COLLOQUIUM MATHEMATICUM

VOL. LXII

1991

FASC. I

ON THE DIOPHANTINE EQUATION $x^{2p} + y^{2p} = z^p$

BY

A. ROTKIEWICZ (WARSZAWA)

It was shown by Terjanian [12] that if p is an odd prime and x, y, z are positive integers such that $x^{2p} + y^{2p} = z^{2p}$ then 2p divides x or y. From the theorem of Terjanian the present author [9] deduced that if $x^{2p} + y^{2p} = z^{2p}$ then either $8p^3 | x$ or $8p^3 | y$.

In [10] the impossibility of the diophantine equation $x^p + y^p = z^2$ was established under the conditions (x, y) = 1, and either $p \mid z, 2 \nmid z$, or $p \nmid z, 2 \mid z$ (p prime > 3) ([10], Theorem T).

In a joint paper with A. Schinzel [11] we proved that if x, y, z are positive integers such that $x^{2p} + y^{2p} = z^2$ where p is a prime greater than 3 then either 4p | x or 4p | y, and if $x^p + y^{2p} = z^2$ where x, y and z are non-zero integers then p < 2|y|, $|x| < 8y^{2p+2}$, which extends Terjanian's result [14]: if $x^{2p} + y^{2p} = z^2$ then either 2p | x or 2p | y, as well as Chao Ko's result [2], [3]: the equation $x^p + 1 = z^2$ has no solutions in positive integers if p is a prime greater than 3.

Here we shall prove the following.

THEOREM 1. If (x, y) = 1, p is an odd prime and

$$(1) x^{2p} + y^{2p} = z^p$$

then either $4p^2 | x$ or $4p^2 | y$, and there exist coprime positive integers α and β such that

(2) $z = \alpha^{2p} + \frac{\beta^{2p}}{p^2}$ where $4p^2 \mid \beta \text{ and } \alpha^{p-1} \equiv 1 \pmod{p^2}$,

(3)
$$x^{p} = (\alpha^{p})^{p} - {p \choose 2} (\alpha^{p})^{p-2} \left(\frac{\beta^{p}}{p}\right)^{2} + {p \choose 4} (\alpha^{p})^{p-4} \left(\frac{\beta^{p}}{p}\right)^{4} - \dots,$$

(4)
$$y^{p} = {\binom{p}{1}} (\alpha^{p})^{p-1} \left(\frac{\beta^{p}}{p}\right) - {\binom{p}{3}} (\alpha^{p})^{p-3} \left(\frac{\beta^{p}}{p}\right)^{3} + {\binom{p}{5}} (\alpha^{p})^{p-5} \left(\frac{\beta^{p}}{p}\right)^{5} - \dots$$

Proof. Let $x^{2p} + y^{2p} = z^p$. If $2 \nmid xy$ then $x^{2p} + y^{2p} \equiv 2 \pmod{4}$, which is impossible. Without loss of generality we can assume that $2 \mid y$. We have $(y^p)^2 = z^p + (-x^2)^p$ and by Theorem T of [10] we have $p \mid y^p$, hence $p \mid y$. Since $(x^2)^p + (y^2)^p + (-z)^p = 0$, a theorem of Vandiver ([6], p. 327, Theorem 1046) shows that $(y^2)^p \equiv y^2 \pmod{p^3}$. Since $p \mid y, p \geq 3$, we have $p^3 \mid y^2$, hence $p^2 \mid y$.

Now we shall prove that 4 | y. We have $x^{2p} = z^p - y^{2p}$, or

(5)
$$(x^p)^2 = \frac{z^p - (y^2)^p}{z - y^2} (z - y^2) \,.$$

From $2p \mid y$ it follows that $p \nmid z - y^2$, hence

$$\left(\frac{z^p - (y^2)^p}{z - y^2}, z - y^2\right) = 1.$$

Thus

$$\frac{z^p - (y^2)^p}{z - y^2} = e^2 \,,$$

where *e* is an odd positive integer; hence $z^{p-1} + z^{p-2}y^2 + z^{p-3}(y^2)^2 \equiv 1 \pmod{8}$, $1 + z^{p-2}y^2 + z^{p-3}(y^2)^2 \equiv 1 \pmod{8}$, $1 + z^{p-2}y^2 \equiv 1 \pmod{8}$, $y^2 \equiv 0 \pmod{8}$ and finally $y \equiv 0 \pmod{4}$. Thus we have $4p^2 | y$.

From $(x^p + iy^p)(x^p - iy^p) = z^p$ we obtain

$$x^{p} + iy^{p} = i^{r}(a+bi)^{p}, \quad r = 0, 1, 2, 3.$$

The factor i^r can be absorbed into the *p*th power, and so we need only consider r = 0.

