 0$. Since f is continuous at (0, 0), by F.1 there exist $\delta_1, \delta_2 > 0$ such that

 $\forall t_1, t_2 \in \mathbb{R}^+$ $|t_i - s_i| < \delta_i \text{ for } i = 1, 2 \Rightarrow f(|t_1 - s_1|, |t_2 - s_2|) < \varepsilon.$

Thus (1) yields the continuity at (s_1, s_2) .

(ii) Let

(2)
$$\lim_{n} f(t_1^{(n)}, t_2^{(n)}) = 0$$

^{(&}lt;sup>1</sup>) By 1.1, \mathcal{F}_2 is the set of functions considered in [4], p. 245.

and suppose that $((t_1^{(n)}, t_2^{(n)}))_{n \in \mathbb{N}}$ is not convergent to (0,0). Then we can assume that $(t_1^{(n)})_{n \in \mathbb{N}}$ is either divergent to ∞ or convergent to $t_1 \neq 0$, whence

(3)
$$\exists s_1 \ \exists n_0 \ \forall n > n_0 \quad 0 < s_1 \le 2t_1^{(n)}.$$

Thus, by F.0, $f(s_1, 0) \leq 2f(t_1^{(n)}, t_2^{(n)})$, which, by (2) and (3), contradicts F.1.

1.4. LEMMA. If f is continuous and subadditive, then the following conditions are equivalent:

- (i) f is homogeneous;
- (ii) $f(\frac{1}{2}t) = \frac{1}{2}f(t)$ for every $t \in (\mathbb{R}^+)^2$.

Proof. The implication $(i) \Rightarrow (ii)$ is obvious.

Assume (ii); to prove (i) it suffices to show that for every $\alpha \in \mathbb{R}^+$

(1)
$$f(\alpha t) \le \alpha f(t) \quad \text{for } t \in (\mathbb{R}^+)^2.$$

Let $k \in \mathbb{N}$; since

$$=\sum_{n=1}^{\infty} \frac{\alpha_n}{2^n} \quad \text{for some } \alpha_n \in \{0,1\}, \ n \in \mathbb{N},$$

by F.2 and the continuity of f we obtain (1) for α rational. Using again continuity, we get (1) for every $\alpha \in \mathbb{R}^+$.

1.5. LEMMA. For every f ∈ F₂ the following conditions are equivalent:
(i) f ∈ F'₂;
(ii) r = s + t ∧ f(s) = f(t) = ½f(r) ⇒ s = t = ½r, for all r, s, t ∈ (ℝ⁺)².

P roof. (i) \Rightarrow (ii). Suppose

 $\frac{1}{k}$

(1)
$$r = s + t \text{ and } f(s) = f(t) = \frac{1}{2}f(r).$$

Then f(s+t) = f(s) + f(t), whence, by F.2',

(2)
$$s = \alpha t$$
 for some $\alpha \in \mathbb{R}^+$

If s = (0,0) or t = (0,0), then (ii) holds. Let $s \neq (0,0) \neq t$. By F.4.2 and (2), $f(s) = \alpha f(t)$, whence, by F.1, $\alpha = 1$. Thus, by (i) and (2), $s = t = \frac{1}{2}r$.

(ii) \Rightarrow (i). First, notice that (ii) implies

$$(3)_{\alpha} \quad r = s + t \wedge f(s) = \alpha f(r) \wedge f(t) = (1 - \alpha)f(r)$$

$$\Rightarrow s = \alpha r \wedge t = (1 - \alpha)r$$

for every $\alpha \in [0, 1]$.

Indeed, (ii) coincides with $(3)_{\alpha}$ for $\alpha = \frac{1}{2}$. By F.4.2, $(3)_{\alpha} \Rightarrow (3)_{\alpha/2}$; evidently $(3)_{\alpha} \Rightarrow (3)_{1-\alpha}$. Thus $(3)_{\alpha}$ holds for $\alpha = m/2^n$ for $m, n \in \mathbb{N} \cup \{0\}$, whence it holds for every $\alpha \in [0, 1]$ because f is continuous.

By 1.1, it remains to prove

(4)
$$f(s+t) = f(s) + f(t) \Rightarrow s \sim t.$$

Let f(s+t) = f(s) + f(t) and r = s+t. Then $f(s) = \alpha f(r)$ for some $\alpha \in [0, 1]$; thus, $(3)_{\alpha}$ yields $s = \alpha r$ and $t = (1 - \alpha)r$, which proves (4).

