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POLYHEDRAL QUOTIENT SPACES

BY

JOŽE VRABEC (LJUBLJANA)

Throughout this paper, P will be an arbitrary polyhedron (all our poly-
hedra are compact), E ⊂ P ×P will be an equivalence relation on P , and q
will denote the quotient projection of P onto the quotient space P/E. We
are interested in the following question: when is P/E a polyhedron such
that q is PL? More precisely, when does there exist a polyhedron Q and a
PL map f : P → Q inducing a homeomorphism P/E → Q? We shall answer
this question for the case that the equivalence classes of E (the fibers of q)
are finite sets.

Notice that a pair (Q, f) satisfying the condition of the preceding para-
graph – if such a pair exists – possesses the following universal property: for
every polyhedron Q′ and every PL map f ′ : P → Q′ such that (x, y) ∈ E
implies f ′(x) = f ′(y), the unique map g : Q → Q′ satisfying f ′ = gf is
PL. It follows that such a pair (Q, f) is essentially unique and that it can
be considered the quotient of P (with respect to E) in the PL category.
Therefore, when P/E admits a PL structure such that q is PL we shall say
that P/E is a PL quotient space of P .

It can easily happen that P/E admits polyhedral structures, but none
with q being PL; e.g. the quotient space obtained by shrinking a subpoly-
hedron of P to a point is always a topological polyhedron but rarely a PL
quotient space because a linear map cannot shrink a face of a simplex to a
point and be injective on the rest of the simplex. By similar consideration
we can convince ourselves that there are hardly any interesting PL quotient
spaces with degenerate quotient projection. Therefore we shall from now on
restrict our attention to the case that q is nondegenerate, i.e. the equiva-
lence classes of E are finite sets. For future reference we state the following
well-known triangulation criterion for PL quotient spaces.

Proposition 1. Suppose that E has finite equivalence classes. P/E is
a PL quotient space if and only if there exist a triangulation K of P and a
labeling of the vertices of K such that

(a) the endpoints of any 1-simplex of K are assigned different labels
and
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(b) for arbitrary points x, y ∈ P the following equivalence holds:
(x, y) ∈ E if and only if there exist simplices σ, τ ∈ K with x ∈ σ and
y ∈ τ and there exists a label preserving simplicial isomorphism σ → τ
taking x to y.

This proposition is difficult to apply directly except in the most simple
concrete cases. We shall give some criteria that are easier to apply.

Under a partial PL homeomorphism of P we shall understand a PL
homeomorphism between two subpolyhedra of P . Analogously we define
a partial simplicial isomorphism of a simplicial complex. The domain of a
partial PL homeomorphism f will be denoted by D(f). A set F of partial
PL homeomorphisms of P will be said to generate E if E is the smallest
equivalence relation on P containing all pairs (x, f(x)) for f in F and x in
D(f).

Arbitrary partial homeomorphisms f and g of P are composed as rela-
tions on P : if the preimage f−1(D(g)) is nonempty, then by gf (or g ◦f) we
mean the composite g ◦ (f |f−1D(g)) in the usual sense; if f−1(D(g)) = ∅,
we set gf := ∅.

Theorem 2. The following assertions are equivalent :

(a) E has finite equivalence classes, and P/E is a PL quotient space.
(b) There exist a subpolyhedron X ⊂ P , a polyhedron Y , and a nonde-

generate PL map g : X → Y such that (x1, x2) ∈ E if and only if either
x1 = x2 or x1, x2 ∈ X and g(x1) = g(x2).

(c) E is generated by a finite set of partial simplicial isomorphisms of a
triangulation of P .

(d) E is generated by a finite set F of partial PL homeomorphisms of P
such that the collection of all possible composites of members of F and their
inverses is finite.

(e) E is generated by a finite set F of partial PL homeomorphisms of
P , and there exists another finite set G of partial PL homeomorphisms of
P such that every composite of members of F and/or their inverses is a
restriction of a member of G.

(f) E is a subpolyhedron of P ×P , and the first (and hence the second)
natural projection from P × P to P is nondegenerate on E.

