COLLOQUIUM MATHEMATICUM

$$
\text { ON THE DIOPHANTINE EQUATION } x^{2 p}+y^{2 p}=z^{p}
$$

BY

A. ROTKIEWICZ (WARSZAWA)

It was shown by Terjanian [12] that if p is an odd prime and x, y, z are positive integers such that $x^{2 p}+y^{2 p}=z^{2 p}$ then $2 p$ divides x or y. From the theorem of Terjanian the present author [9] deduced that if $x^{2 p}+y^{2 p}=z^{2 p}$ then either $8 p^{3} \mid x$ or $8 p^{3} \mid y$.

In [10] the impossibility of the diophantine equation $x^{p}+y^{p}=z^{2}$ was established under the conditions $(x, y)=1$, and either $p \mid z, 2 \nmid z$, or $p \nmid z$, $2 \mid z(p$ prime $>3)([10]$, Theorem T).

In a joint paper with A. Schinzel [11] we proved that if x, y, z are positive integers such that $x^{2 p}+y^{2 p}=z^{2}$ where p is a prime greater than 3 then either $4 p \mid x$ or $4 p \mid y$, and if $x^{p}+y^{2 p}=z^{2}$ where x, y and z are non-zero integers then $p<2|y|,|x|<8 y^{2 p+2}$, which extends Terjanian's result [14]: if $x^{2 p}+y^{2 p}=z^{2}$ then either $2 p \mid x$ or $2 p \mid y$, as well as Chao Ko's result [2], [3]: the equation $x^{p}+1=z^{2}$ has no solutions in positive integers if p is a prime greater than 3 .

Here we shall prove the following.
Theorem 1. If $(x, y)=1, p$ is an odd prime and

$$
\begin{equation*}
x^{2 p}+y^{2 p}=z^{p} \tag{1}
\end{equation*}
$$

then either $4 p^{2} \mid x$ or $4 p^{2} \mid y$, and there exist coprime positive integers α and β such that
(2) $z=\alpha^{2 p}+\frac{\beta^{2 p}}{p^{2}} \quad$ where $4 p^{2} \mid \beta$ and $\alpha^{p-1} \equiv 1\left(\bmod p^{2}\right)$,
(3) $\quad x^{p}=\left(\alpha^{p}\right)^{p}-\binom{p}{2}\left(\alpha^{p}\right)^{p-2}\left(\frac{\beta^{p}}{p}\right)^{2}+\binom{p}{4}\left(\alpha^{p}\right)^{p-4}\left(\frac{\beta^{p}}{p}\right)^{4}-\ldots$,
(4) $\quad y^{p}=\binom{p}{1}\left(\alpha^{p}\right)^{p-1}\left(\frac{\beta^{p}}{p}\right)-\binom{p}{3}\left(\alpha^{p}\right)^{p-3}\left(\frac{\beta^{p}}{p}\right)^{3}$

$$
+\binom{p}{5}\left(\alpha^{p}\right)^{p-5}\left(\frac{\beta^{p}}{p}\right)^{5}-\ldots
$$

Proof. Let $x^{2 p}+y^{2 p}=z^{p}$. If $2 \nmid x y$ then $x^{2 p}+y^{2 p} \equiv 2(\bmod 4)$, which is impossible. Without loss of generality we can assume that $2 \mid y$. We have $\left(y^{p}\right)^{2}=z^{p}+\left(-x^{2}\right)^{p}$ and by Theorem T of [10] we have $p \mid y^{p}$, hence $p \mid y$. Since $\left(x^{2}\right)^{p}+\left(y^{2}\right)^{p}+(-z)^{p}=0$, a theorem of Vandiver ([6], p. 327, Theorem 1046) shows that $\left(y^{2}\right)^{p} \equiv y^{2}\left(\bmod p^{3}\right)$. Since $p \mid y, p \geq 3$, we have $p^{3} \mid y^{2}$, hence $p^{2} \mid y$.