2. Geometric characterizations of \mathcal{F}_1 , \mathcal{F}_2 , and \mathcal{F}'_2 . Every $f: (\mathbb{R}^+)^2 \to \mathbb{R}^+$ induces the function \hat{f} which assigns to any pair of metrics ρ_1, ρ_2 in X_1, X_2 , respectively, the function

$$\hat{f}(\rho_1, \rho_2) = \rho_f : (X_1 \times X_2)^2 \to \mathbb{R}^+$$

defined by the formula

$$\rho_f((x_1, x_2), (y_1, y_2)) := f(\rho_1(x_1, y_1), \rho_2(x_2, y_2)).$$

The following two statements characterize \mathcal{F}_0 and \mathcal{F}_1 :

2.1. THEOREM. For every $f : (\mathbb{R}^+)^2 \to \mathbb{R}^+$ the following conditions are equivalent:

(i) $f \in \mathcal{F}_0$;

(ii) for every pair of metric spaces (X_i, ρ_i) , i = 1, 2, the function $\hat{f}(\rho_1, \rho_2)$ is a metric in $X_1 \times X_2$;

(iii) is ρ is the Euclidean metric in \mathbb{R}^2 , then $\hat{f}(\rho, \rho)$ is a metric in \mathbb{R}^4 . The proof is routine.

As a consequence of 2.1, 1.2, and 1.3(ii), we obtain

2.2. THEOREM. For every $f : (\mathbb{R}^+)^2 \to \mathbb{R}^+$ the following conditions are equivalent:

(i) $f \in \mathcal{F}_1$;

(ii) for every pair of metric spaces (X_i, ρ_i) , i = 1, 2, the function $\hat{f}(\rho_1, \rho_2)$ is a product metric in $X_1 \times X_2$;

(iii) if ρ is the Euclidean metric in \mathbb{R}^2 , then $\hat{f}(\rho, \rho)$ is a product metric in \mathbb{R}^4 .

The next two statements reflect the role of \mathcal{F}_2 and \mathcal{F}'_2 :

2.3. THEOREM. For every $f \in \mathcal{F}_1$ the following conditions are equivalent: (i) $f \in \mathcal{F}_2$;

(ii) for every pair of metric spaces $(X_i, \rho_i), i = 1, 2,$

 $M_{\rho_1}(a_1, b_1) \times M_{\rho_2}(a_2, b_2) \subset M_{\hat{f}(\rho_1, \rho_2)}((a_1, a_2), (b_1, b_2))$

for every $a_i, b_i \in X_i, i = 1, 2;$

(iii) if ρ is the Euclidean metric in \mathbb{R} , then

$$M_{\rho}(a_1, b_1) \times M_{\rho}(a_2, b_2) \subset M_{\hat{f}(\rho, \rho)}((a_1, a_2), (b_1, b_2))$$

for every $a_i, b_i \in \mathbb{R}, i = 1, 2$.

The proof of the implication $(i) \Rightarrow (ii)$ is routine; $(ii) \Rightarrow (iii)$ is obvious; $(iii) \Rightarrow (i)$ follows from 1.3 and 1.4.

2.4. THEOREM. For every $f \in \mathcal{F}_1$ the following conditions are equivalent:

(i) $f \in \mathcal{F}'_2$;

(ii) for every pair of metric spaces $(X_i, \rho_i), i = 1, 2,$

$$M_{\rho_1}(a_1, b_1) \times M_{\rho_2}(a_2, b_2) = M_{\hat{f}(\rho_1, \rho_2)}((a_1, a_2), (b_1, b_2))$$

for every $a_i, b_i \in X_i, i = 1, 2;$

(iii) if ρ is the Euclidean metric in \mathbb{R} , then

$$M_{\rho}(a_1, b_1) \times M_{\rho}(a_2, b_2) = M_{\hat{f}(\rho, \rho)}((a_1, a_2), (b_1, b_2))$$

for every $a_i, b_i \in \mathbb{R}, i = 1, 2$.

