COLLOQUIUM MATHEMATICUM

ON METRIC PRODUCTS

BY
IRMINA HERBURT and MARIA MOSZYŃSKA (WARSZAWA)
0. Introduction. For a given pair of metric spaces $\boldsymbol{X}_{i}=\left(X_{i}, \rho_{i}\right)$, $i=1,2$, there are various possible product metrics, i.e. metrics which induce the product topology in $X_{1} \times X_{2}$. Evidently, for the multiplicativity of a topological property the choice of a product metric is inessential. But, in general, it is essential for the multiplicativity of a metric property.

Following the idea of Olȩdzki and Spież [4], we are concerned with metrics induced by functions from $\left(\mathbb{R}^{+}\right)^{2}$ to \mathbb{R}^{+}. Five families $\left(\mathcal{F}_{0}, \mathcal{F}_{1}, \widetilde{\mathcal{F}}_{1}, \mathcal{F}_{2}\right.$, and \mathcal{F}_{2}^{\prime}) of such functions are defined in Section 1; their role is described in Section 2. The next two sections, 3 and 4 , are devoted to \mathcal{F}-multiplicativity of different classes of metric spaces for \mathcal{F} being one of the families $\mathcal{F}_{1}, \widetilde{\mathcal{F}}_{1}$, \mathcal{F}_{2}, and \mathcal{F}_{2}^{\prime}. It seems interesting that to decide whether a given class \mathcal{M} is f-multiplicative or not, it often suffices to examine the space $\left(\mathbb{R}^{4}, \hat{f}(\rho, \rho)\right)$, where ρ is the Euclidean metric in \mathbb{R}^{2} and $\hat{f}(\rho, \rho)$ is the induced metric in \mathbb{R}^{4} (compare 4.3 and 4.8).

We use the terminology and notation of [3]; in particular, a space (X, ρ) is said to be strongly arcwise connected if any two distinct points $x, y \in X$ can be joined in X by an arc with a finite length; let ρ^{*} denote the intrinsic metric determined by ρ in a strongly arcwise connected space (X, ρ), i.e. $\rho^{*}(x, y)$ is the infimum of the lengths of all arcs joining x and y in (X, ρ). By $B_{\rho}(a, \varepsilon)$ we denote the ball in (X, ρ) with centre a and radius ε, i.e.

$$
B_{\rho}(a, \varepsilon):=\{x \in X ; \rho(x, a)<\varepsilon\} ;
$$

by $M_{\rho}(a, b)$ we denote the set of midpoints of the pair (a, b) :

$$
M_{\rho}(a, b):=\left\{x \in X ; \rho(a, x)=\frac{1}{2} \rho(a, b)=\rho(x, b)\right\}
$$

We are concerned with the following classes of metric spaces:
FC - the class of finitely compact spaces ($\boldsymbol{X} \in \mathrm{FC}$ iff every bounded sequence in \boldsymbol{X} has a convergent subsequence; compare [1]),
GA - the class of geometrically acceptable spaces $((X, \rho) \in \mathrm{GA}$ iff (X, ρ) is strongly arcwise connected and ρ^{*} is topologically equivalent to ρ; compare [2] and [3]),

IM - the class of spaces with intrinsic metrics $\left((X, \rho) \in \operatorname{IM}\right.$ iff $\left.\rho^{*}=\rho\right)$,
MC - the class of metrically convex spaces ($\boldsymbol{X} \in$ MC iff every pair of points a, b in X can be joined by a metric segment, i.e. by an isometric image of the interval $[0, \rho(a, b)]$; compare [1], [3]),
SMC - the class of strongly metrically convex spaces ($\boldsymbol{X} \in$ SMC iff every pair of points of X can be joined by a unique metric segment),
MidC - the class of Mid-convex spaces $\left((X, \rho) \in \operatorname{MidC}\right.$ iff $M_{\rho}(a, b) \neq \emptyset$ for every $a, b \in X$),
SMidC - the class of strongly Mid-convex spaces $((X, \rho) \in$ SMidC iff $M_{\rho}(a, b)$ is a singleton for every $a, b \in X$, i.e. M_{ρ} is an operation),
NL - the class of linear spaces with metric induced by a norm,
SNL - the subclass of NL consisting of spaces with strictly convex balls (i.e. balls with no segments on the boundary).

Let us note the following
0.1. Lemma. $\mathrm{MC} \cap \mathrm{SMidC}=\mathrm{SMC}$.

Proof. The inclusion \supset is evident. We prove \subset. Let $\boldsymbol{X}=(X, \rho)$ be a metrically convex and strongly Mid-convex metric space. Let L_{1} and L_{2} be metric segments in \boldsymbol{X} with endpoints a,b. Then, evidently, there is a set $A \subset L_{1} \cap L_{2}$ which is dense in both arcs L_{1} and $L_{2}(A$ is obtained by iterating the midpoint operation M_{ρ}). Thus $L_{1}=L_{2}$.

1. Some sets of real functions. Let \mathbb{R}^{+}be the set of non-negative reals and let \sim be the proportionality relation in \mathbb{R}^{2}. We shall deal with the following conditions on $f:\left(\mathbb{R}^{+}\right)^{2} \rightarrow \mathbb{R}^{+}$:
F.0. $\quad\left|s_{i}-t_{i}\right| \leq r_{i} \leq s_{i}+t_{i}$ for $i=1,2 \Rightarrow f\left(r_{1}, r_{2}\right) \leq f\left(s_{1}, s_{2}\right)+f\left(t_{1}, t_{2}\right)$ for every $r_{i}, s_{i}, t_{i} \in \mathbb{R}^{+}$;
F.1. $\quad f\left(t_{1}, t_{2}\right)=0 \Leftrightarrow t_{1}=t_{2}=0$;
F.2. $\quad f$ is subadditive, i.e. $f(t+s) \leq f(t)+f(s)$ for every $t, s \in\left(\mathbb{R}^{+}\right)^{2}$;
F. 2^{\prime}. $\quad f$ is strictly subadditive, i.e. f is subadditive and

$$
f(t+s)=f(t)+f(s) \Rightarrow t \sim s \text { for every } t, s \in\left(\mathbb{R}^{+}\right)^{2}
$$

