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SOME ADDITIVE PROPERTIES
OF SPECIAL SETS OF REALS

BY

IRENEUSZ R E C  L A W (GDAŃSK)

D. H. Fremlin and J. Jasiński [4] have proved a relative consistency of
the existence of a very thin set of reals. In this context they have asked
(private communication) the following question: Given a universally null
set X ⊆ R and a Borel measure µ on R, does it follow that there exists
a Borel set B ⊆ R covering X such that for every t ∈ R, µ(B + t) = 0?
Note that the answer is in the affirmative if X has strong measure zero (due
to the uniform continuity of Borel measures). In Theorem 1 we provide a
negative answer to this question.

The thin set of Fremlin and Jasiński mentioned above preserves many
properties of thinness under linear sums. Fremlin and Jasiński asked
whether its linear sums with any universally null set are universally null.
In Theorem 2 we show that the answer is in the negative.

For the definition of strong measure zero sets and basic properties of
other special sets considered in this paper see A. W. Miller [9] or J. B.
Brown and G. V. Cox [1]. Recall only that a set X ⊆ Rk is universally null
(X ∈ β) if for every Borel measure µ (continuous probability measure on
the family of all Borel subsets of Rk), µ∗(X) = 0. For X, Y ⊆ R we set
X + Y = {x + y : x ∈ X ∧ y ∈ Y } and X − Y = {x− y : x ∈ X ∧ y ∈ Y }.

Most of the results of this note are based on von Neumann’s theorem
that there exists a perfect set of reals which is linearly independent over the
rationals [11]. The basic technical lemma is the following:

Lemma 1. Let C and D be Fσ (resp. compact) subsets of R. Suppose
that X ⊆ C and (C −X) ∩ (D −D) = {0}. Then

(a) + : X×D → X+D is a Borel isomorphism (resp. homeomorphism),
(b) if yx = dx + x, dx ∈ D, x ∈ X, then Y = {yx : x ∈ X}

is the preimage of X by a one-to-one Borel (resp. continuous) function
and {dx : x ∈ X} ⊆ Y − X; in particular , if X is universally null ,
so is Y .

P r o o f. (a) Clearly + is continuous on C×D. Since (C−X)∩(D−D) =
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{0} we have

X ×D ⊆{(c, d) ∈ C ×D :
(∀(c′, d′) ∈ C ×D)((c′, d′) 6= (c, d) ⇒ +(c′, d′) 6= +(c, d))}.

So, + is one-to-one on X ×D. Moreover, for any F ⊆ C ×D,

+[F ∩ (X ×D)] = +[F ] ∩+[X ×D] = +[F ] ∩ (X + D).

If F is Fσ (resp. closed) then so is +[F ]. It follows that + sends relative
Fσ (resp. closed) subsets of X ×D to relative Fσ (resp. closed) subsets of
X + D.

(b) Note that by (a), yx 7→ (x, dx) is a Borel (resp. continuous) function.
Also (x, dx) 7→ x, being a projection, is continuous.

Theorem 1. Assume that there exists a universally null set X with |X| =
c. Then there exists a Borel measure µ on R and a universally null set Y ⊆ R
such that whenever B is a Borel set covering Y , then µ(B + t) = 1 for some
t ∈ R.

P r o o f. Let C and D be disjoint, perfect subsets of R such that C∪D is
linearly independent over the rationals (von Neumann [11]). We can assume
that X ⊆ C. Let Bx, x ∈ X, be all Borel sets. For every x ∈ X, choose
yx ∈ C + x so that yx 6∈ Bx whenever (C + x) \ Bx 6= ∅. By Lemma 1,
Y = {yx : x ∈ X} is universally null. Also, yx ∈ Bx for any Borel set
Bx ⊇ Y , so (C + x) \Bx = ∅ by our choice of yx, and hence C ⊆ Bx − x. It
follows that if for a Borel measure µ we have µ(C) = 1 then µ satisfies the
conclusion of the theorem.

Theorem 2. Let X ⊆ R, |X| = c, be a universally null set for which
there exists a meagre Fσ set C ⊇ X such that C −X is meagre. Then there
exists a universally null set Y ⊂ R such that X + Y is not universally null.

P r o o f. By a theorem of Mycielski [10], if G ⊆ R is a dense Gδ with
0 ∈ G then there exists a perfect set D ⊆ R such that D −D ⊆ G. So, in
our case, we can find a perfect set D such that (C −X) ∩ (D −D) = {0}.
Let {dx : x ∈ X} = D. By Lemma 1, Y = {x + dx : x ∈ X} is universally
null and D ⊆ Y −X. So Y −X is not universally null.

Theorem 3. Assume Martin’s Axiom. For every X ⊆ R with |X| = c
there exists a universally null set Y ⊆ R such that X + Y is not universally
null.

P r o o f. Suppose that X ⊆ R with |X| = c is such that X + Y is
universally null for every universally null set Y ⊆ R. Let µα, α < c, be all
Borel measures on R. For each α, let P ξ

α, ξ < c, be all dense Gδ sets of µα

measure zero, and let Qξ
α =

⋂
η≤ξ P η

α .
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Claim 1. For each α there is ξ(α) such that X + Q
ξ(α)
α ⊆ P

ξ(α)
α .

P r o o f. Fix α. If X + Qξ
α 6⊆ P ξ

α, then choose yξ ∈ Qξ
α such that

X + yξ 6⊆ P ξ
α. If this can be done for all ξ < c, then Y = {yξ : ξ < c} is a

generalized Lusin set, hence a universally null set. Also no P ξ
α covers X +Y ,

so µ∗α(X + Y ) > 0 and X + Y is not universally null, a contradiction.

