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ON THE DIOPHANTINE EQUATION x2p + y2p = zp

BY

A . R OTKI EW ICZ (WARSZAWA)

It was shown by Terjanian [12] that if p is an odd prime and x, y, z are
positive integers such that x2p + y2p = z2p then 2p divides x or y. From the
theorem of Terjanian the present author [9] deduced that if x2p + y2p = z2p

then either 8p3 |x or 8p3 | y.
In [10] the impossibility of the diophantine equation xp + yp = z2 was

established under the conditions (x, y) = 1, and either p | z, 2 - z, or p - z,
2 | z (p prime > 3) ([10], Theorem T).

In a joint paper with A. Schinzel [11] we proved that if x, y, z are positive
integers such that x2p + y2p = z2 where p is a prime greater than 3 then
either 4p |x or 4p | y, and if xp + y2p = z2 where x, y and z are non-zero
integers then p < 2|y|, |x| < 8y2p+2, which extends Terjanian’s result [14]:
if x2p + y2p = z2 then either 2p |x or 2p | y, as well as Chao Ko’s result [2],
[3]: the equation xp + 1 = z2 has no solutions in positive integers if p is a
prime greater than 3.

Here we shall prove the following.

Theorem 1. If (x, y) = 1, p is an odd prime and

(1) x2p + y2p = zp

then either 4p2 |x or 4p2 | y, and there exist coprime positive integers α and
β such that

z = α2p +
β2p

p2
where 4p2 |β and αp−1 ≡ 1 (mod p2) ,(2)

xp = (αp)p −
(

p

2

)
(αp)p−2

(
βp

p

)2

+
(

p

4

)
(αp)p−4

(
βp

p

)4

− . . . ,(3)

yp =
(

p

1

)
(αp)p−1

(
βp

p

)
−

(
p

3

)
(αp)p−3

(
βp

p

)3

(4)

+
(

p

5

)
(αp)p−5

(
βp

p

)5

− . . .
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P r o o f. Let x2p + y2p = zp. If 2 - xy then x2p + y2p ≡ 2 (mod 4), which
is impossible. Without loss of generality we can assume that 2 | y. We have
(yp)2 = zp + (−x2)p and by Theorem T of [10] we have p | yp, hence p | y.
Since (x2)p +(y2)p +(−z)p = 0, a theorem of Vandiver ([6], p. 327, Theorem
1046) shows that (y2)p ≡ y2 (mod p3). Since p | y, p ≥ 3, we have p3 | y2,
hence p2 | y.

Now we shall prove that 4 | y. We have x2p = zp − y2p, or

(5) (xp)2 =
zp − (y2)p

z − y2
(z − y2) .

From 2p | y it follows that p - z − y2, hence(
zp − (y2)p

z − y2
, z − y2

)
= 1 .

Thus
zp − (y2)p

z − y2
= e2 ,

where e is an odd positive integer; hence zp−1 + zp−2y2 + zp−3(y2)2 ≡ 1
(mod 8), 1 + zp−2y2 + zp−3(y2)2 ≡ 1 (mod 8), 1 + zp−2y2 ≡ 1 (mod 8),
y2 ≡ 0 (mod 8) and finally y ≡ 0 (mod 4) . Thus we have 4p2 | y .

From (xp + iyp)(xp − iyp) = zp we obtain

xp + iyp = ir(a + bi)p, r = 0, 1, 2, 3 .

The factor ir can be absorbed into the pth power, and so we need only
consider r = 0.

From (x, y) = 1 it follows that (a, b) = 1. Thus

(6) xp + iyp = (a + bi)p, (a, b) = 1 ,

hence

(7) xp = ap +
(

p

2

)
ap−2(bi)2 +

(
p

4

)
ap−4(bi)4 + . . . +

(
p

p− 1

)
a(bi)p−1,

(8) iyp =
(

p

1

)
ap−1(bi) +

(
p

3

)
ap−3(bi)3 + . . . +

(
p

p− 2

)
a2(bi)p−2 + (bi)p .