We give two sample applications; no originality is claimed (concerning
Corollary 3 see Rourke and Sanderson [2; Problem 2.27(4)] and Bredon [1;
Chapter III, §1]).

Corollary 3. If a finite group G acts on P through PL homeomor-
phisms, then the orbit space P/G is a PL quotient space.

Corollary 4. If X, Y and A ⊂ X are polyhedra and g : A → Y
is a nondegenerate PL map, then X ∪g Y is a PL quotient space of the
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topological disjoint union X + Y . In particular , the mapping cylinder of a
nondegenerate PL map is a PL quotient space.

For a while I believed that the following common weakening of the state-
ments (c)–(e) in Theorem 2 is equivalent to (a)–(f): E has finite equiva-
lence classes and is generated by a finite set of partial PL homeomorphisms
of P . But then I found the following simple counterexample. Let P be
the unit square [0, 1]2, let A : R2 → R2 be the linear map defined by
A(x, y) := (x + y, y), and let f be the restriction of A to P ∩A−1(P ). Then
the equivalence relation E on P generated by f has finite equivalence classes
(= intersections of P with the orbits of A on R2), but P/E is not even a
Hausdorff space.

Proof of Theorem 2. (a)⇒(b). Let X := P , Y := P/E, and g := q.
(b)⇒(c). Choose a triangulation K of P such that X is triangulated by

a subcomplex L of K and g is simplicial from L to some triangulation of Y .
For each pair of simplices σ, τ ∈ L with the same image under g we have
the simplicial isomorphism ϕστ := (g|τ)−1(g|σ) : σ → τ , and the collection
of all such isomorphisms generates E.

The implication (c)⇒(d) is obvious.
(d)⇒(f). We may assume that the (finite) family F contains idP , the

inverses of all its members, and all possible composites of its members.
Then (x, y) ∈ E if and only if there exists an f ∈ F such that x ∈ D(f) and
y = f(x), i.e. E is the union of the graphs of all f ∈ F . Since the graph of a
PL map is a polyhedron, E is a polyhedron, and clearly the first projection
P × P → P is nondegenerate on E.

(f)⇒(e). Denote by π1, π2 : E → P the restrictions of the two natural
projections P × P → P . Choose triangulations K for E and L for P such
that π1 is simplicial from K to L. For each simplex σ ∈ K, the map

gσ := π2 ◦ (π1|σ)−1 : π1(σ) → π2(σ)

is a linear embedding of the simplex π1(σ) ∈ L into P . Denote by G the set
of all gσ (σ ∈ K).

Let j : E → E be the involution defined by j(x, y) := (y, x). For each
pair of simplices σ, τ ∈ K such that σ ∩ j(τ) 6= ∅ let

fστ := π2 ◦ (π1|σ ∩ j(τ))−1 = gσ|π1(σ ∩ j(τ))

and let F be the family of all such maps fστ . Then F generates E: for an
arbitrary point (x, y) ∈ E there are simplices σ, τ ∈ K such that (x, y) ∈ σ
and (y, x) ∈ τ , and then x ∈ D(fστ ) and y = fστ (x).

Each fστ ∈ F is a restriction of gσ ∈ G, and its inverse f−1
στ = fτσ is a

restriction of gτ ∈ G. Therefore, to prove that E satisfies condition (e) of
Theorem 2 it suffices to show that the composite of any two members of G
is a restriction of a member of G.
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Take arbitrary simplices σ, τ ∈ K such that D(gτgσ) 6= ∅. The map
s : D(gτgσ) → P defined by s(x) := (x, gτgσ(x)) maps into E and is thus
a section of π1. Since D(gτgσ) = π1(σ) ∩ g−1

σ (π1(τ)) is a convex subset of
a simplex of L and since π1 is a nondegenerate simplicial map from K to
L, the image of s lies in a simplex ρ of K. Therefore s is a restriction of
(π1|ρ)−1 and gτgσ = π2s is a restriction of gρ.