Proof. (i) \Rightarrow (ii). Let $\rho_f = \hat{f}(\rho_1, \rho_2)$, $a = (a_1, a_2)$, $b = (b_1, b_2)$. Since $\mathcal{F}'_2 \subset \mathcal{F}_2$, by 2.3 it suffices to prove

(1)
$$M_{\rho_f}(a,b) \subset M_{\rho_1}(a_1,b_1) \times M_{\rho_2}(a_2,b_2).$$

We can assume $a \neq b$. Take $x = (x_1, x_2) \in M_{\rho_f}(a, b)$; let $s_i = \rho_i(a_i, x_i)$, $t_i = \rho_i(x_i, b_i)$, $r_i = \rho_i(a_i, b_i)$ for i = 1, 2 and $t = (t_1, t_2)$, $s = (s_1, s_2)$, $r = (r_1, r_2)$. Then $r_i = s_i + t_i$ for i = 1, 2 and $f(s) = f(t) = \frac{1}{2}f(r)$, whence, by 1.5, $s = t = \frac{1}{2}r$. Thus $x_i \in M_{\rho_i}(a_i, b_i)$, which proves (1).

 $(ii) \Rightarrow (iii)$ is obvious.

(iii) \Rightarrow (i). By 2.3 and 1.5, it suffices to prove

(2)
$$r = s + t \wedge f(s) = f(t) = \frac{1}{2}f(r) \Rightarrow s = t = \frac{1}{2}r,$$

for every $r, s, t \in (\mathbb{R}^+)^2$. Take $r, s, t \in (\mathbb{R}^+)^2$ satisfying the antecedent of (2). For i = 1, 2 there exist $a_i, b_i, c_i \in \mathbb{R}$ such that $\rho(a_i, c_i) = s_i, \rho(b_i, c_i) = t_i$, and $\rho(a_i, b_i) = r_i$. Let $a = (a_1, a_2), b = (b_1, b_2), c = (c_1, c_2)$. From the assumption on s, t, r it follows that $c \in M_{\hat{f}(\rho,\rho)}(a, b)$, whence, by (iii), $c_i \in M_{\rho}(a_i, b_i)$, which proves (2).

3. On *f*-multiplicativity of some metric properties. Applying 2.1, for arbitrary $f \in \mathcal{F}_0$ we can define the *f*-product $X_1 \times_f X_2$ of metric spaces X_1, X_2 :

If $\boldsymbol{X}_i = (X_i, \rho_i)$ for i = 1, 2, then

$$\mathbf{X}_1 \times_f \mathbf{X}_2 := (X_1 \times X_2, \hat{f}(\rho_1, \rho_2)).$$

We are only interested in product metrics. Therefore, we admit the following definitions (compare 2.2):

Let $f \in \mathcal{F}_1$. A class \mathcal{M} of metric spaces is *f*-multiplicative if and only if

 $X_1, X_2 \in \mathcal{M} \Rightarrow X_1 \times_f X_2 \in \mathcal{M}$ for every pair (X_1, X_2) .

Let $\mathcal{F} \subset \mathcal{F}_1$. The class \mathcal{M} is \mathcal{F} -multiplicative whenever \mathcal{M} is f-multiplicative for every $f \in \mathcal{F}$.

Every class \mathcal{M} determines the maximal subfamily of \mathcal{F}_1 for which \mathcal{M} is multiplicative:

$$\mathcal{F}_{\mathcal{M}} := \{ f \in \mathcal{F}_1; \ \mathcal{M} \text{ is } f \text{-multiplicative} \}.$$

Of course, if \mathcal{M} is a topological invariant, then, by 2.2, \mathcal{M} is \mathcal{F}_1 -multiplicative if and only if \mathcal{M} is f-multiplicative for $f(t_1, t_2) = \sqrt{(t_1)^2 + (t_2)^2}$.

It is easy to prove that

3.1. The class of complete metric spaces is $\widetilde{\mathcal{F}}_1$ -multiplicative.

Let us notice that

3.2. The class FC of finitely compact spaces is \mathcal{F}_2 -multiplicative but not $\widetilde{\mathcal{F}}_1$ -multiplicative.

Proof. To prove that FC is \mathcal{F}_2 -multiplicative it is enough to show that if A is a bounded set in $\mathbf{X}_1 \times_f \mathbf{X}_2$, then $A \subset A_1 \times A_2$ for some sets A_i bounded in \mathbf{X}_i for i = 1, 2. Let

(1) $A \subset B_{\hat{f}(\rho_1,\rho_2)}(a,\alpha)$ for some $a = (a_1,a_2) \in X_1 \times X_2$ and $\alpha > 0$. If

 $\beta = \alpha \max\{(f(1,0))^{-1}, (f(0,1))^{-1}\}$ and $A_i = B_{\rho_i}(a_i, \beta)$ for i = 1, 2, then, by F.3 and F.4.2, for every $t_1, t_2 \in \mathbb{R}^+$

$$t_1 f(1,0) \le f(t_1,t_2)$$
 and $t_2 f(0,1) \le f(t_1,t_2)$,

whence, by (1), $A \subset A_1 \times A_2$.

