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A NOTE ON THE ALMOST EVERYWHERE CONVERGENCE
OF ALTERNATING SEQUENCES
WITH DUNFORD-SCHWARTZ OPERATORS

BY

RYOTARO SATO (OKAYAMA)

1. Introduction. Let L,, 1 < p < oo, be the usual Banach spaces
of real or complex functions on a o-finite measure space (X,§,u). By a
Dunford-Schwartz operator we mean a linear operator T° which maps the
linear space L + L into itself and is a contraction of L, into L, for each
1 <p<oo(ie |[|Tfllp <|fllpforall fe L,), and satisfies

Tf=limTf, almosteverywhere

whenever (f,) is a sequence in L., f = lim, f, almost everywhere and
sup,, || fn]lco < 0. The following is known (see e.g. [9], [10]): If T" is a linear
contraction of L; into L; and satisfies || T'f||co < ||f]|oo forall f € LiNLy, or
if T' is a linear operator mapping J; <p<oo Lp Into itself and is a contraction
of L, into L, for each 1 < p < oo, then T' can be uniquely extended to a
Dunford-Schwartz operator.

In this note we deal with a sequence (7},) of Dunford—Schwartz operators
on L+ L, and discuss the almost everywhere convergence of the alternating
sequence

5. T;)T,.. Tvf (f€Li+Ly).
Using an approximation argument involving maximal operators and a result
of Akcoglu [1] which states that if f € L,, [ < p < oo, then the alternating
sequence converges almost everywhere, we shall prove that if f € Ly + Lo
satisfies

f |f|log™(|f]/a)du < 0o foralla >0,

then the alternating sequence converges almost everywhere; thus a general-
ization of Akcoglu’s result will be obtained.

It should be noted here that a similar result has been announced in
Assani [3]; but we could not see the details. (After the first manuscript of this
paper was submitted, the author could get Assani’s paper Rota’s alternating
procedure with non-positive operators (to appear in Adv. in Math.), in which
Assani deals with Dunford-Schwartz operators defined on the real linear
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space Ly of a finite measure space. The author thinks that Assani’s paper
does not include the result of this note.)

2. Result

THEOREM. Let (T),) be a sequence of Dunford-Schwartz operators on
L1+ Lo and let f € L1 4+ Lo be such that

f]f\log+(\f|/a)du<oo for alla>0.
Then lim, 17 ... TT, ... T1f exists a.e. on X.

The theorem does not hold if f is only assumed to be in L1; an example
was given by Burkholder [4]. In case u(X) = oo, it may happen that there
exists a function f in Lj 4+ L, which satisfies the condition of the theorem
but is not in L;; an example can be found in Fava [6]. As is easily seen,
each fin L,, 1 < p < oo, satisfies the condition of the theorem.

Proof. It suffices to consider the case f > 0. Given an € > 0, put

e=f-l{j<ey and g=f—e

where 14 denotes the indicator of a set A, and write
fo=T17...T;T,... T\ f

(1) en =17 ... T)T, ... The (n>1).
g =17 ... TXT, ... Tig

It follows that

(2) fo=entgn and fenllo < el < (n>1).

Since p({g > 0}) = p({f > €}) < oo, we then have g € L and further
[ glog™gdu < occ.

We now choose 0 < h € Ly with 1 > h > min{g, 1}, and apply Doob’s [5]
and Starr’s [10] argument as follows. First, let 7,, denote the linear modulus
of T), (see e.g. [7], p. 159); thus 7, is a positive Dunford-Schwartz operator
on Ly + Lo satisfying |T), f| < 7,|f] for all f € L1 + L. By Lemma 2 in
[10], setting g = g/h there exist finite measure spaces (X, ur), K =0,1,...,
for which X C X, X = Xy, po = hdu, and positive linear operators S
from Li(Xp—1,pr—1) to L1 (X, pi) for which Syl =1 a.e. (ug), Sil =1
a.e. (ug—1) and

(3)  ST...Si[(mk...Th)(Sk...S19)]) =711 . TR ... T1g  a.e. (M) .
Since gh = g and log™ § = log™g, it follows that
(4) [Glog" Gduo = [ Gllog" GHhdp = [ glogTgdu < oc.
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We next choose a sequence (r¢), t = 1,2,..., of functions in Ly such that
0<r:7ga.e. on X, and write
?t = (g—Tt)/h

From (3) and the fact that 0 < h <1 it follows that
(5) ST SESk. S > Tk .m(g — 1) ace. (po) -

Further, from [5] or [10], if the usual probability notation is used, we may
write

(6) ST .. SSk .. ST = E{E{T(z0) | xk} |x0} a.e. (P),
and
(7)  Sk...S17: = E{r¢(x0) |z} = E{T¢(x0) | zk, Tht1,-..} a.e. (P)

where zj, is the kth coordinate function on the product space 2 = X x
X1 x ...and P is the finite measure on {2 defined to make the x; sequence
a Markov process with initial measure pg = h du.