F.3. $\quad f$ is totally increasing, i.e. for every $r=\left(r_{1}, r_{2}\right)$ and $t=\left(t_{1}, t_{2}\right)$,

$$
r_{i} \leq t_{i} \text { for } i=1,2 \Rightarrow f(r) \leq f(t) ;
$$

F.4.1. $\quad f$ is continuous at $(0,0)$;
F.4.2. $\quad f$ is homogeneous, i.e. for every $t \in\left(\mathbb{R}^{+}\right)^{2}$ and $\alpha \in \mathbb{R}^{+}$,

$$
f(\alpha t)=\alpha f(t)
$$

Let us define five sets of functions:
$\mathcal{F}_{0}:=\left\{f:\left(\mathbb{R}^{+}\right)^{2} \rightarrow \mathbb{R}^{+} ; f\right.$ satisfies F .0 and F .1$\}$,
$\mathcal{F}_{i}:=\left\{f \in \mathcal{F}_{0} ; f\right.$ satisfies F.4.i. $\}$ for $i=1,2$,
$\widetilde{\mathcal{F}}_{1}:=\left\{f:\left(\mathbb{R}^{+}\right)^{2} \rightarrow \mathbb{R}^{+} ; f\right.$ satisfies F.1, F.2, F.3, F.4.1 $\}$,
$\mathcal{F}_{2}^{\prime}:=\left\{f:\left(\mathbb{R}^{+}\right)^{2} \rightarrow \mathbb{R}^{+} ; f\right.$ satisfies F.1, F.2', F.3, F.4.2 $\}$.
The set \mathcal{F}_{2} can be characterized as follows:
1.1. $\mathcal{F}_{2}=\left\{f:\left(\mathbb{R}^{+}\right)^{2} \rightarrow \mathbb{R} ; f\right.$ satisfies F.1, F.2, F.3, F.4.2 $\}\left({ }^{1}\right)$.

Proof. The inclusion \supset is obvious. To verify \subset it suffices to prove

$$
\text { F. } 0 \wedge \text { F. } 4.2 \Rightarrow \text { F. } 2 \wedge \text { F. } 3
$$

Taking $r=s+t$ in F.0, we get F.2. To obtain F.3, we assume $r_{i} \leq u_{i}$ for $i=1,2$ and take $s_{i}=t_{i}=\frac{1}{2} u_{i}$ in F.0.

Using 1.1, we easily obtain
1.2. $\mathcal{F}_{2}^{\prime} \subset \mathcal{F}_{2} \subset \widetilde{\mathcal{F}}_{1} \subset \mathcal{F}_{1} \subset \mathcal{F}_{0}$.

It can be shown that all the inclusions in 1.2 are proper. We shall need the following three lemmas:
1.3. Lemma. If $f \in \mathcal{F}_{1}$, then
(i) f is continuous;
(ii) for every $\left(t^{(n)}\right)_{n \in \mathbb{N}}$ in $\left(\mathbb{R}^{+}\right)^{2}, \lim _{n} f\left(t^{(n)}\right)=0 \Rightarrow \lim _{n} t^{(n)}=(0,0)$.

Proof. (i) By F. 0 it follows that

$$
\begin{aligned}
\left|t_{i}-s_{i}\right| \leq r_{i} \leq & t_{i}+s_{i} \quad \text { for } i=1,2 \\
& \Rightarrow\left|f\left(t_{1}, t_{2}\right)-f\left(s_{1}, s_{2}\right)\right| \leq f\left(r_{1}, r_{2}\right) \leq f\left(t_{1}, t_{2}\right)+f\left(s_{1}, s_{2}\right)
\end{aligned}
$$

Setting $r_{i}=\left|t_{i}-s_{i}\right|$, we obtain

$$
\begin{align*}
&\left|f\left(t_{1}, t_{2}\right)-f\left(s_{1}, s_{2}\right)\right| \leq f\left(\left|t_{1}-s_{1}\right|,\left|t_{2}-s_{2}\right|\right) \tag{1}\\
& \quad \text { for every }\left(t_{1}, t_{2}\right),\left(s_{1}, s_{2}\right) \in\left(\mathbb{R}^{+}\right)^{2} .
\end{align*}
$$

Take $\left(s_{1}, s_{2}\right) \in\left(\mathbb{R}^{+}\right)^{2}$ and $\varepsilon>0$. Since f is continuous at $(0,0)$, by F. 1 there exist $\delta_{1}, \delta_{2}>0$ such that

$$
\forall t_{1}, t_{2} \in \mathbb{R}^{+} \quad\left|t_{i}-s_{i}\right|<\delta_{i} \text { for } i=1,2 \Rightarrow f\left(\left|t_{1}-s_{1}\right|,\left|t_{2}-s_{2}\right|\right)<\varepsilon .
$$

Thus (1) yields the continuity at $\left(s_{1}, s_{2}\right)$.
(ii) Let

$$
\begin{equation*}
\lim _{n} f\left(t_{1}^{(n)}, t_{2}^{(n)}\right)=0 \tag{2}
\end{equation*}
$$

[^0]and suppose that $\left(\left(t_{1}^{(n)}, t_{2}^{(n)}\right)\right)_{n \in \mathbb{N}}$ is not convergent to $(0,0)$. Then we can assume that $\left(t_{1}^{(n)}\right)_{n \in \mathbb{N}}$ is either divergent to ∞ or convergent to $t_{1} \neq 0$, whence
\[

$$
\begin{equation*}
\exists s_{1} \exists n_{0} \forall n>n_{0} \quad 0<s_{1} \leq 2 t_{1}^{(n)} \tag{3}
\end{equation*}
$$

\]

Thus, by F. $0, f\left(s_{1}, 0\right) \leq 2 f\left(t_{1}^{(n)}, t_{2}^{(n)}\right)$, which, by (2) and (3), contradicts F.1.
1.4. Lemma. If f is continuous and subadditive, then the following conditions are equivalent:
(i) f is homogeneous;
(ii) $f\left(\frac{1}{2} t\right)=\frac{1}{2} f(t)$ for every $t \in\left(\mathbb{R}^{+}\right)^{2}$.

Proof. The implication (i) \Rightarrow (ii) is obvious.
Assume (ii); to prove (i) it suffices to show that for every $\alpha \in \mathbb{R}^{+}$

$$
\begin{equation*}
f(\alpha t) \leq \alpha f(t) \quad \text { for } t \in\left(\mathbb{R}^{+}\right)^{2} \tag{1}
\end{equation*}
$$

Let $k \in \mathbb{N}$; since

$$
\frac{1}{k}=\sum_{n=1}^{\infty} \frac{\alpha_{n}}{2^{n}} \quad \text { for some } \alpha_{n} \in\{0,1\}, n \in \mathbb{N}
$$

by F. 2 and the continuity of f we obtain (1) for α rational. Using again continuity, we get (1) for every $\alpha \in \mathbb{R}^{+}$.
1.5. Lemma. For every $f \in \mathcal{F}_{2}$ the following conditions are equivalent:
(i) $f \in \mathcal{F}_{2}^{\prime}$;
(ii) $r=s+t \wedge f(s)=f(t)=\frac{1}{2} f(r) \Rightarrow s=t=\frac{1}{2} r$, for all $r, s, t \in\left(\mathbb{R}^{+}\right)^{2}$.