To show that FC is not $\widetilde{\mathcal{F}}_1$ -multiplicative, consider f defined by the formula

$$f(t_1, t_2) = t_1 + t_2(1 + t_2)^{-1}$$

Evidently $f \in \mathcal{F}_1$. The Euclidean line $\mathbf{R} = (\mathbb{R}, \rho)$ is finitely compact, while $\mathbf{R} \times_f \mathbf{R}$ is not; indeed, the sequence $((0, n))_{n \in \mathbb{N}}$ is bounded in $(\mathbb{R}^2, \hat{f}(\rho, \rho))$, but has no convergent subsequence.

In our terminology Theorem 3.7 of Oljdzki and Spież [4] can be formulated as follows:

3.3. If $f \in \mathcal{F}_2$, then for every pair of metric spaces $\mathbf{X}_i = (X_i, \rho_i) \in \text{GA}$, i = 1, 2, the function $\hat{f}(\rho_1, \rho_2)$ is a product metric in $X_1 \times X_2$ and

$$(\hat{f}(\rho_1, \rho_2))^* = \hat{f}(\rho_1^*, \rho_2^*).$$

In fact, they proved the following slightly stronger statement:

3.4. Let $X_i = (X_i, \rho_i) \in GA$ for i = 1, 2.

- (i) If $f \in \mathcal{F}_1$ and $\mathbf{X}_1 \times_f \mathbf{X}_2 \in \text{GA}$, then $(\hat{f}(\rho_1, \rho_2))^* \geq \hat{f}(\rho_1^*, \rho_2^*)$.
- (ii) If $f \in \mathcal{F}_2$, then $\mathbf{X}_1 \times_f \mathbf{X}_2 \in \text{GA}$ and $(\hat{f}(\rho_1, \rho_2))^* = \hat{f}(\rho_1^*, \rho_2^*)$.

We shall prove

3.5. PROPOSITION. If $f \in \widetilde{\mathcal{F}}_1 \cap \mathcal{F}_{GA}$, then the following conditions are equivalent:

(i) $(\hat{f}(\rho_1, \rho_2))^* = \hat{f}(\rho_1^*, \rho_2^*)$ for every $(X_i, \rho_i) \in \text{GA}, i = 1, 2;$

(ii) the class IM is f-multiplicative;

(iii) the class MC is f-multiplicative.

Proof. The implication $(i) \Rightarrow (ii)$ is obvious.

(ii) \Rightarrow (i). Assume (ii) and let $X_i = (X_i, \rho_i) \in GA$ for i = 1, 2. Then

(1)
$$(\hat{f}(\rho_1^*, \rho_2^*))^* = \hat{f}(\rho_1^*, \rho_2^*)$$

By F.3, $\hat{f}(\rho_1^*, \rho_2^*) = \hat{f}(\rho_1, \rho_2)$, whence

(2)
$$(\hat{f}(\rho_1^*, \rho_2^*))^* \ge (\hat{f}(\rho_1, \rho_2))^*;$$

by 3.4(i)

(3)
$$(\hat{f}(\rho_1, \rho_2))^* \ge \hat{f}(\rho_1^*, \rho_2^*).$$

By (1)-(3), we obtain (i).

In what follows we use the notation $|L|_{\rho}$ for the length of an arc L in a metric space (X, ρ) .

(ii) \Rightarrow (iii). Assume (ii) and let $\mathbf{X}_i = (X_i, \rho_i) \in \text{MC}$ for i = 1, 2. Let $\rho_f = \hat{f}(\rho_1, \rho_2)$. To prove (iii) it suffices to show that for every $a_i, b_i \in X_i$ the points $a = (a_1, a_2)$ and $b = (b_1, b_2)$ can be joined in $\mathbf{X}_i \times_f \mathbf{X}_2$ by an arc L with $|L|_{\rho_f} = \rho_f(a, b)$.