From (x, y) = 1 it follows that (a, b) = 1. Thus

(6)
$$x^p + iy^p = (a + bi)^p, \quad (a,b) = 1,$$

hence

(7)
$$x^{p} = a^{p} + {p \choose 2} a^{p-2} (bi)^{2} + {p \choose 4} a^{p-4} (bi)^{4} + \dots + {p \choose p-1} a (bi)^{p-1},$$

(8)
$$iy^p = \binom{p}{1}a^{p-1}(bi) + \binom{p}{3}a^{p-3}(bi)^3 + \ldots + \binom{p}{p-2}a^2(bi)^{p-2} + (bi)^p$$

Since $x^{2p} + y^{2p} = (a^2 + b^2)^p$, $2 \mid y, 2 \nmid x$, we have $2 \mid ab$. From $2 \nmid x$ and (7) it follows that $2 \nmid a$. Thus $2 \mid b$. Since $p^2 \mid y$, (8) gives $p \mid b$. Thus $2p \mid b$ and since (a, b) = 1 we have (a, 2p) = 1. From (7) we obtain

(9)
$$x^{p} = a \left(a^{p-1} - {p \choose 2} a^{p-3} b^{2} + {p \choose 4} a^{p-5} b^{4} + \dots \pm {p \choose p-1} b^{p-1} \right).$$

From (a, bp) = 1 it follows that

$$\left(a, a^{p-1} - {p \choose 2}a^{p-2}b^2 + \dots \pm {p \choose p-1}b^{p-1}\right) = 1$$

Thus (10)

$$a = \alpha^p$$

From (8) we get

(11)
$$y^{p} = bp\left(a^{p-1} - \frac{1}{p}\binom{p}{3}a^{p-3}b^{2} + \dots \pm \frac{1}{p}\binom{p}{p-2}a^{2}b^{p-3} \mp \frac{b^{p-1}}{p}\right),$$

and since (bp, a) = 1 we have

(12)
$$\left(bp, a^{p-1} - \frac{1}{p} \binom{p}{3} a^{p-3} b^2 + \ldots \pm \frac{1}{p} \binom{p}{p-2} a^2 b^{p-3} \mp \frac{b^{p-1}}{p} \right) = 1.$$

From (11) it now follows that there exists a positive integer β such that $\beta^p = bp$. Since $4p^2 | y$, (11) and (12) show that $(4p^2)^p | bp = \beta^p$, hence $4p^2 | \beta$. Thus

(13)
$$b = \beta^p / p \quad \text{where } 4p^2 \,|\, \beta \,.$$

From (6), (10) and (13) we get

(14)
$$x^{p} + iy^{p} = \left(\alpha^{p} + \frac{\beta^{p}}{p}i\right)^{p},$$

(15)
$$x^p - iy^p = \left(\alpha^p - \frac{\beta^p}{p}i\right)^p$$

hence $z^p = (\alpha^{2p} + \beta^{2p}/p^2)^p$, and thus

(16)
$$z = \alpha^{2p} + \frac{\beta^{2p}}{p^2}.$$

From (14) and (15) we get

$$\begin{aligned} x^{p} &= \frac{1}{2} \left(\alpha^{p} + \frac{\beta^{p}}{p} i \right)^{p} + \frac{1}{2} \left(\alpha^{p} - \frac{\beta^{p}}{p} i \right)^{p} \\ &= (\alpha^{p})^{p} - \binom{p}{2} (\alpha^{p})^{p-2} \left(\frac{\beta^{p}}{p} \right)^{2} + \binom{p}{4} (\alpha^{p})^{p-4} \left(\frac{\beta^{p}}{p} \right)^{4} - \dots, \\ y^{p} &= \frac{\left(\alpha^{p} + \frac{\beta^{p}}{p} i \right)^{p} - \left(\alpha^{p} - \frac{\beta^{p}}{p} i \right)^{p}}{2i} \\ &= \binom{p}{1} (\alpha^{p})^{p-1} \binom{\beta^{p}}{p} - \binom{p}{3} (\alpha^{p})^{p-3} \binom{\beta^{p}}{p}^{3} + \binom{p}{5} (\alpha^{p})^{p-5} \binom{\beta^{p}}{p}^{5} + \dots \end{aligned}$$

and formulas (3) and (4) are proved.

By the theorem of Vandiver we have $z^p \equiv z \pmod{p^3}$, and since (z,p) = 1 we have $z^{p-1} \equiv 1 \pmod{p^3}$. Since $z = \alpha^{2p} + \beta^{2p}/p^2$ and $4p^2 \mid \beta$ we have $z^{p-1} \equiv (\alpha^{2p})^{p-1} \pmod{p^3}$, and so

(17)
$$\alpha^{p-1} \equiv 1 \pmod{p^2}.$$

This completes the proof of Theorem 1.