Let M denote the maximal operator on L; ({2, P) defined by

MX(w) = sup [B(X |24, 7ps1... }w)
>1

(we 2,X € L1(12,P)).
Then we have ||MX oo < || X||oo for all X € Lo (§2, P) and
1
PUMX >a})<- [ |X|dP

a {MX>a}

(a>0,X € L (02, P))

(cf. e.g. [8], p- 69). Therefore Theorem 1 in [9] can be applied to infer that
there exists a constant B > 0 such that

MX B|X B|X
[ ——ar< [ | |<log ’a> dp

{MX>a} a {B|X|>a}
for all a > 0 and X € R;(2, P), where we let
X
R (2,P) = { XeL(p): | |X|1og+udp < oo for all a > o} .
a

(It is known (cf. [6]) that, since P is a finite measure, R;(§2, P) is a linear
subspace of L1(£2, P), and X € R;(£2, P) if and only if [|X|log™ |X|dP <
00.)

On the other hand, since 0 < 7; < g and 7; | 0 by the definition of 7,
and since g(zg) € R1(§2, P) by (4), Lebesgue’s convergence theorem can be
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applied to obtain

1
lim 1l — M7(20) dP
{M7y(xo)>a}

. 1 Bri(xo)
<1 -B log ————=
< 1%11 f a T¢(z0) <0g o

{Bft($0)>a}

) ar=o

for all @ > 0. Thus, immediately, lim; [ M7 (x¢)dP = 0. Since ¢ < s implies
M7 (zg) > Mrs(xo) > 0, it follows that

(8) li%n E{M7ri(x0)|zo} =0 a.e. (P).

Further, since r; € Lo, it follows from Akcoglu’s result [1] (see also [2]) that
(9) lirrln v ... T;T, ... Tiry exists a.e. on X .

Consequently,

lm sup |fn — fml
N n,m>N

<lim sup l|e, —en|+lim sup |gn — Gml

N n,m>N n,m>N

< 2lim sup |e,| + lim sup |17 ... T T, ... Thyry =17 ... T Ty, ... Tir]
N >N N nm>N
+2lim sup |1y ... T T, ... Ti(g — )]
N n>N
<2e+42lmsup 74 ... TpTn ... T1(g —T1) (by (2) and (9))
N n>N
< 2e + 2E{M74(x0) | zo} (by (5), (6) and (7));
and (8) shows that (f,(x)), n = 1,2,..., is a Cauchy sequence for almost

all z in X; thus lim,, f,(x) exists almost everywhere, completing the proof.

REFERENCES

[1] M. A. Akcoglu, Alternating sequences with nonpositive operators, Proc. Amer.
Math. Soc. 104 (1988), 1124-1130.

[2] M. A. Akcoglu and L. Sucheston, Pointwise convergence of alternating se-
quences, Canad. J. Math. 40 (1988), 610-632.

[3] I Assani, Alternating procedures in uniformly smooth Banach spaces, Proc. Amer.
Math. Soc. 104 (1988), 1131-1133.

[4] D. L. Burkholder, Successive conditional expectations of an integrable function,
Ann. Math. Statist. 33 (1962), 887-893.

[5] J. L. Doob, A ratio operator limit theorem, Z. Wahrsch. Verw. Gebiete 1 (1963),
288-294.

[6] N. A.Fava, Weak type inequalities for product operators, Studia Math. 42 (1972),
271-288.



DUNFORD-SCHWARTZ OPERATORS 101

[7] U.Krengel, Ergodic Theorems, de Gruyter, Berlin 1985.
[8] J. Neveu, Discrete-Parameter Martingales, North-Holland, Amsterdam 1975.
[9] R. Sato, Ergodic theorems for d-parameter semigroups of Dunford—Schwartz oper-
ators, Math. J. Okayama Univ. 23 (1981), 41-57.
[10] N. Starr, Operator limit theorems, Trans. Amer. Math. Soc. 121 (1966), 90-115.

o

DEPARTMENT OF MATHEMATICS, SCHOOL OF SCIENCE
OKAYAMA UNIVERSITY
OKAYAMA, 700 JAPAN

Rec¢u par la Rédaction le 24.4.1989;
en version modifiée le 7.9.1989