By the assumption on ρ_i , there exists an arc $L_i \subset X_i$ with endpoints a_i and b_i and with $|L_i|_{\rho_i} = \rho_i(a_i, b_i)$, i = 1, 2. Let $\rho'_i = \rho_i |(L_i)^2$, i = 1, 2, and $\rho'_f = \hat{f}(\rho'_1, \rho'_2)$. Then

(4)
$$\rho'_f = \rho_f | (L_1 \times L_2)^2.$$

Evidently $(L_i, \rho'_i) \in MC \subset IM$ for i = 1, 2, whence, by (ii),

(5)
$$(L_1 \times L_2, \rho'_f) \in \mathrm{IM}.$$

Since $(L_1 \times L_2, \rho'_f)$ is compact, by Th. 28.1, p. 70 of [1], condition (5) implies

(6) $(L_1 \times L_2, \rho'_f) \in \mathrm{MC}.$

By (6), there is an arc $L \subset L_1 \times L_2$ joining a and b, with $|L|_{\rho'_f} = \rho'_f(a, b)$. Thus, by (4),

$$|L|_{\rho_f} = |L|_{\rho'_f} = \rho'_f(a, b) = \rho_f(a, b).$$

129

(iii) \Rightarrow (ii). Assume (iii) and let $\mathbf{X}_i = (X_i, \rho_i) \in \text{IM}$, i.e. $\rho_i = \rho_i^*$ for i = 1, 2. Let $\rho_f = \hat{f}(\rho_1, \rho_2)$. We have to prove that $(\rho_f)^* = \rho_f$. Let $a, b \in X_1 \times X_2, a = (a_1, a_2), b = (b_1, b_2)$. It suffices to prove that there is a sequence $(L^{(n)})_{n \in \mathbb{N}}$ of arcs joining a and b in $X_1 \times X_2$ such that

(7)
$$\lim_{n} |L^{(n)}|_{\rho_f} = \rho_f(a, b) \,.$$

Since $\rho_i^* = \rho_i$, there is a sequence $(L_i^{(n)})_{n \in \mathbb{N}}$ of arcs joining a_i and b_i in X_i such that

(8)
$$\lim_{n} |L_{i}^{(n)}|_{\rho_{i}} = \rho_{i}(a_{i}, b_{i}), \quad i = 1, 2$$

Let $\rho_i^{(n)} = (\rho_i | (L_i^{(n)})^2)^*$ for $i = 1, 2, n \in \mathbb{N}$. Evidently

(9)
$$|L_i^{(n)}|_{\rho_i} = \rho_i^{(n)}(a_i, b_i) \text{ for } i = 1, 2, \ n \in \mathbb{N}$$

Let

(10)
$$\rho_f^{(n)} = \hat{f}(\rho_1^{(n)}, \rho_2^{(n)})$$

By Th. 28.1 of [1], the compactness of $L_i^{(n)}$ implies $(L_i^{(n)},\rho_i^{(n)})\in {\rm MC},$ whence, by (iii),

$$(L_1^{(n)} \times L_2^{(n)}, \rho_f^{(n)}) \in \mathrm{MC}$$
.

Let now $L^{(n)}$ be an arc joining a and b in $L_1^{(n)} \times L_2^{(n)}$ such that

(11)
$$|L^{(n)}|_{\rho_f^{(n)}} = \rho_f^{(n)}(a,b) \,.$$

Applying in turn (11), (10), 1.2 and 1.3(i), (9), and (8), we obtain

$$\begin{split} \lim_{n} |L^{(n)}|_{\rho_{f}^{(n)}} &= \lim_{n} \rho_{f}^{(n)}(a,b) = \lim_{n} f(\rho_{1}^{(n)}(a_{1},b_{1}),\rho_{2}^{(n)}(a_{2},b_{2})) \\ &= f(\lim_{n} \rho_{1}^{(n)}(a_{1},b_{1}),\lim_{n} \rho_{2}^{(n)}(a_{2},b_{2})) \\ &= f(\lim_{n} |L_{1}^{(n)}|_{\rho_{1}},\lim_{n} |L_{2}^{(n)}|_{\rho_{2}}) = f(\rho_{1}(a_{1},b_{1}),\rho_{2}(a_{2},b_{2})), \end{split}$$

i.e.