Now we shall prove that $4 \mid y$. We have $x^{2 p}=z^{p}-y^{2 p}$, or

$$
\begin{equation*}
\left(x^{p}\right)^{2}=\frac{z^{p}-\left(y^{2}\right)^{p}}{z-y^{2}}\left(z-y^{2}\right) \tag{5}
\end{equation*}
$$

From $2 p \mid y$ it follows that $p \nmid z-y^{2}$, hence

$$
\left(\frac{z^{p}-\left(y^{2}\right)^{p}}{z-y^{2}}, z-y^{2}\right)=1
$$

Thus

$$
\frac{z^{p}-\left(y^{2}\right)^{p}}{z-y^{2}}=e^{2}
$$

where e is an odd positive integer; hence $z^{p-1}+z^{p-2} y^{2}+z^{p-3}\left(y^{2}\right)^{2} \equiv 1$ $(\bmod 8), 1+z^{p-2} y^{2}+z^{p-3}\left(y^{2}\right)^{2} \equiv 1(\bmod 8), 1+z^{p-2} y^{2} \equiv 1(\bmod 8)$, $y^{2} \equiv 0(\bmod 8)$ and finally $y \equiv 0(\bmod 4)$. Thus we have $4 p^{2} \mid y$.

From $\left(x^{p}+i y^{p}\right)\left(x^{p}-i y^{p}\right)=z^{p}$ we obtain

$$
x^{p}+i y^{p}=i^{r}(a+b i)^{p}, \quad r=0,1,2,3 .
$$

The factor i^{r} can be absorbed into the p th power, and so we need only consider $r=0$.

From $(x, y)=1$ it follows that $(a, b)=1$. Thus

$$
\begin{equation*}
x^{p}+i y^{p}=(a+b i)^{p}, \quad(a, b)=1 \tag{6}
\end{equation*}
$$

hence

$$
\begin{equation*}
x^{p}=a^{p}+\binom{p}{2} a^{p-2}(b i)^{2}+\binom{p}{4} a^{p-4}(b i)^{4}+\ldots+\binom{p}{p-1} a(b i)^{p-1} \tag{7}
\end{equation*}
$$

(8) $i y^{p}=\binom{p}{1} a^{p-1}(b i)+\binom{p}{3} a^{p-3}(b i)^{3}+\ldots+\binom{p}{p-2} a^{2}(b i)^{p-2}+(b i)^{p}$.

Since $x^{2 p}+y^{2 p}=\left(a^{2}+b^{2}\right)^{p}, 2 \mid y, 2 \nmid x$, we have $2 \mid a b$. From $2 \nmid x$ and (7) it follows that $2 \nmid a$. Thus $2 \mid b$. Since $p^{2} \mid y$, (8) gives $p \mid b$. Thus $2 p \mid b$ and since $(a, b)=1$ we have $(a, 2 p)=1$. From (7) we obtain

$$
\begin{equation*}
x^{p}=a\left(a^{p-1}-\binom{p}{2} a^{p-3} b^{2}+\binom{p}{4} a^{p-5} b^{4}+\ldots \pm\binom{ p}{p-1} b^{p-1}\right) \tag{9}
\end{equation*}
$$

From $(a, b p)=1$ it follows that

$$
\left(a, a^{p-1}-\binom{p}{2} a^{p-2} b^{2}+\ldots \pm\binom{ p}{p-1} b^{p-1}\right)=1
$$

Thus
(10)

$$
a=\alpha^{p}
$$

From (8) we get
(11) $y^{p}=b p\left(a^{p-1}-\frac{1}{p}\binom{p}{3} a^{p-3} b^{2}+\ldots \pm \frac{1}{p}\binom{p}{p-2} a^{2} b^{p-3} \mp \frac{b^{p-1}}{p}\right)$,
and since $(b p, a)=1$ we have

$$
\begin{equation*}
\left(b p, a^{p-1}-\frac{1}{p}\binom{p}{3} a^{p-3} b^{2}+\ldots \pm \frac{1}{p}\binom{p}{p-2} a^{2} b^{p-3} \mp \frac{b^{p-1}}{p}\right)=1 \tag{12}
\end{equation*}
$$