Proof. (i) \Rightarrow (ii). Suppose

$$
\begin{equation*}
r=s+t \text { and } f(s)=f(t)=\frac{1}{2} f(r) \tag{1}
\end{equation*}
$$

Then $f(s+t)=f(s)+f(t)$, whence, by F. 2^{\prime},

$$
\begin{equation*}
s=\alpha t \quad \text { for some } \alpha \in \mathbb{R}^{+} . \tag{2}
\end{equation*}
$$

If $s=(0,0)$ or $t=(0,0)$, then (ii) holds. Let $s \neq(0,0) \neq t$. By F.4.2 and (2), $f(s)=\alpha f(t)$, whence, by F.1, $\alpha=1$. Thus, by (i) and (2), $s=t=\frac{1}{2} r$.
(ii) \Rightarrow (i). First, notice that (ii) implies
$(3)_{\alpha} \quad r=s+t \wedge f(s)=\alpha f(r) \wedge f(t)=(1-\alpha) f(r)$

$$
\Rightarrow s=\alpha r \wedge t=(1-\alpha) r
$$

for every $\alpha \in[0,1]$.

Indeed, (ii) coincides with $(3)_{\alpha}$ for $\alpha=\frac{1}{2}$. By F.4.2, $(3)_{\alpha} \Rightarrow(3)_{\alpha / 2}$; evidently $(3)_{\alpha} \Rightarrow(3)_{1-\alpha}$. Thus $(3)_{\alpha}$ holds for $\alpha=m / 2^{n}$ for $m, n \in \mathbb{N} \cup\{0\}$, whence it holds for every $\alpha \in[0,1]$ because f is continuous.

By 1.1, it remains to prove

$$
\begin{equation*}
f(s+t)=f(s)+f(t) \Rightarrow s \sim t \tag{4}
\end{equation*}
$$

Let $f(s+t)=f(s)+f(t)$ and $r=s+t$. Then $f(s)=\alpha f(r)$ for some $\alpha \in[0,1]$; thus, $(3)_{\alpha}$ yields $s=\alpha r$ and $t=(1-\alpha) r$, which proves (4).
2. Geometric characterizations of $\mathcal{F}_{1}, \mathcal{F}_{2}$, and \mathcal{F}_{2}^{\prime}. Every $f:\left(\mathbb{R}^{+}\right)^{2} \rightarrow \mathbb{R}^{+}$induces the function \hat{f} which assigns to any pair of metrics ρ_{1}, ρ_{2} in X_{1}, X_{2}, respectively, the function

$$
\hat{f}\left(\rho_{1}, \rho_{2}\right)=\rho_{f}:\left(X_{1} \times X_{2}\right)^{2} \rightarrow \mathbb{R}^{+}
$$

defined by the formula

$$
\rho_{f}\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right):=f\left(\rho_{1}\left(x_{1}, y_{1}\right), \rho_{2}\left(x_{2}, y_{2}\right)\right)
$$

The following two statements characterize \mathcal{F}_{0} and \mathcal{F}_{1} :
2.1. Theorem. For every $f:\left(\mathbb{R}^{+}\right)^{2} \rightarrow \mathbb{R}^{+}$the following conditions are equivalent:
(i) $f \in \mathcal{F}_{0}$;
(ii) for every pair of metric spaces $\left(X_{i}, \rho_{i}\right), i=1,2$, the function $\hat{f}\left(\rho_{1}, \rho_{2}\right)$ is a metric in $X_{1} \times X_{2}$;
(iii) is ρ is the Euclidean metric in \mathbb{R}^{2}, then $\hat{f}(\rho, \rho)$ is a metric in \mathbb{R}^{4}.

The proof is routine.
As a consequence of $2.1,1.2$, and 1.3 (ii), we obtain
2.2. Theorem. For every $f:\left(\mathbb{R}^{+}\right)^{2} \rightarrow \mathbb{R}^{+}$the following conditions are equivalent:
(i) $f \in \mathcal{F}_{1}$;
(ii) for every pair of metric spaces $\left(X_{i}, \rho_{i}\right), i=1,2$, the function $\hat{f}\left(\rho_{1}, \rho_{2}\right)$ is a product metric in $X_{1} \times X_{2}$;
(iii) if ρ is the Euclidean metric in \mathbb{R}^{2}, then $\hat{f}(\rho, \rho)$ is a product metric in \mathbb{R}^{4}.

The next two statements reflect the role of \mathcal{F}_{2} and \mathcal{F}_{2}^{\prime} :
2.3. Theorem. For every $f \in \mathcal{F}_{1}$ the following conditions are equivalent:
(i) $f \in \mathcal{F}_{2}$;
(ii) for every pair of metric spaces $\left(X_{i}, \rho_{i}\right), i=1,2$,

$$
M_{\rho_{1}}\left(a_{1}, b_{1}\right) \times M_{\rho_{2}}\left(a_{2}, b_{2}\right) \subset M_{\hat{f}\left(\rho_{1}, \rho_{2}\right)}\left(\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right)\right)
$$

for every $a_{i}, b_{i} \in X_{i}, i=1,2$;
(iii) if ρ is the Euclidean metric in \mathbb{R}, then

$$
M_{\rho}\left(a_{1}, b_{1}\right) \times M_{\rho}\left(a_{2}, b_{2}\right) \subset M_{\hat{f}(\rho, \rho)}\left(\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right)\right)
$$

for every $a_{i}, b_{i} \in \mathbb{R}, i=1,2$.
The proof of the implication (i) \Rightarrow (ii) is routine; (ii) \Rightarrow (iii) is obvious; (iii) \Rightarrow (i) follows from 1.3 and 1.4.
2.4. Theorem. For every $f \in \mathcal{F}_{1}$ the following conditions are equivalent:
(i) $f \in \mathcal{F}_{2}^{\prime}$;
(ii) for every pair of metric spaces $\left(X_{i}, \rho_{i}\right), i=1,2$,

$$
M_{\rho_{1}}\left(a_{1}, b_{1}\right) \times M_{\rho_{2}}\left(a_{2}, b_{2}\right)=M_{\hat{f}\left(\rho_{1}, \rho_{2}\right)}\left(\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right)\right)
$$

for every $a_{i}, b_{i} \in X_{i}, i=1,2$;
(iii) if ρ is the Euclidean metric in \mathbb{R}, then

$$
M_{\rho}\left(a_{1}, b_{1}\right) \times M_{\rho}\left(a_{2}, b_{2}\right)=M_{\hat{f}(\rho, \rho)}\left(\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right)\right)
$$

for every $a_{i}, b_{i} \in \mathbb{R}, i=1,2$.
Proof. (i) \Rightarrow (ii). Let $\rho_{f}=\hat{f}\left(\rho_{1}, \rho_{2}\right), a=\left(a_{1}, a_{2}\right), b=\left(b_{1}, b_{2}\right)$. Since $\mathcal{F}_{2}^{\prime} \subset \mathcal{F}_{2}$, by 2.3 it suffices to prove

$$
\begin{equation*}
M_{\rho_{f}}(a, b) \subset M_{\rho_{1}}\left(a_{1}, b_{1}\right) \times M_{\rho_{2}}\left(a_{2}, b_{2}\right) \tag{1}
\end{equation*}
$$