(12)
$$\lim_{n} |L^{(n)}|_{\rho_{f}^{(n)}} = \rho_{f}(a,b)$$

Since $\rho_i^{(n)} \ge \rho_i | (L_i^{(n)})^2$, by F.3 and (10) we infer that

$$\rho_f^{(n)} \ge \hat{f}(\rho_1 | (L_1^{(n)})^2, \rho_2 | (L_2^{(n)})^2).$$

Hence

(13) $|L^{(n)}|_{\rho_f} \le |L^{(n)}|_{\rho_f^{(n)}} \quad \text{for every } n \in \mathbb{N}.$

Finally,

(14)
$$\rho_f(a,b) \le (\rho_f)^*(a,b) \le \lim_n |L^{(n)}|_{\rho_f}$$

Conditions (12)–(14) imply (7). This completes the proof. \blacksquare

Let us now consider the following three examples:

3.6. EXAMPLE. Let $f(t_1, t_2) = \sqrt{t_1} + t_2$ for $t_1, t_2 \in \mathbb{R}^+$. Evidently $f \in \widetilde{\mathcal{F}}_1 - \mathcal{F}_2$. We shall prove that GA is not *f*-multiplicative.

Let $I = [0, 1] \subset \mathbb{R}$ and let ρ be the Euclidean metric. Take $X_1 = (I, \rho)$ and $X_2 = (\{0\}, \rho)$. Evidently $X_i \in \text{GA}$ for i = 1.2. We have $X_1 \times_f X_2 = (I \times \{0\}, \rho_f)$, where

$$\rho_f((x_1, 0), (y_1, 0)) = \sqrt{\rho(x_1, y_1)} \quad \text{for } x_1, y_1 \in I.$$

The points (0,0) and (1,0) cannot be joined in $X_1 \times_f X_2$ by an arc of finite length. Indeed, let $I_{n,k} = [k/n, (k+1)/n]$ for $n \in \mathbb{N}$ and $k = 0, \ldots, n-1$; then $|I_{n,k}|_{\rho_f} = \sqrt{1/n}$, whence

$$\sum_{k=0}^{n-1} |I_{n,k}|_{\rho_f} = n\sqrt{1/n} = \sqrt{n} \,,$$

and thus $|I \times \{0\}|_{\rho_f}$ is infinite. Therefore $X_1 \times_f X_2$ is not geometrically acceptable.

3.7. EXAMPLE. Let $f(t_1, t_2) = \sqrt{t_1 + t_2}$ for $t_1, t_2 \in \mathbb{R}^+$. It is easy to check that $f \in \widetilde{\mathcal{F}}_1 - \mathcal{F}_2$. We shall prove that IM, MC, and MidC are not f-multiplicative.

Let ρ be the Euclidean metric in [0,1]; let $\mathbf{X}_i = ([0,1], \rho)$ for i = 1, 2 and let $\rho_f = \hat{f}(\rho, \rho)$. Clearly \mathbf{X}_1 and \mathbf{X}_2 are convex, whence ρ is an intrinsic metric. On the other hand, $\mathbf{X}_1 \times_f \mathbf{X}_2$ is not convex; moreover, $\mathbf{X}_1 \times_f \mathbf{X}_2$ is not Mid-convex, because for every $x \in [0,1]^2$, if $\rho_f(a,x) + \rho_f(x,b) = \rho_f(a,b)$, then x = a or x = b. Since $\mathbf{X}_1 \times_f \mathbf{X}_2$ is compact, by Th. 28.1 of [1] it follows that ρ_f is not an intrinsic metric. \blacksquare

3.8. EXAMPLE. Let $f(t_1, t_2) = t_1 + t_2$ for $t_1, t_2 \in \mathbb{R}^+$. Then $f \in \mathcal{F}_2 - \mathcal{F}'_2$. Clearly the Euclidean line \mathbf{R} is strongly Mid-convex (it is even strongly convex), while $\mathbf{R} \times_f \mathbf{R}$ is not.

We complete this section with two corollaries.

3.9. COROLLARY. The classes GA, IM, MC, and MidC are \mathcal{F}_2 -multiplicative but not \mathcal{F}_1 -multiplicative.

Proof. For the class GA the statement follows from 3.4(ii) and 3.6; for IM and MC it follows from 3.4(ii), 3.5, and 3.7; for MidC it follows from 2.3 and 3.7.