From (11) it now follows that there exists a positive integer β such that $\beta^{p}=b p$. Since $4 p^{2} \mid y$, (11) and (12) show that $\left(4 p^{2}\right)^{p} \mid b p=\beta^{p}$, hence $4 p^{2} \mid \beta$. Thus

$$
\begin{equation*}
b=\beta^{p} / p \quad \text { where } 4 p^{2} \mid \beta . \tag{13}
\end{equation*}
$$

From (6), (10) and (13) we get

$$
\begin{align*}
& x^{p}+i y^{p}=\left(\alpha^{p}+\frac{\beta^{p}}{p} i\right)^{p} \tag{14}\\
& x^{p}-i y^{p}=\left(\alpha^{p}-\frac{\beta^{p}}{p} i\right)^{p} \tag{15}
\end{align*}
$$

hence $z^{p}=\left(\alpha^{2 p}+\beta^{2 p} / p^{2}\right)^{p}$, and thus

$$
\begin{equation*}
z=\alpha^{2 p}+\frac{\beta^{2 p}}{p^{2}} \tag{16}
\end{equation*}
$$

From (14) and (15) we get

$$
\begin{aligned}
x^{p} & =\frac{1}{2}\left(\alpha^{p}+\frac{\beta^{p}}{p} i\right)^{p}+\frac{1}{2}\left(\alpha^{p}-\frac{\beta^{p}}{p} i\right)^{p} \\
& =\left(\alpha^{p}\right)^{p}-\binom{p}{2}\left(\alpha^{p}\right)^{p-2}\left(\frac{\beta^{p}}{p}\right)^{2}+\binom{p}{4}\left(\alpha^{p}\right)^{p-4}\left(\frac{\beta^{p}}{p}\right)^{4}-\ldots, \\
y^{p} & =\frac{\left(\alpha^{p}+\frac{\beta^{p}}{p} i\right)^{p}-\left(\alpha^{p}-\frac{\beta^{p}}{p} i\right)^{p}}{2 i} \\
& =\binom{p}{1}\left(\alpha^{p}\right)^{p-1}\left(\frac{\beta^{p}}{p}\right)-\binom{p}{3}\left(\alpha^{p}\right)^{p-3}\left(\frac{\beta^{p}}{p}\right)^{3}+\binom{p}{5}\left(\alpha^{p}\right)^{p-5}\left(\frac{\beta^{p}}{p}\right)^{5}+\ldots
\end{aligned}
$$

and formulas (3) and (4) are proved.
By the theorem of Vandiver we have $z^{p} \equiv z\left(\bmod p^{3}\right)$, and since $(z, p)=1$ we have $z^{p-1} \equiv 1\left(\bmod p^{3}\right)$. Since $z=\alpha^{2 p}+\beta^{2 p} / p^{2}$ and $4 p^{2} \mid \beta$ we have $z^{p-1} \equiv\left(\alpha^{2 p}\right)^{p-1}\left(\bmod p^{3}\right)$, and so

$$
\begin{equation*}
\alpha^{p-1} \equiv 1\left(\bmod p^{2}\right) \tag{17}
\end{equation*}
$$

This completes the proof of Theorem 1.
Let $z^{p}+y^{p}=z^{p}$ with $(x, y, z)=1,0<x<y$ and $p>2$. Inkeri (in 1953) [4] showed that if $p \nmid x y z$ then $x>\left(\left(2 p^{3}+p\right) / \log 3 p\right)^{p}$, and if $p \mid x y z$ then $x>p^{3 p-4}$ and $y>\frac{1}{2} p^{3 p-1}$. The author (in 1960) [8] proved that for any natural number $n>2, x^{n}+y^{n}=z^{n}$ implies $x>3^{n}, y>3^{n}$.

Inkeri and van der Poorten (in 1980) [5] proved that if $x^{p}+y^{p}=z^{p}$ with $(x, y, z)=1,0<x<y$ and $p>2$ then $z-x>2^{p} p^{2 p}$.

Brindza, Györy and Tijdeman (in 1985) [1] proved that for any natural number $n>2$, if $x^{n}+y^{n}=z^{n}$ then $x>n^{n / 3}$.