Since x2p + y2p = (a2 + b2)p, 2 | y, 2 - x, we have 2 | ab. From 2 - x and
(7) it follows that 2 - a. Thus 2 | b. Since p2 | y, (8) gives p | b. Thus 2p | b
and since (a, b) = 1 we have (a, 2p) = 1. From (7) we obtain

(9) xp = a

(
ap−1 −

(
p

2

)
ap−3b2 +

(
p

4

)
ap−5b4 + . . .±

(
p

p− 1

)
bp−1

)
.

From (a, bp)=1 it follows that(
a, ap−1 −

(
p

2

)
ap−2b2 + . . .±

(
p

p− 1

)
bp−1

)
= 1 .
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Thus

(10) a = αp .

From (8) we get

(11) yp = bp

(
ap−1 − 1

p

(
p

3

)
ap−3b2 + . . .± 1

p

(
p

p− 2

)
a2bp−3 ∓ bp−1

p

)
,

and since (bp, a) = 1 we have

(12)
(

bp, ap−1 − 1
p

(
p

3

)
ap−3b2 + . . .± 1

p

(
p

p− 2

)
a2bp−3 ∓ bp−1

p

)
= 1 .

From (11) it now follows that there exists a positive integer β such that
βp = bp. Since 4p2 | y, (11) and (12) show that (4p2)p | bp = βp, hence
4p2 |β. Thus

(13) b = βp/p where 4p2 |β .

From (6), (10) and (13) we get

xp + iyp =
(

αp +
βp

p
i

)p

,(14)

xp − iyp =
(

αp − βp

p
i

)p

,(15)

hence zp = (α2p + β2p/p2)p, and thus

(16) z = α2p +
β2p

p2
.

From (14) and (15) we get

xp =
1
2

(
αp +

βp

p
i

)p

+
1
2

(
αp − βp

p
i

)p

= (αp)p −
(

p

2

)
(αp)p−2

(
βp

p

)2

+
(

p

4

)
(αp)p−4

(
βp

p

)4

− . . . ,

yp =

(
αp + βp

p i
)p

−
(
αp − βp

p i
)p

2i

=
(

p

1

)
(αp)p−1

(
βp

p

)
−

(
p

3

)
(αp)p−3

(
βp

p

)3

+
(

p

5

)
(αp)p−5

(
βp

p

)5

+. . .

and formulas (3) and (4) are proved.
By the theorem of Vandiver we have zp ≡ z (mod p3), and since

(z, p) = 1 we have zp−1 ≡ 1 (mod p3). Since z = α2p + β2p/p2 and 4p2 |β
we have zp−1 ≡ (α2p)p−1 (mod p3), and so

(17) αp−1 ≡ 1 (mod p2) .
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This completes the proof of Theorem 1.

Let zp +yp = zp with (x, y, z) = 1, 0 < x < y and p > 2. Inkeri (in 1953)
[4] showed that if p - xyz then x > ((2p3 + p)/log3p)p, and if p |xyz then
x > p3p−4 and y > 1

2p3p−1. The author (in 1960) [8] proved that for any
natural number n > 2, xn + yn = zn implies x > 3n, y > 3n.

Inkeri and van der Poorten (in 1980) [5] proved that if xp +yp = zp with
(x, y, z) = 1, 0 < x < y and p > 2 then z − x > 2pp2p .

Brindza, Györy and Tijdeman (in 1985) [1] proved that for any natural
number n > 2, if xn + yn = zn then x > nn/3.

Here we shall prove the following

Theorem 2. If x2p + y2p = zp with (x, y, z) = 1, 0 < x < y, p > 2 then
z > p4p. If x2p + y2p = z2p, (x, y, z) = 1, 0 < x < y, p > 2 then there
exist coprime positive integers α and β such that z2 = α2p + β2p/p2, where
8p3 |β, αp−1 ≡ 1 (mod p2) and z > p3p.

P r o o f. Let x2p + y2p = zp. By (2) we have

z = α2p +
β2p

p2
>

(4p2)2p

p2
> p4p .

Let x2p + y2p = z2p, 2 | y. By Theorem of [9] we have 8p3 | y. From (11) and
(12) it follows that βp = bp and from 8p3 | y and (12) we get (8p3)p | bp = βp,
hence 8p3 |β and z2 = α2p + β2p/p2, αp−1 ≡ 1 (mod p2).

Thus

z2 >
(8p3)2p

p2
=

82pp6p

p2
> p6p ,

hence z > p3p. This completes the proof of Theorem 2.
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