We can assume $a \neq b$. Take $x=\left(x_{1}, x_{2}\right) \in M_{\rho_{f}}(a, b)$; let $s_{i}=\rho_{i}\left(a_{i}, x_{i}\right)$, $t_{i}=\rho_{i}\left(x_{i}, b_{i}\right), r_{i}=\rho_{i}\left(a_{i}, b_{i}\right)$ for $i=1,2$ and $t=\left(t_{1}, t_{2}\right), s=\left(s_{1}, s_{2}\right)$, $r=\left(r_{1}, r_{2}\right)$. Then $r_{i}=s_{i}+t_{i}$ for $i=1,2$ and $f(s)=f(t)=\frac{1}{2} f(r)$, whence, by $1.5, s=t=\frac{1}{2} r$. Thus $x_{i} \in M_{\rho_{i}}\left(a_{i}, b_{i}\right)$, which proves (1).
(ii) \Rightarrow (iii) is obvious.
(iii) \Rightarrow (i). By 2.3 and 1.5 , it suffices to prove

$$
\begin{equation*}
r=s+t \wedge f(s)=f(t)=\frac{1}{2} f(r) \Rightarrow s=t=\frac{1}{2} r \tag{2}
\end{equation*}
$$

for every $r, s, t \in\left(\mathbb{R}^{+}\right)^{2}$. Take $r, s, t \in\left(\mathbb{R}^{+}\right)^{2}$ satisfying the antecedent of (2). For $i=1,2$ there exist $a_{i}, b_{i}, c_{i} \in \mathbb{R}$ such that $\rho\left(a_{i}, c_{i}\right)=s_{i}, \rho\left(b_{i}, c_{i}\right)=t_{i}$, and $\rho\left(a_{i}, b_{i}\right)=r_{i}$. Let $a=\left(a_{1}, a_{2}\right), b=\left(b_{1}, b_{2}\right), c=\left(c_{1}, c_{2}\right)$. From the assumption on s, t, r it follows that $c \in M_{\hat{f}(\rho, \rho)}(a, b)$, whence, by (iii), $c_{i} \in M_{\rho}\left(a_{i}, b_{i}\right)$, which proves (2).
3. On f-multiplicativity of some metric properties. Applying 2.1, for arbitrary $f \in \mathcal{F}_{0}$ we can define the f-product $\boldsymbol{X}_{1} \times{ }_{f} \boldsymbol{X}_{2}$ of metric spaces $\boldsymbol{X}_{1}, \boldsymbol{X}_{2}$:

If $\boldsymbol{X}_{i}=\left(X_{i}, \rho_{i}\right)$ for $i=1,2$, then

$$
\boldsymbol{X}_{1} \times_{f} \boldsymbol{X}_{2}:=\left(X_{1} \times X_{2}, \hat{f}\left(\rho_{1}, \rho_{2}\right)\right) .
$$

We are only interested in product metrics. Therefore, we admit the following definitions (compare 2.2):

Let $f \in \mathcal{F}_{1}$. A class \mathcal{M} of metric spaces is f-multiplicative if and only if

$$
\boldsymbol{X}_{1}, \boldsymbol{X}_{2} \in \mathcal{M} \Rightarrow \boldsymbol{X}_{1} \times_{f} \boldsymbol{X}_{2} \in \mathcal{M} \quad \text { for every pair }\left(\boldsymbol{X}_{1}, \boldsymbol{X}_{2}\right)
$$

Let $\mathcal{F} \subset \mathcal{F}_{1}$. The class \mathcal{M} is \mathcal{F}-multiplicative whenever \mathcal{M} is f-multiplicative for every $f \in \mathcal{F}$.

Every class \mathcal{M} determines the maximal subfamily of \mathcal{F}_{1} for which \mathcal{M} is multiplicative:

$$
\mathcal{F}_{\mathcal{M}}:=\left\{f \in \mathcal{F}_{1} ; \mathcal{M} \text { is } f \text {-multiplicative }\right\} .
$$

Of course, if \mathcal{M} is a topological invariant, then, by $2.2, \mathcal{M}$ is \mathcal{F}_{1}-multiplicative if and only if \mathcal{M} is f-multiplicative for $f\left(t_{1}, t_{2}\right)=\sqrt{\left(t_{1}\right)^{2}+\left(t_{2}\right)^{2}}$.

It is easy to prove that
3.1. The class of complete metric spaces is $\widetilde{\mathcal{F}}_{1}$-multiplicative.

Let us notice that
3.2. The class FC of finitely compact spaces is \mathcal{F}_{2}-multiplicative but not $\widetilde{\mathcal{F}}_{1}$-multiplicative.

Proof. To prove that FC is \mathcal{F}_{2}-multiplicative it is enough to show that if A is a bounded set in $\boldsymbol{X}_{1} \times{ }_{f} \boldsymbol{X}_{2}$, then $A \subset A_{1} \times A_{2}$ for some sets A_{i} bounded in \boldsymbol{X}_{i} for $i=1,2$. Let

$$
\begin{equation*}
A \subset B_{\hat{f}\left(\rho_{1}, \rho_{2}\right)}(a, \alpha) \quad \text { for some } a=\left(a_{1}, a_{2}\right) \in X_{1} \times X_{2} \text { and } \alpha>0 \tag{1}
\end{equation*}
$$

If

$$
\beta=\alpha \max \left\{(f(1,0))^{-1},(f(0,1))^{-1}\right\} \text { and } A_{i}=B_{\rho_{i}}\left(a_{i}, \beta\right) \text { for } i=1,2,
$$

then, by F. 3 and F.4.2, for every $t_{1}, t_{2} \in \mathbb{R}^{+}$

$$
t_{1} f(1,0) \leq f\left(t_{1}, t_{2}\right) \quad \text { and } \quad t_{2} f(0,1) \leq f\left(t_{1}, t_{2}\right)
$$

whence, by (1), $A \subset A_{1} \times A_{2}$.
To show that FC is not $\widetilde{\mathcal{F}}_{1}$-multiplicative, consider f defined by the formula

$$
f\left(t_{1}, t_{2}\right)=t_{1}+t_{2}\left(1+t_{2}\right)^{-1}
$$

Evidently $f \in \mathcal{F}_{1}$. The Euclidean line $\boldsymbol{R}=(\mathbb{R}, \rho)$ is finitely compact, while $\boldsymbol{R} \times{ }_{f} \boldsymbol{R}$ is not; indeed, the sequence $((0, n))_{n \in \mathbb{N}}$ is bounded in $\left(\mathbb{R}^{2}, \hat{f}(\rho, \rho)\right)$, but has no convergent subsequence.

