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WITH DUNFORD–SCHWARTZ OPERATORS

BY
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1. Introduction. Let Lp, 1 ≤ p ≤ ∞, be the usual Banach spaces
of real or complex functions on a σ-finite measure space (X, F, µ). By a
Dunford–Schwartz operator we mean a linear operator T which maps the
linear space L1 + L∞ into itself and is a contraction of Lp into Lp for each
1 ≤ p ≤ ∞ (i.e. ‖Tf‖p ≤ ‖f‖p for all f ∈ Lp), and satisfies

Tf = lim
n

Tfn almost everywhere

whenever (fn) is a sequence in L∞, f = limn fn almost everywhere and
supn ‖fn‖∞ < ∞. The following is known (see e.g. [9], [10]): If T is a linear
contraction of L1 into L1 and satisfies ‖Tf‖∞ ≤ ‖f‖∞ for all f ∈ L1∩L∞, or
if T is a linear operator mapping

⋃
1<p<∞ Lp into itself and is a contraction

of Lp into Lp for each 1 < p < ∞, then T can be uniquely extended to a
Dunford–Schwartz operator.

In this note we deal with a sequence (Tn) of Dunford–Schwartz operators
on L1+L∞ and discuss the almost everywhere convergence of the alternating
sequence

T ∗1 . . . T ∗nTn . . . T1f (f ∈ L1 + L∞) .

Using an approximation argument involving maximal operators and a result
of Akcoglu [1] which states that if f ∈ Lp, l < p < ∞, then the alternating
sequence converges almost everywhere, we shall prove that if f ∈ L1 + L∞
satisfies ∫

|f | log+(|f |/a) dµ < ∞ for all a > 0 ,

then the alternating sequence converges almost everywhere; thus a general-
ization of Akcoglu’s result will be obtained.

It should be noted here that a similar result has been announced in
Assani [3]; but we could not see the details. (After the first manuscript of this
paper was submitted, the author could get Assani’s paper Rota’s alternating
procedure with non-positive operators (to appear in Adv. in Math.), in which
Assani deals with Dunford–Schwartz operators defined on the real linear
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space L1 of a finite measure space. The author thinks that Assani’s paper
does not include the result of this note.)

2. Result

Theorem. Let (Tn) be a sequence of Dunford–Schwartz operators on
L1 + L∞ and let f ∈ L1 + L∞ be such that∫

|f | log+(|f |/a) dµ < ∞ for all a > 0 .

Then limn T ∗1 . . . T ∗nTn . . . T1f exists a.e. on X.

The theorem does not hold if f is only assumed to be in L1; an example
was given by Burkholder [4]. In case µ(X) = ∞, it may happen that there
exists a function f in L1 + L∞ which satisfies the condition of the theorem
but is not in L1; an example can be found in Fava [6]. As is easily seen,
each f in Lp, 1 < p < ∞, satisfies the condition of the theorem.

P r o o f. It suffices to consider the case f ≥ 0. Given an ε > 0, put

e = f · 1{f≤ε} and g = f − e

where 1A denotes the indicator of a set A, and write

(1)


fn = T ∗1 . . . T ∗nTn . . . T1f

en = T ∗1 . . . T ∗nTn . . . T1e (n ≥ 1).
gn = T ∗1 . . . T ∗nTn . . . T1g

It follows that

(2) fn = en + gn and ‖en‖∞ ≤ ‖e‖∞ ≤ ε (n ≥ 1) .

Since µ({g > 0}) = µ({f > ε}) < ∞, we then have g ∈ L1 and further∫
g log+gdµ < ∞.

We now choose 0 < h ∈ L1 with 1 ≥ h ≥ min{g, 1}, and apply Doob’s [5]
and Starr’s [10] argument as follows. First, let τn denote the linear modulus
of Tn (see e.g. [7], p. 159); thus τn is a positive Dunford–Schwartz operator
on L1 + L∞ satisfying |Tnf | ≤ τn|f | for all f ∈ L1 + L∞. By Lemma 2 in
[10], setting g̃ = g/h there exist finite measure spaces (Xk, µk), k = 0, 1, . . . ,
for which X ⊂ Xk, X = X0, µ0 = h dµ, and positive linear operators Sk

from L1(Xk−1, µk−1) to L1(Xk, µk) for which Sk1 = 1 a.e. (µk), S∗k1 = 1
a.e. (µk−1) and

(3) S∗1 . . . S∗k [(τk . . . τ1h)(Sk . . . S1g̃)] = τ∗1 . . . τ∗k τk . . . τ1g a.e. (µ0) .