3.10. COROLLARY. The classes SMidC and SMC are \mathcal{F}'_2 -multiplicative but not \mathcal{F}_2 -multiplicative.

Proof. For the class SMidC we use 2.4 and 3.8; for SMC we use 0.1, 3.8, and 3.9. \blacksquare

4. Products of normed linear spaces. We are now concerned with normed linear spaces. Every $f : (\mathbb{R}^+)^2 \to \mathbb{R}^+$ induces a function \check{f} which assigns to any pair of norms $\| \|_1, \| \|_2$ in linear spaces E_1, E_2 , respectively, the function

$$\check{f}(|| ||_1, || ||_2) = || ||_f : E_1 \times E_2 \to \mathbb{R}^+$$

defined by the formula

 $||(x_1, x_2)||_f := f(||x_1||_1, ||x_2||_2).$

Evidently

4.1. If $(\mathbf{E}_i, || ||_i)$ is a normed linear space and ρ_i is the metric induced by the norm $|| ||_i$ for i = 1, 2, then for every $f : (\mathbb{R}^+)^2 \to \mathbb{R}^+$ and $x, y \in E_1 \times E_2$

$$\hat{f}(\rho_1, \rho_2)(x, y) = ||x - y||_f.$$

As a direct consequence of 4.1 we obtain

4.2. Let ρ_i be the metric induced by a norm $|| ||_i$ in E_i , i = 1, 2. For every $f : (\mathbb{R}^+)^2 \to \mathbb{R}^+$

(i) if $\check{f}(|| \|_1, || \|_2)$ is a norm in $E_1 \times E_2$, then $\hat{f}(\rho_1, \rho_2)$ is the metric induced by this norm;

(ii) if f satisfies F.4.2 and $\hat{f}(\rho_1, \rho_2)$ is a metric in $E_1 \times E_2$, then $\check{f}(\parallel \parallel_1, \parallel \parallel_2)$ is the norm which induces this metric.

We can now characterize \mathcal{F}_2 as follows:

4.3. THEOREM. For every $f : (\mathbb{R}^+)^2 \to \mathbb{R}^+$ the following conditions are equivalent:

(i) $f \in \mathcal{F}_2$;

(ii) the class NL is *f*-multiplicative;

(iii) if ρ is the Euclidean metric in \mathbb{R}^2 , then $\hat{f}(\rho, \rho)$ is induced by a norm in \mathbb{R}^4 .

Proof. The implication (i) \Rightarrow (ii) follows from 2.1 and 4.2(ii).

(ii) \Rightarrow (iii) is obvious.

(iii) \Rightarrow (i). By 2.1, $f \in \mathcal{F}_0$; it remains to verify F.4.2. Let $\rho_f = \hat{f}(\rho, \rho)$. By assumption, ρ_f is induced by a norm $\| \|$ in \mathbb{R}^4 . Take $(t_1, t_2) \in (\mathbb{R}^+)^2$ and let $0 = (0, \ldots, 0) \in \mathbb{R}^4$. Then $t_i = \rho((0, 0), x_i)$ for some $x_i \in \mathbb{R}^2$, i = 1, 2, and for any $\alpha \in \mathbb{R}^+$

$$f(\alpha(t_1, t_2)) = f(\rho((0, 0), \alpha x_1), \rho((0, 0), \alpha x_2)) = \rho_f(0, \alpha(x_1, x_2))$$

= $\|\alpha(x_1, x_2)\| = \alpha f(t_1, t_2).$

This proves F.4.2. \blacksquare

By 4.3, the family \mathcal{F}_2 coincides with the family of all functions for which NL is multiplicative:

4.4. COROLLARY. $\mathcal{F}_2 = \mathcal{F}_{\text{NL}}$.

We are now going to prove the analogue of 4.4 for \mathcal{F}'_2 and the class SNL. Let us start with two simple lemmas:

4.5. LEMMA. If ρ is induced by a norm in a linear space E, then $M_{\rho}(a, b)$ is affine convex for every $a, b \in E$.

Proof. First notice that in (E, ρ)

(1) every closed, affine Mid-convex set is affine convex.

By the continuity of ρ ,

(2) for every a, b the set $M_{\rho}(a, b)$ is closed (²).

Thus, it suffices to prove that for every $a, b \in E$ the set $M_{\rho}(a, b)$ is affine Mid-convex, i.e.

(3)
$$c_1, c_2 \in M_\rho(a, b) \Rightarrow \frac{1}{2}(c_1 + c_2) \in M_\rho(a, b).$$

The proof of (3) is left to the reader.

4.6. LEMMA. If ρ is induced by a norm in a linear space E, then translations and central symmetries are isometries of (E, ρ) .