(e)⇒(d). We may assume that idP ∈ G and that f−1 ∈ F for each
f ∈ F . Denote by H the family of all possible composites of members of
F . We will show that H is finite. Take any h ∈ H and any f ∈ F . By
hypothesis there exists a g ∈ G such that h is a restriction of g. Then
D(fh) = D(h) ∩ h−1(D(f)) = D(h) ∩ g−1(D(f)). By induction on the
length of composites it follows that the family {D(h) |h ∈ H} is contained
in the family ∆ of all possible intersections

n⋂
k=1

g−1
k (D(fk))

where n is any positive integer and fk ∈ F and gk ∈ G for k = 1, . . . , n. But
∆ is finite, and therefore H is contained in the finite family of all restrictions
g|D for g ∈ G and D ∈ ∆.

(d)⇒(c). We may assume that the (finite) family F contains idP , the
inverses of all its members, and all possible composites of its members. For
each x ∈ P let Fx be the set of all f ∈ F such that x ∈ D(f). Choose a
triangulation T of P such that for each f ∈ F the following holds: D(f)
is triangulated by a subcomplex of T , and f is linear on each simplex of
T |D(f). For every x ∈ P let C(x) denote the carrier of x in T , i.e. the
smallest simplex of T containing x.

For every x ∈ P let

(1) σx :=
⋂

f∈Fx

f−1(C(f(x)))

and let S := {σx |x ∈ P}. Clearly S is a finite family of nonempty subsets
of P . We assert that

(i) each σx ∈ S is a convex linear cell lying in C(x), and

(2) x ∈ intσx =
⋂

f∈Fx

f−1(int C(f(x))) ⊂ intC(x);

(ii) if σ, τ ∈ S and σ 6= τ , then (int σ) ∩ (int τ) = ∅;
(iii) for each σ, τ ∈ S, σ ∩ τ is a union of cells in S;
(iv) each f ∈ F maps each cell of S (on which it is defined) linearly onto

some cell of S.

Proof of (i). As id ∈ Fx, the intersection (1) contains the term C(x);
thus σx ⊂ C(x). Suppose that Rn is the ambient Euclidean space and let
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Π ⊂ Rn be the plane spanned by C(x). For each f ∈ Fx there is an injective
linear map f ′ : Π → Rn such that f and f ′ agree on C(x). Hence

σx =
⋂

f∈Fx

f−1(C(f(x))) =
⋂

f∈Fx

f ′−1(C(f(x)))

(again we use the fact that C(x) appears as a term in both intersections).
It clearly follows that σx is a convex linear cell. Similarly we have⋂

f∈Fx

f−1(int C(f(x))) =
⋂

f∈Fx

f ′−1(int C(f(x))).

Since the last written intersection is nonempty (it contains x) it is equal to⋂
f int f ′−1(C(f(x))) and further to int(

⋂
f f ′−1(C(f(x)))) = int σx, which

proves (2).
Proof of (ii). Suppose that x ∈ (int σa) ∩ (int σb). Then, by (2), x lies

in (int C(a)) ∩ (int C(b)), and hence C(a) = C(b). Every f ∈ F which is
defined at a or b is defined on the whole simplex C(a) = C(b), and therefore
Fa = Fb. For each f ∈ Fa = Fb we have, by (i), f(x) ∈ intC(f(a)) and
f(x) ∈ intC(f(b)), which implies C(f(a)) = C(f(b)), and now it follows
from (1) that σa = σb.

Proof of (iii). Suppose that x ∈ σa ∩ σb. It obviously follows from (1)
that Fx ⊃ Fa ∪ Fb. The relation x ∈ σa implies that for each f ∈ Fa we
have f(x) ∈ C(f(a)) and therefore C(f(x)) ⊂ C(f(a)). Similarly we have
C(f(x)) ⊂ C(f(b)) for each f ∈ Fb. Hence

x ∈ σx ⊂
⋂

f∈Fa∪Fb

f−1(C(f(x))) ⊂ σa ∩ σb.

Proof of (iv). Suppose that f ∈ F is defined on σ = σx ∈ S. It
follows from (i) that f |σ is a linear embedding, and it remains to prove that
τ := f(σ) ∈ S. We assert that τ = σy where y := f(x).

Let Fx =: {g1, . . . , gr}. Then

τ = f
( r⋂

i=1

g−1
i (C(gi(x)))

)
=

r⋂
i=1

f(g−1
i C(gi(x))).