Let $z^p + y^p = z^p$ with (x, y, z) = 1, 0 < x < y and p > 2. Inkeri (in 1953) [4] showed that if $p \nmid xyz$ then $x > ((2p^3 + p)/log3p)^p$, and if $p \mid xyz$ then $x > p^{3p-4}$ and $y > \frac{1}{2}p^{3p-1}$. The author (in 1960) [8] proved that for any natural number $n > 2, x^n + y^n = z^n$ implies $x > 3^n, y > 3^n$.

Inkeri and van der Poorten (in 1980) [5] proved that if $x^p + y^p = z^p$ with (x, y, z) = 1, 0 < x < y and p > 2 then $z - x > 2^p p^{2p}$.

Brindza, Györy and Tijdeman (in 1985) [1] proved that for any natural number n > 2, if $x^n + y^n = z^n$ then $x > n^{n/3}$.

Here we shall prove the following

THEOREM 2. If $x^{2p} + y^{2p} = z^p$ with (x, y, z) = 1, 0 < x < y, p > 2 then $z > p^{4p}$. If $x^{2p} + y^{2p} = z^{2p}$, (x, y, z) = 1, 0 < x < y, p > 2 then there exist coprime positive integers α and β such that $z^2 = \alpha^{2p} + \beta^{2p}/p^2$, where $8p^3 \mid \beta, \alpha^{p-1} \equiv 1 \pmod{p^2}$ and $z > p^{3p}$.

Proof. Let $x^{2p} + y^{2p} = z^p$. By (2) we have

$$z = \alpha^{2p} + \frac{\beta^{2p}}{p^2} > \frac{(4p^2)^{2p}}{p^2} > p^{4p} \,.$$

Let $x^{2p} + y^{2p} = z^{2p}$, 2 | y. By Theorem of [9] we have $8p^3 | y$. From (11) and (12) it follows that $\beta^p = bp$ and from $8p^3 | y$ and (12) we get $(8p^3)^p | bp = \beta^p$, hence $8p^3 | \beta$ and $z^2 = \alpha^{2p} + \beta^{2p}/p^2$, $\alpha^{p-1} \equiv 1 \pmod{p^2}$.

Thus

$$z^2 > \frac{(8p^3)^{2p}}{p^2} = \frac{8^{2p}p^{6p}}{p^2} > p^{6p}$$

hence $z > p^{3p}$. This completes the proof of Theorem 2.

REFERENCES

- B. Brindza, K. Györy and R. Tijdeman, The Fermat equation with polynomial values as base variables, Invent. Math. 80 (1985), 139-151.
- [2] Chao Ko, Acta Sci. Natur. Univ. Szechuanensis 2 (1960), 57–64.
- [3] —, On the diophantine equation $x^2 = y^n + 1$, $xy \neq 0$, Sci. Sinica Ser. A 14 (1965), 457–460.
- [4] K. Inkeri, Abschätzungen für eventuelle Lösungen der Gleichung im Fermatschen Problem, Ann. Univ. Turku. Ser. A I 16 (1953), 9 pp.
- [5] K. Inkeri and A. J. van der Poorten, Some remarks on Fermat's conjecture, Acta Arith. 36 (1980), 107-111.
- [6] E. Landau, Vorlesungen über Zahlentheorie, Bd. III, Leipzig 1927; reprint Chelsea, 1974.
- [7] P. Ribenboim, 13 Lectures on Fermat's Last Theorem, Springer, New York 1979.
- [8] A. Rotkiewicz, Une remarque sur le dernier théorème de Fermat, Mathesis 69 (1960), 135–140.
- [9] —, On Fermat's equation with exponent 2p, Colloq. Math. 45 (1981), 101–102.

- [10] A. Rotkiewicz, On the equation $x^p + y^p = z^2$, Bull. Acad. Polon. Sci. Sér. Sci. Math. 30 (1982), 211–214.
- A. Rotkiewicz and A. Schinzel, On the diophantine equation $x^p + y^{2p} = z^p$, [11] Colloq. Math. 53 (1987), 147–153.
- T. N. Shorey and R. Tijdeman, Exponential diophantine equations, Cambridge [12]University Press, 1981.
- G. Terjanian, Sur l'équation $x^{2p} + y^{2p} = z^{2p}$, C. R. Acad. Sci. Paris Sér. A-B [13]285 (1977), 973–975. —, L'équation $x^p - y^{2p} = az^2$ et le théorème de Fermat, Séminaire de théorie des
- [14]nombres de Bordeaux, Année 1977–1978, exposé no. 29.

INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES **ŚNIADECKICH 8** 00-950 WARSZAWA, POLAND

Reçu par la Rédaction le 15.1.1990