Let us now establish

4.7. PROPOSITION. For every normed linear space (E, || ||) and the metric ρ induced by || || the following conditions are equivalent:

- (i) balls are strictly convex;
- (ii) the space (E, ρ) is strongly convex.

Proof. (i) \Rightarrow (ii). Clearly (E, ρ) is metrically convex, since every affine segment is a metric segment. Thus, by 0.1, it suffices to prove

(1) $\forall a, b \in E \quad M_{\rho}(a, b) \text{ is a singleton }.$

Suppose there are a, b, c_1, c_2 such that $a \neq b, c_1 \neq c_2$, and $c_i \in M_\rho(a, b)$ for i = 1, 2. Then, by 4.5, $\Delta(c_1, c_2) \subset M_\rho(a, b)$. Let $\alpha = \rho(b, c_i)$. Then $\Delta(c_1, c_2) \subset \partial B_\rho(b, \alpha)$, contrary to (i).

(ii) \Rightarrow (i). By 4.6, it suffices to prove that there exists a strictly convex ball. Let $B_0 = B_{\rho}(a, 1)$ for some $a \in E$. Suppose that B_0 is not strictly convex, i.e. there are distinct points p, q with $\Delta(p,q) \subset \partial B_0$. Let $r = \frac{1}{2}(p+q)$; take the symmetry σ_r with respect to r and let $b = \sigma_r(a)$. Then, by 4.6, $\sigma_r(B_0) = B_{\rho}(b, 1)$. It is easy to check that $p, q \in M_{\rho}(a, b)$, contrary to (ii).

 $[\]binom{2}{2}$ Condition (2) holds in an arbitrary metric space.

4.8. THEOREM. For every $f : (\mathbb{R}^+)^2 \to \mathbb{R}^+$ the following conditions are equivalent:

(i) $f \in \mathcal{F}'_2$;

(ii) the class SNL is *f*-multiplicative;

(iii) if ρ is the Euclidean metric in \mathbb{R}^2 , then $(\mathbb{R}^4, \hat{f}(\rho, \rho)) \in \text{SNL}$.

Proof. Applying 4.7 and 3.10 we obtain the implication (i) \Rightarrow (ii). (ii) \Rightarrow (iii) is obvious.

(iii) \Rightarrow (i). Assume (iii). By 4.7, the metric $\hat{f}(\rho, \rho)$ is strongly convex, whence for every $a, b \in \mathbb{R}^4$

(1)
$$M_{\hat{f}(\rho,\rho)}(a,b) = \{\frac{1}{2}(a+b)\}.$$

Let $a = (a_1, a_2), b = (b_1, b_2), a_i, b_i \in \mathbb{R}^2$ for i = 1, 2. Clearly, $M_\rho(a_i, b_i) = \{\frac{1}{2}(a_i + b_i)\}$ for i = 1, 2, which, together with (1), implies

(2)
$$M_{\rho}(a_1, b_1) \times M_{\rho}(a_2, b_2) = M_{\hat{f}(\rho, \rho)}(a, b).$$

Since, by 4.3, $f \in \mathcal{F}_2$, and thus, by 1.2, $f \in \mathcal{F}_1$, from 2.4 and (2) it follows that $f \in \mathcal{F}'_2$.

By 4.8, the family \mathcal{F}'_2 coincides with the family of all functions for which SNL is multiplicative:

4.9. Corollary. $\mathcal{F}'_2 = \mathcal{F}_{SNL}$.

REFERENCES

- L. M. Blumenthal, Theory and Applications of Distance Geometry, Clarendon Press, Oxford 1953.
- K. Borsuk, On intrinsic isometries, Bull. Acad. Polon. Sci. Sér. Sci. Math. 29 (1981), 83–90.
- [3] M. Moszyńska, On rigid subsets of some manifolds, Colloq. Math. 57 (1989), 247– 254.
- [4] J. Olędzki and S. Spież, Remarks on intrinsic isometries, Fund. Math. 119 (1983), 241–247.

Irmina Herburt

INSTITUTE OF MATHEMATICS WARSAW TECHNICAL UNIVERSITY PL. POLITECHNIKI 1 00-661 WARSZAWA, POLAND Maria Moszyńska INSTITUTE OF MATHEMATICS WARSAW UNIVERSITY BANACHA 2 00-913 WARSZAWA, POLAND

Reçu par la Rédaction le 8.2.1989