For each i (= 1, . . . , r), the composite hi := gif
−1 belongs to F and in fact

to Fy. Therefore

τ =
r⋂

i=1

h−1
i (C(hi(y))) ⊃ σy.

In order to prove that τ ⊂ σy we take an arbitrary h ∈ Fy and show that
τ ⊂ h−1(C(h(y))). Since g := hf ∈ Fx there is an i ∈ {1, . . . , r} such
that g = gi. It follows that hi = gif

−1 = hff−1 is a restriction of h, and
therefore τ ⊂ h−1

i (C(hi(y))) ⊂ h−1(C(h(y))) as asserted.
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By (i), (ii), and (iii), S is a cell complex with all cells convex and linear.
Therefore S has a well defined barycentric subdivision, K, which is a sim-
plicial complex. It obviously follows from (iv) that each f ∈ F maps each
simplex of K|D(f) linearly onto a simplex of K, i.e. f is a partial simplicial
isomorphism of K.

(c)⇒(a). Let K be a triangulation of P and F be a finite family of
partial simplicial isomorphisms of K which generates E. We may assume
that F contains the inverses of all its members and all the composites of
its members. Then E-equivalence classes in P coincide with “orbits” with
respect to F , i.e. for arbitrary x, y ∈ P the following is true: (x, y) ∈ E if
and only if there is an f ∈ F such that x ∈ D(f) and f(x) = y (clearly in
this case D(f) contains the whole carrier of x in K).

Denote by K ′ and K ′′ the first and second barycentric subdivisions of
K. Clearly each f ∈ F is a partial simplicial selfisomorphism of K ′ and of
K ′′. We shall prove (a) by showing that K ′′ (in the role of K) satisfies the
hypotheses of Proposition 1, where, of course, we take one label for each
E-equivalence class (= F -orbit) of vertices of K ′′. First we observe the
following:

(∗) No two distinct points lying in the same simplex of K ′ are E-equivalent.

Indeed, take any simplex σ′ ∈ K ′ and let σ be the smallest simplex of K
(of dimension n, say) containing σ′. There is an ordering of the vertices of σ
such that with respect to this ordering the barycentric coordinates (in σ) of
any point of σ′ form a nondecreasing sequence. It follows that the unordered
(n + 1)-tuples, not just sequences, of the barycentric coordinates (in σ) of
any two distinct points x, y ∈ σ′ are distinct, and therefore no f ∈ F can
map x to y.

By (∗), the endpoints of no 1-simplex of K ′′ carry the same label. i.e.
K ′′ satisfies condition (a) of Proposition 1. To check condition (b) take
an arbitrary point (x, y) ∈ E and let σ, τ ∈ K be the carriers of x and
y, respectively. There is an f ∈ F defined on σ such that f(σ) = τ and
f(x) = y. If σ′′ is the carrier of x in K ′′ and τ ′′ := f(σ′′), then y ∈ τ ′′ ∈ K ′′

and f |σ′′ : σ′′ → τ ′′ is a label preserving simplicial isomorphism sending x
to y.

To prove the converse (i.e. that each label preserving simplicial isomor-
phism maps each point to an E-equivalent point) it obviously suffices to
show that any label preserving simplicial isomorphism ϕ : σ′′ → τ ′′ (for any
σ′′, τ ′′ ∈ K ′′) is the restriction of some f ∈ F . Let σ′ and σ be the carriers
of σ′′ in K ′ and K, respectively. Denote by v the barycenter of σ′ (a vertex
of σ′′) and let w := ϕ(v) (a vertex of τ ′′). Since (v, w) ∈ E (as ϕ preserves
labels) and v ∈ intσ there is an f ∈ F such that σ ⊂ D(f) and f(v) = w.
Let τ ′ := f(σ′) ∈ K ′. Since the vertex w of τ ′′ is the barycenter of τ ′ the
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whole τ ′′ lies in τ ′. Now, for each vertex u of σ′′, the points ϕ(u) and f(u)
lie in τ ′ and are E-equivalent; therefore (∗) implies that ϕ(u) = f(u), which
proves that ϕ = f |σ′′.
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