In our terminology Theorem 3.7 of Oljdzki and Spież [4] can be formulated as follows:
3.3. If $f \in \mathcal{F}_{2}$, then for every pair of metric spaces $\boldsymbol{X}_{i}=\left(X_{i}, \rho_{i}\right) \in \mathrm{GA}$, $i=1,2$, the function $\hat{f}\left(\rho_{1}, \rho_{2}\right)$ is a product metric in $X_{1} \times X_{2}$ and

$$
\left(\hat{f}\left(\rho_{1}, \rho_{2}\right)\right)^{*}=\hat{f}\left(\rho_{1}^{*}, \rho_{2}^{*}\right)
$$

In fact, they proved the following slightly stronger statement:
3.4. Let $\boldsymbol{X}_{i}=\left(X_{i}, \rho_{i}\right) \in \mathrm{GA}$ for $i=1,2$.
(i) If $f \in \mathcal{F}_{1}$ and $\boldsymbol{X}_{1} \times_{f} \boldsymbol{X}_{2} \in \mathrm{GA}$, then $\left(\hat{f}\left(\rho_{1}, \rho_{2}\right)\right)^{*} \geq \hat{f}\left(\rho_{1}^{*}, \rho_{2}^{*}\right)$.
(ii) If $f \in \mathcal{F}_{2}$, then $\boldsymbol{X}_{1} \times{ }_{f} \boldsymbol{X}_{2} \in \mathrm{GA}$ and $\left(\hat{f}\left(\rho_{1}, \rho_{2}\right)\right)^{*}=\hat{f}\left(\rho_{1}^{*}, \rho_{2}^{*}\right)$.

We shall prove
3.5. Proposition. If $f \in \widetilde{\mathcal{F}}_{1} \cap \mathcal{F}_{\mathrm{GA}}$, then the following conditions are equivalent:
(i) $\left(\hat{f}\left(\rho_{1}, \rho_{2}\right)\right)^{*}=\hat{f}\left(\rho_{1}^{*}, \rho_{2}^{*}\right)$ for every $\left(X_{i}, \rho_{i}\right) \in \mathrm{GA}, i=1,2$;
(ii) the class IM is f-multiplicative;
(iii) the class MC is f-multiplicative.

Proof. The implication (i) \Rightarrow (ii) is obvious.
(ii) \Rightarrow (i). Assume (ii) and let $\boldsymbol{X}_{i}=\left(X_{i}, \rho_{i}\right) \in$ GA for $i=1,2$. Then

$$
\begin{equation*}
\left(\hat{f}\left(\rho_{1}^{*}, \rho_{2}^{*}\right)\right)^{*}=\hat{f}\left(\rho_{1}^{*}, \rho_{2}^{*}\right) . \tag{1}
\end{equation*}
$$

By F. $3, \hat{f}\left(\rho_{1}^{*}, \rho_{2}^{*}\right)=\hat{f}\left(\rho_{1}, \rho_{2}\right)$, whence

$$
\begin{equation*}
\left(\hat{f}\left(\rho_{1}^{*}, \rho_{2}^{*}\right)\right)^{*} \geq\left(\hat{f}\left(\rho_{1}, \rho_{2}\right)\right)^{*} ; \tag{2}
\end{equation*}
$$

by $3.4(\mathrm{i})$
(3)

$$
\left(\hat{f}\left(\rho_{1}, \rho_{2}\right)\right)^{*} \geq \hat{f}\left(\rho_{1}^{*}, \rho_{2}^{*}\right)
$$

By (1)-(3), we obtain (i).
In what follows we use the notation $|L|_{\rho}$ for the length of an arc L in a metric space (X, ρ).
(ii) \Rightarrow (iii). Assume (ii) and let $\boldsymbol{X}_{i}=\left(X_{i}, \rho_{i}\right) \in \mathrm{MC}$ for $i=1,2$. Let $\rho_{f}=\hat{f}\left(\rho_{1}, \rho_{2}\right)$. To prove (iii) it suffices to show that for every $a_{i}, b_{i} \in X_{i}$ the points $a=\left(a_{1}, a_{2}\right)$ and $b=\left(b_{1}, b_{2}\right)$ can be joined in $\boldsymbol{X}_{i} \times_{f} \boldsymbol{X}_{2}$ by an arc L with $|L|_{\rho_{f}}=\rho_{f}(a, b)$.

By the assumption on ρ_{i}, there exists an arc $L_{i} \subset X_{i}$ with endpoints a_{i} and b_{i} and with $\left|L_{i}\right|_{\rho_{i}}=\rho_{i}\left(a_{i}, b_{i}\right), i=1,2$. Let $\rho_{i}^{\prime}=\rho_{i} \mid\left(L_{i}\right)^{2}, i=1,2$, and $\rho_{f}^{\prime}=\hat{f}\left(\rho_{1}^{\prime}, \rho_{2}^{\prime}\right)$. Then

$$
\begin{equation*}
\rho_{f}^{\prime}=\rho_{f} \mid\left(L_{1} \times L_{2}\right)^{2} . \tag{4}
\end{equation*}
$$

Evidently $\left(L_{i}, \rho_{i}^{\prime}\right) \in \mathrm{MC} \subset \mathrm{IM}$ for $i=1,2$, whence, by (ii),

$$
\begin{equation*}
\left(L_{1} \times L_{2}, \rho_{f}^{\prime}\right) \in \mathrm{IM} \tag{5}
\end{equation*}
$$

Since $\left(L_{1} \times L_{2}, \rho_{f}^{\prime}\right)$ is compact, by Th. 28.1, p. 70 of [1], condition (5) implies

$$
\begin{equation*}
\left(L_{1} \times L_{2}, \rho_{f}^{\prime}\right) \in \mathrm{MC} . \tag{6}
\end{equation*}
$$

By (6), there is an arc $L \subset L_{1} \times L_{2}$ joining a and b, with $|L|_{\rho_{f}^{\prime}}=\rho_{f}^{\prime}(a, b)$. Thus, by (4),

$$
|L|_{\rho_{f}}=|L|_{\rho_{f}^{\prime}}=\rho_{f}^{\prime}(a, b)=\rho_{f}(a, b) .
$$