Here we shall prove the following
Theorem 2. If $x^{2 p}+y^{2 p}=z^{p}$ with $(x, y, z)=1,0<x<y, p>2$ then $z>p^{4 p}$. If $x^{2 p}+y^{2 p}=z^{2 p},(x, y, z)=1,0<x<y, p>2$ then there exist coprime positive integers α and β such that $z^{2}=\alpha^{2 p}+\beta^{2 p} / p^{2}$, where $8 p^{3} \mid \beta, \alpha^{p-1} \equiv 1\left(\bmod p^{2}\right)$ and $z>p^{3 p}$.

Proof. Let $x^{2 p}+y^{2 p}=z^{p}$. By (2) we have

$$
z=\alpha^{2 p}+\frac{\beta^{2 p}}{p^{2}}>\frac{\left(4 p^{2}\right)^{2 p}}{p^{2}}>p^{4 p}
$$

Let $x^{2 p}+y^{2 p}=z^{2 p}, 2 \mid y$. By Theorem of [9] we have $8 p^{3} \mid y$. From (11) and (12) it follows that $\beta^{p}=b p$ and from $8 p^{3} \mid y$ and (12) we get $\left(8 p^{3}\right)^{p} \mid b p=\beta^{p}$, hence $8 p^{3} \mid \beta$ and $z^{2}=\alpha^{2 p}+\beta^{2 p} / p^{2}, \alpha^{p-1} \equiv 1\left(\bmod p^{2}\right)$.

Thus

$$
z^{2}>\frac{\left(8 p^{3}\right)^{2 p}}{p^{2}}=\frac{8^{2 p} p^{6 p}}{p^{2}}>p^{6 p}
$$

hence $z>p^{3 p}$. This completes the proof of Theorem 2 .

REFERENCES

[1] B. Brindza, K. Györy and R. Tijdeman, The Fermat equation with polynomial values as base variables, Invent. Math. 80 (1985), 139-151.
[2] Chao Ko, Acta Sci. Natur. Univ. Szechuanensis 2 (1960), 57-64.
[3] -, On the diophantine equation $x^{2}=y^{n}+1, x y \neq 0$, Sci. Sinica Ser. A 14 (1965), 457-460.
[4] K. Inkeri, Abschätzungen für eventuelle Lösungen der Gleichung im Fermatschen Problem, Ann. Univ. Turku. Ser. A I 16 (1953), 9 pp.
[5] K. Inkeri and A. J. van der Poorten, Some remarks on Fermat's conjecture, Acta Arith. 36 (1980), 107-111.
[6] E. Landau, Vorlesungen über Zahlentheorie, Bd. III, Leipzig 1927; reprint Chelsea, 1974.
[7] P. Ribenboim, 13 Lectures on Fermat's Last Theorem, Springer, New York 1979.
[8] A. Rotkiewicz, Une remarque sur le dernier théorème de Fermat, Mathesis 69 (1960), 135-140.
[9] -, On Fermat's equation with exponent 2p, Colloq. Math. 45 (1981), 101-102.
[10] A. Rotkiewicz, On the equation $x^{p}+y^{p}=z^{2}$, Bull. Acad. Polon. Sci. Sér. Sci. Math. 30 (1982), 211-214.
[11] A. Rotkiewicz and A. Schinzel, On the diophantine equation $x^{p}+y^{2 p}=z^{p}$, Colloq. Math. 53 (1987), 147-153.
[12] T. N. Shorey and R. Tijdeman, Exponential diophantine equations, Cambridge University Press, 1981.
[13] G. Terjanian, Sur l'équation $x^{2 p}+y^{2 p}=z^{2 p}$, C. R. Acad. Sci. Paris Sér. A-B 285 (1977), 973-975.
[14] -, L'équation $x^{p}-y^{2 p}=a z^{2}$ et le théorème de Fermat, Séminaire de théorie des nombres de Bordeaux, Année 1977-1978, exposé no. 29.

INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES
ŚNIADECKICH 8
00-950 WARSZAWA, POLAND