Since g̃h = g and log+ g̃ = log+g, it follows that

(4)
∫

g̃ log+ g̃ dµ0 =
∫

g̃(log+ g̃)h dµ =
∫

g log+g dµ < ∞ .
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We next choose a sequence (rt), t = 1, 2, . . . , of functions in L2 such that
0 ≤ rt ↑ g a.e. on X, and write

r̃t = (g − rt)/h .

From (3) and the fact that 0 < h ≤ 1 it follows that

(5) S∗1 . . . S∗kSk . . . S1r̃t ≥ τ∗1 . . . τ∗k τk . . . τ1(g − rt) a.e. (µ0) .

Further, from [5] or [10], if the usual probability notation is used, we may
write

(6) S∗1 . . . S∗kSk . . . S1r̃t = E{E{r̃t(x0) |xk} |x0} a.e. (P ) ,

and

(7) Sk . . . S1r̃t = E{r̃t(x0) |xk} = E{r̃t(x0) |xk, xk+1, . . .} a.e. (P )

where xk is the kth coordinate function on the product space Ω = X0 ×
X1 × . . . and P is the finite measure on Ω defined to make the xk sequence
a Markov process with initial measure µ0 = h dµ.

Let M denote the maximal operator on L1(Ω,P ) defined by

MX(ω) = sup
k≥1

|E{X |xk, xk+1, . . .}(ω)|

(ω ∈ Ω,X ∈ L1(Ω,P )) .

Then we have ‖MX‖∞ ≤ ‖X‖∞ for all X ∈ L∞(Ω,P ) and

P ({MX > a}) ≤ 1
a

∫
{MX>a}

|X| dP

(a > 0, X ∈ L1(Ω,P ))

(cf. e.g. [8], p. 69). Therefore Theorem 1 in [9] can be applied to infer that
there exists a constant B > 0 such that∫

{MX>a}

MX

a
dP ≤

∫
{B|X|>a}

B|X|
a

(
log

B|X|
a

)
dP

for all a > 0 and X ∈ R1(Ω,P ), where we let

R1(Ω,P ) =
{

X ∈ L1(Ω,P ) :
∫
|X| log+ |X|

a
dP < ∞ for all a > 0

}
.

(It is known (cf. [6]) that, since P is a finite measure, R1(Ω,P ) is a linear
subspace of L1(Ω,P ), and X ∈ R1(Ω,P ) if and only if

∫
|X| log+ |X|dP <

∞.)
On the other hand, since 0 ≤ r̃t ≤ g̃ and r̃t ↓ 0 by the definition of r̃t,

and since g̃(x0) ∈ R1(Ω,P ) by (4), Lebesgue’s convergence theorem can be
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applied to obtain

lim
t

∫
{Mr̃t(x0)>a}

1
a
Mr̃t(x0) dP

≤ lim
t

∫
{Br̃t(x0)>a}

1
a
Br̃t(x0)

(
log

Br̃t(x0)
a

)
dP = 0

for all a > 0. Thus, immediately, limt

∫
Mr̃t(x0)dP = 0. Since t < s implies

Mr̃t(x0) > Mr̃s(x0) ≥ 0, it follows that

(8) lim
t

E{Mr̃t(x0) |x0} = 0 a.e. (P ) .

Further, since rt ∈ L2, it follows from Akcoglu’s result [1] (see also [2]) that

(9) lim
n

T ∗1 . . . T ∗nTn . . . T1rt exists a.e. on X .

Consequently,

lim
N

sup
n,m≥N

|fn − fm|

≤ lim
N

sup
n,m≥N

|en − em|+ lim
N

sup
n,m≥N

|gn − gm|

≤ 2 lim
N

sup
n≥N

|en|+ lim
N

sup
n,m≥N

|T ∗1 . . . T ∗nTn . . . T1rt − T ∗1 . . . T ∗mTm . . . T1rt|

+2 lim
N

sup
n≥N

|T ∗1 . . . T ∗nTn . . . T1(g − rt)|

≤ 2ε + 2 lim
N

sup
n≥N

τ∗1 . . . τ∗nτn . . . τ1(g − rt) (by (2) and (9))

≤ 2ε + 2E{Mr̃t(x0) |x0} (by (5), (6) and (7));

and (8) shows that (fn(x)), n = 1, 2, . . . , is a Cauchy sequence for almost
all x in X; thus limn fn(x) exists almost everywhere, completing the proof.
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