(iii) \Rightarrow (ii). Assume (iii) and let $\boldsymbol{X}_{i}=\left(X_{i}, \rho_{i}\right) \in \mathrm{IM}$, i.e. $\rho_{i}=\rho_{i}^{*}$ for $i=1,2$. Let $\rho_{f}=\hat{f}\left(\rho_{1}, \rho_{2}\right)$. We have to prove that $\left(\rho_{f}\right)^{*}=\rho_{f}$. Let $a, b \in X_{1} \times X_{2}, a=\left(a_{1}, a_{2}\right), b=\left(b_{1}, b_{2}\right)$. It suffices to prove that there is a sequence $\left(L^{(n)}\right)_{n \in \mathbb{N}}$ of arcs joining a and b in $X_{1} \times X_{2}$ such that

$$
\begin{equation*}
\lim _{n}\left|L^{(n)}\right|_{\rho_{f}}=\rho_{f}(a, b) \tag{7}
\end{equation*}
$$

Since $\rho_{i}^{*}=\rho_{i}$, there is a sequence $\left(L_{i}^{(n)}\right)_{n \in \mathbb{N}}$ of arcs joining a_{i} and b_{i} in X_{i} such that

$$
\begin{equation*}
\lim _{n}\left|L_{i}^{(n)}\right|_{\rho_{i}}=\rho_{i}\left(a_{i}, b_{i}\right), \quad i=1,2 \tag{8}
\end{equation*}
$$

Let $\rho_{i}^{(n)}=\left(\rho_{i} \mid\left(L_{i}^{(n)}\right)^{2}\right)^{*}$ for $i=1,2, n \in \mathbb{N}$. Evidently

$$
\begin{equation*}
\left|L_{i}^{(n)}\right|_{\rho_{i}}=\rho_{i}^{(n)}\left(a_{i}, b_{i}\right) \quad \text { for } i=1,2, n \in \mathbb{N} . \tag{9}
\end{equation*}
$$

Let

$$
\begin{equation*}
\rho_{f}^{(n)}=\hat{f}\left(\rho_{1}^{(n)}, \rho_{2}^{(n)}\right) . \tag{10}
\end{equation*}
$$

By Th. 28.1 of [1], the compactness of $L_{i}^{(n)} \operatorname{implies}\left(L_{i}^{(n)}, \rho_{i}^{(n)}\right) \in \operatorname{MC}$, whence, by (iii),

$$
\left(L_{1}^{(n)} \times L_{2}^{(n)}, \rho_{f}^{(n)}\right) \in \mathrm{MC} .
$$

Let now $L^{(n)}$ be an arc joining a and b in $L_{1}^{(n)} \times L_{2}^{(n)}$ such that

$$
\begin{equation*}
\left|L^{(n)}\right|_{\rho_{f}^{(n)}}=\rho_{f}^{(n)}(a, b) \tag{11}
\end{equation*}
$$

Applying in turn (11), (10), 1.2 and 1.3(i), (9), and (8), we obtain

$$
\begin{aligned}
\lim _{n}\left|L^{(n)}\right|_{\rho_{f}^{(n)}} & =\lim _{n} \rho_{f}^{(n)}(a, b)=\lim _{n} f\left(\rho_{1}^{(n)}\left(a_{1}, b_{1}\right), \rho_{2}^{(n)}\left(a_{2}, b_{2}\right)\right) \\
& =f\left(\lim _{n} \rho_{1}^{(n)}\left(a_{1}, b_{1}\right), \lim _{n} \rho_{2}^{(n)}\left(a_{2}, b_{2}\right)\right) \\
& =f\left(\lim _{n}\left|L_{1}^{(n)}\right|_{\rho_{1}}, \lim _{n}\left|L_{2}^{(n)}\right|_{\rho_{2}}\right)=f\left(\rho_{1}\left(a_{1}, b_{1}\right), \rho_{2}\left(a_{2}, b_{2}\right)\right)
\end{aligned}
$$

i.e.

$$
\begin{equation*}
\lim _{n}\left|L^{(n)}\right|_{\rho_{f}^{(n)}}=\rho_{f}(a, b) \tag{12}
\end{equation*}
$$

Since $\rho_{i}^{(n)} \geq \rho_{i} \mid\left(L_{i}^{(n)}\right)^{2}$, by F. 3 and (10) we infer that

$$
\rho_{f}^{(n)} \geq \hat{f}\left(\rho_{1}\left|\left(L_{1}^{(n)}\right)^{2}, \rho_{2}\right|\left(L_{2}^{(n)}\right)^{2}\right) .
$$

Hence

$$
\begin{equation*}
\left|L^{(n)}\right|_{\rho_{f}} \leq\left|L^{(n)}\right|_{\rho_{f}^{(n)}} \quad \text { for every } n \in \mathbb{N} \tag{13}
\end{equation*}
$$

Finally,

$$
\begin{equation*}
\rho_{f}(a, b) \leq\left(\rho_{f}\right)^{*}(a, b) \leq \lim _{n}\left|L^{(n)}\right|_{\rho_{f}} . \tag{14}
\end{equation*}
$$

Conditions (12)-(14) imply (7). This completes the proof.
Let us now consider the following three examples:
3.6. Example. Let $f\left(t_{1}, t_{2}\right)=\sqrt{t_{1}}+t_{2}$ for $t_{1}, t_{2} \in \mathbb{R}^{+}$. Evidently $f \in \widetilde{\mathcal{F}}_{1}-\mathcal{F}_{2}$. We shall prove that GA is not f-multiplicative.

Let $I=[0,1] \subset \mathbb{R}$ and let ρ be the Euclidean metric. Take $\boldsymbol{X}_{1}=(I, \rho)$ and $\boldsymbol{X}_{2}=(\{0\}, \rho)$. Evidently $\boldsymbol{X}_{i} \in$ GA for $i=1.2$. We have $\boldsymbol{X}_{1} \times{ }_{f} \boldsymbol{X}_{2}=$ $\left(I \times\{0\}, \rho_{f}\right)$, where

$$
\rho_{f}\left(\left(x_{1}, 0\right),\left(y_{1}, 0\right)\right)=\sqrt{\rho\left(x_{1}, y_{1}\right)} \quad \text { for } x_{1}, y_{1} \in I
$$

The points $(0,0)$ and $(1,0)$ cannot be joined in $\boldsymbol{X}_{1} \times{ }_{f} \boldsymbol{X}_{2}$ by an arc of finite length. Indeed, let $I_{n, k}=[k / n,(k+1) / n]$ for $n \in \mathbb{N}$ and $k=0, \ldots, n-1$; then $\left|I_{n, k}\right|_{\rho_{f}}=\sqrt{1 / n}$, whence

$$
\sum_{k=0}^{n-1}\left|I_{n, k}\right|_{\rho_{f}}=n \sqrt{1 / n}=\sqrt{n}
$$

and thus $|I \times\{0\}|_{\rho_{f}}$ is infinite. Therefore $\boldsymbol{X}_{1} \times_{f} \boldsymbol{X}_{2}$ is not geometrically acceptable.
3.7. Example. Let $f\left(t_{1}, t_{2}\right)=\sqrt{t_{1}+t_{2}}$ for $t_{1}, t_{2} \in \mathbb{R}^{+}$. It is easy to check that $f \in \widetilde{\mathcal{F}}_{1}-\mathcal{F}_{2}$. We shall prove that IM, MC, and MidC are not f-multiplicative.

Let ρ be the Euclidean metric in $[0,1]$; let $\boldsymbol{X}_{i}=([0,1], \rho)$ for $i=1,2$ and let $\rho_{f}=\hat{f}(\rho, \rho)$. Clearly \boldsymbol{X}_{1} and \boldsymbol{X}_{2} are convex, whence ρ is an intrinsic metric. On the other hand, $\boldsymbol{X}_{1} \times_{f} \boldsymbol{X}_{2}$ is not convex; moreover, $\boldsymbol{X}_{1} \times_{f} \boldsymbol{X}_{2}$ is not Mid-convex, because for every $x \in[0,1]^{2}$, if $\rho_{f}(a, x)+\rho_{f}(x, b)=\rho_{f}(a, b)$, then $x=a$ or $x=b$. Since $\boldsymbol{X}_{1} \times_{f} \boldsymbol{X}_{2}$ is compact, by Th. 28.1 of [1] it follows that ρ_{f} is not an intrinsic metric.
3.8. Example. Let $f\left(t_{1}, t_{2}\right)=t_{1}+t_{2}$ for $t_{1}, t_{2} \in \mathbb{R}^{+}$. Then $f \in \mathcal{F}_{2}-\mathcal{F}_{2}^{\prime}$. Clearly the Euclidean line \boldsymbol{R} is strongly Mid-convex (it is even strongly convex), while $\boldsymbol{R} \times_{f} \boldsymbol{R}$ is not.

We complete this section with two corollaries.
3.9. Corollary. The classes GA, IM, MC, and MidC are \mathcal{F}_{2}-multiplicative but not \mathcal{F}_{1}-multiplicative.

Proof. For the class GA the statement follows from 3.4(ii) and 3.6; for IM and MC it follows from 3.4(ii), 3.5, and 3.7; for MidC it follows from 2.3 and 3.7.
3.10. Corollary. The classes SMidC and SMC are \mathcal{F}_{2}^{\prime}-multiplicative but not \mathcal{F}_{2}-multiplicative.

Proof. For the class SMidC we use 2.4 and 3.8; for SMC we use 0.1, 3.8, and 3.9.
4. Products of normed linear spaces. We are now concerned with normed linear spaces. Every $f:\left(\mathbb{R}^{+}\right)^{2} \rightarrow \mathbb{R}^{+}$induces a function \check{f} which assigns to any pair of norms $\left\|\left\|_{1},\right\|\right\|_{2}$ in linear spaces E_{1}, E_{2}, respectively, the function

$$
\check{f}\left(\left\|\left\|_{1},\right\|\right\|_{2}\right)=\| \|_{f}: E_{1} \times E_{2} \rightarrow \mathbb{R}^{+}
$$

defined by the formula

$$
\left\|\left(x_{1}, x_{2}\right)\right\|_{f}:=f\left(\left\|x_{1}\right\|_{1},\left\|x_{2}\right\|_{2}\right) .
$$

Evidently
4.1. If $\left(\boldsymbol{E}_{i},\| \|_{i}\right)$ is a normed linear space and ρ_{i} is the metric induced by the norm $\left\|\|_{i}\right.$ for $i=1,2$, then for every $f:\left(\mathbb{R}^{+}\right)^{2} \rightarrow \mathbb{R}^{+}$and $x, y \in E_{1} \times E_{2}$

$$
\hat{f}\left(\rho_{1}, \rho_{2}\right)(x, y)=\|x-y\|_{f} .
$$

As a direct consequence of 4.1 we obtain
4.2. Let ρ_{i} be the metric induced by a norm $\left\|\|_{i}\right.$ in $\boldsymbol{E}_{i}, i=1,2$. For every $f:\left(\mathbb{R}^{+}\right)^{2} \rightarrow \mathbb{R}^{+}$
(i) if $\check{f}\left(\left\|\left\|_{1},\right\|\right\|_{2}\right)$ is a norm in $\boldsymbol{E}_{1} \times \boldsymbol{E}_{2}$, then $\hat{f}\left(\rho_{1}, \rho_{2}\right)$ is the metric induced by this norm;
(ii) if f satisfies F.4.2 and $\hat{f}\left(\rho_{1}, \rho_{2}\right)$ is a metric in $E_{1} \times E_{2}$, then $\check{f}\left(\left\|\left\|_{1},\right\|\right\|_{2}\right)$ is the norm which induces this metric.

We can now characterize \mathcal{F}_{2} as follows:
4.3. Theorem. For every $f:\left(\mathbb{R}^{+}\right)^{2} \rightarrow \mathbb{R}^{+}$the following conditions are equivalent:
(i) $f \in \mathcal{F}_{2}$;
(ii) the class NL is f-multiplicative;
(iii) if ρ is the Euclidean metric in \mathbb{R}^{2}, then $\hat{f}(\rho, \rho)$ is induced by a norm in \mathbb{R}^{4}.

Proof. The implication (i) \Rightarrow (ii) follows from 2.1 and 4.2(ii).
(ii) \Rightarrow (iii) is obvious.
(iii) \Rightarrow (i). By 2.1, $f \in \mathcal{F}_{0}$; it remains to verify F.4.2. Let $\rho_{f}=\hat{f}(\rho, \rho)$. By assumption, ρ_{f} is induced by a norm $\left\|\|\right.$ in \mathbb{R}^{4}. Take $\left(t_{1}, t_{2}\right) \in\left(\mathbb{R}^{+}\right)^{2}$ and let $0=(0, \ldots, 0) \in \mathbb{R}^{4}$. Then $t_{i}=\rho\left((0,0), x_{i}\right)$ for some $x_{i} \in \mathbb{R}^{2}, i=1,2$, and for any $\alpha \in \mathbb{R}^{+}$

$$
\begin{aligned}
f\left(\alpha\left(t_{1}, t_{2}\right)\right) & =f\left(\rho\left((0,0), \alpha x_{1}\right), \rho\left((0,0), \alpha x_{2}\right)\right)=\rho_{f}\left(0, \alpha\left(x_{1}, x_{2}\right)\right) \\
& =\left\|\alpha\left(x_{1}, x_{2}\right)\right\|=\alpha f\left(t_{1}, t_{2}\right) .
\end{aligned}
$$

This proves F.4.2.

By 4.3 , the family \mathcal{F}_{2} coincides with the family of all functions for which NL is multiplicative:

4.4. Corollary. $\mathcal{F}_{2}=\mathcal{F}_{\mathrm{NL}}$.

We are now going to prove the analogue of 4.4 for \mathcal{F}_{2}^{\prime} and the class SNL. Let us start with two simple lemmas:
4.5. Lemma. If ρ is induced by a norm in a linear space E, then $M_{\rho}(a, b)$ is affine convex for every $a, b \in E$.

Proof. First notice that in (E, ρ)
(1) every closed, affine Mid-convex set is affine convex.

By the continuity of ρ,
(2) for every a, b the set $M_{\rho}(a, b)$ is closed $\left({ }^{2}\right)$.

Thus, it suffices to prove that for every $a, b \in E$ the set $M_{\rho}(a, b)$ is affine Mid-convex, i.e.

$$
\begin{equation*}
c_{1}, c_{2} \in M_{\rho}(a, b) \Rightarrow \frac{1}{2}\left(c_{1}+c_{2}\right) \in M_{\rho}(a, b) \tag{3}
\end{equation*}
$$

The proof of (3) is left to the reader.
4.6. Lemma. If ρ is induced by a norm in a linear space E, then translations and central symmetries are isometries of (E, ρ).

Let us now establish
4.7. Proposition. For every normed linear space $(\boldsymbol{E},\| \|)$ and the metric ρ induced by $\|\|$ the following conditions are equivalent:
(i) balls are strictly convex;
(ii) the space (E, ρ) is strongly convex.

Proof. (i) \Rightarrow (ii). Clearly (E, ρ) is metrically convex, since every affine segment is a metric segment. Thus, by 0.1 , it suffices to prove

$$
\begin{equation*}
\forall a, b \in E \quad M_{\rho}(a, b) \text { is a singleton. } \tag{1}
\end{equation*}
$$

Suppose there are a, b, c_{1}, c_{2} such that $a \neq b, c_{1} \neq c_{2}$, and $c_{i} \in M_{\rho}(a, b)$ for $i=1,2$. Then, by $4.5, \Delta\left(c_{1}, c_{2}\right) \subset M_{\rho}(a, b)$. Let $\alpha=\rho\left(b, c_{i}\right)$. Then $\Delta\left(c_{1}, c_{2}\right) \subset \partial B_{\rho}(b, \alpha)$, contrary to (i).
(ii) \Rightarrow (i). By 4.6 , it suffices to prove that there exists a strictly convex ball. Let $B_{0}=B_{\rho}(a, 1)$ for some $a \in E$. Suppose that B_{0} is not strictly convex, i.e. there are distinct points p, q with $\Delta(p, q) \subset \partial B_{0}$. Let $r=$ $\frac{1}{2}(p+q)$; take the symmetry σ_{r} with respect to r and let $b=\sigma_{r}(a)$. Then, by $4.6, \sigma_{r}\left(B_{0}\right)=B_{\rho}(b, 1)$. It is easy to check that $p, q \in M_{\rho}(a, b)$, contrary to (ii).

[^1]We are now ready to prove
4.8. Theorem. For every $f:\left(\mathbb{R}^{+}\right)^{2} \rightarrow \mathbb{R}^{+}$the following conditions are equivalent:
(i) $f \in \mathcal{F}_{2}^{\prime}$;
(ii) the class SNL is f-multiplicative;
(iii) if ρ is the Euclidean metric in \mathbb{R}^{2}, then $\left(\mathbb{R}^{4}, \hat{f}(\rho, \rho)\right) \in \mathrm{SNL}$.

Proof. Applying 4.7 and 3.10 we obtain the implication (i) \Rightarrow (ii).
(ii) \Rightarrow (iii) is obvious.
(iii) \Rightarrow (i). Assume (iii). By 4.7, the metric $\hat{f}(\rho, \rho)$ is strongly convex, whence for every $a, b \in \mathbb{R}^{4}$

$$
\begin{equation*}
M_{\hat{f}(\rho, \rho)}(a, b)=\left\{\frac{1}{2}(a+b)\right\} . \tag{1}
\end{equation*}
$$

Let $a=\left(a_{1}, a_{2}\right), b=\left(b_{1}, b_{2}\right), a_{i}, b_{i} \in \mathbb{R}^{2}$ for $i=1,2$. Clearly, $M_{\rho}\left(a_{i}, b_{i}\right)=$ $\left\{\frac{1}{2}\left(a_{i}+b_{i}\right)\right\}$ for $i=1,2$, which, together with (1), implies

$$
\begin{equation*}
M_{\rho}\left(a_{1}, b_{1}\right) \times M_{\rho}\left(a_{2}, b_{2}\right)=M_{\hat{f}(\rho, \rho)}(a, b) \tag{2}
\end{equation*}
$$

Since, by $4.3, f \in \mathcal{F}_{2}$, and thus, by $1.2, f \in \mathcal{F}_{1}$, from 2.4 and (2) it follows that $f \in \mathcal{F}_{2}^{\prime}$.

By 4.8 , the family \mathcal{F}_{2}^{\prime} coincides with the family of all functions for which SNL is multiplicative:
4.9. Corollary. $\mathcal{F}_{2}^{\prime}=\mathcal{F}_{\text {SNL }}$.

REFERENCES

[1] L. M. Blumenthal, Theory and Applications of Distance Geometry, Clarendon Press, Oxford 1953.
[2] K. Borsuk, On intrinsic isometries, Bull. Acad. Polon. Sci. Sér. Sci. Math. 29 (1981), 83-90.
[3] M. Moszyńska, On rigid subsets of some manifolds, Colloq. Math. 57 (1989), 247254.
[4] J. Olȩdzki and S. Spież, Remarks on intrinsic isometries, Fund. Math. 119 (1983), 241-247.

Irmina Herburt

INSTITUTE OF MATHEMATICS
WARSAW TECHNICAL UNIVERSITY
PL. POLITECHNIKI 1
00-661 WARSZAWA, POLAND

[^0]: $\left({ }^{1}\right)$ By 1.1, \mathcal{F}_{2} is the set of functions considered in [4], p. 245.

[^1]: $\left(^{2}\right)$ Condition (2) holds in an arbitrary metric space.