Claim 2. There are α and t ∈ R such that |X \ (P ξ(α)
α + t)| = c.

P r o o f. Suppose not, and let R = {tα : α < c}. Let xα ∈ X ∩ (tα +⋂
β≤α P

ξ(β)
β ) and yα = tα − xα. Then −yα ∈

⋂
β≤α P

ξ(β)
β , so Y = {yα :

α < c} is universally null. Also X + Y = R, so X + Y is not universally
null, contrary to our assumption.

Now, fix α and t as in Claim 2. Let X0 = X \ (P ξ(α)
α + t) and C =

R\ (P ξ(α)
α + t). Then |X0| = c, X0 ⊆ C, C is a meagre Fσ set and C−X0 ⊆

R \ (Qξ(α)
α + t) is also meagre. So, by Theorem 2, there is a universally

null set Y such that X0 + Y , and hence X + Y , is not universally null, a
contradiction.

Our next aim is to prove the existence of some special subspaces of R.
Similar problems where investigated independently by W. F. Pfeffer and
K. Prikry [12]. Let us recall some definitions.

Let X ⊆ Rk. X is called a λ-set (X ∈ λ) if every countable subset of X
is a relative Gδ. X is called always of the first category (X ∈ K∗) if for any
perfect set P the set X∩P is meagre in P . X ∈ K̃∗ if for every Y ⊆ Rn such
that there exists a one-to-one Borel function f : Y → X, we have Y ∈ K∗.

For W ⊆ R let W (n) = {(w1, . . . , wn) ∈ Wn : wi < wj for i < j ≤ n}.

Lemma 2. Let Z ⊆ R be a perfect set linearly independent over Q and
let τ = (q1, . . . , qn) be a finite sequence of non-zero rational numbers. Then
the function fτ : Z(n) → R, fτ (z1, . . . , zn) =

∑n
i=1 qizi, is continuous, one-

to-one, and for every Fσ set F ⊆ Z(n) the set fτ (F ) is an Fσ in R.

P r o o f. The continuity of fτ is obvious. The linear independence of Z
implies that fτ is one-to-one. The last assertion follows from the continuity
of fτ and σ-compactness of Z(n).

For X ⊆ R let ((X)) be the linear space over Q generated by X.

Theorem 4. If Z ⊆ R is a perfect set linearly independent over Q then
for every X ⊆ Z the following hold :

1) If X ∈ β then ((X)) ∈ β.
2) If X ∈ λ then ((X)) ∈ λ.
3) If X ∈ K̃∗ and |X| ≤ ω1 then ((X)) ∈ K̃∗.



224 I . REC  LAW

P r o o f. Observe that if X ⊆ Z then

((X)) =
⋃

n∈ω\{0}

⋃
τ∈(Q\{0})n

fτ (X(n)) ∪ {0}.

If X ∈ β then X(n) ∈ β, and since fτ is a Borel isomorphism, fτ (X(n)) ∈
β. Thus also ((X)) ∈ β.

If X ∈ λ then X(n) ∈ λ, and, by Lemma 2, fτ (X(n)) ∈ λ. Notice that
fτ (X(n)) ⊆ fτ (Z(n)) and whenever σ ∈ (Q\{0})k and τ ∈ (Q\{0})n, σ 6= τ
implies fτ (Z(n)) ∩ fσ(Z(k)) = ∅. In this case a countable union of λ-sets is
a λ-set. Thus ((X)) ∈ λ.

If X ∈ K̃∗ then X(n) ∈ K̃∗ (see E. Grzegorek [7]). By Lemma 2,
fτ (X(n)) ∈ K̃∗, and as K̃∗ is a σ-ideal we have ((X)) ∈ K̃∗.

The following theorem is a version of a theorem of Erdős, Kunen and
Mauldin [2]. Our theorem is weaker but no hypothesis besides ZFC is re-
quired.

Theorem 5. There exist universally null , linear spaces X, Y ⊆ R over
Q such that X ∩ Y = {0} and X + Y is not universally null.

P r o o f. Let C1 and D1 be disjoint, perfect subsets of R such that C1∪D1

is linearly independent over the rationals (von Neumann [11]). By a result
of Grzegorek [6], there are sets X1 ⊆ C1 and Z1 ⊆ D1 such that |X1| = |Z1|,
X1 is universally null and Z1 is not universally null. Let g : X1 → Z1 be a
bijection. Let C = ((C1)), D = ((D1)), X = ((X1)), Z = ((Z1)). Then C
and D are Fσ sets, (C−C)∩ (D−D) = {0} and X ⊆ C, Z ⊆ D. Moreover,
g can be extended to a linear isomorphism between X and Z. By Lemma 2,
X is universally null. Let Y = {x + g(x) : x ∈ X}. Then Y is a linear space
over the rationals, X ∩ Y = {0}, and, by Lemma 1, Y is universally null.
Also Y −X ⊇ Z, so Y −X is not universally null.

We conclude with a number of results saying that R may be expressed
as a linear sum of some special sets and Lebesgue null sets.

Let S ⊆
⋃

n∈ω\{0} P (Rn). We say that S has property (∗) if whenever
Y ∈ S and f : X → Y is a one-to-one continuous function, then X ∈ S.
Observe that β, λ, K̃∗, β ∩ λ, and K̃∗ ∩ β have property (∗).

Let m be the Lebesgue measure on R.

Theorem 6. Let Z ⊆ R be a perfect set linearly independent over Q, let
C and D be perfect disjoint compact subsets of Z and let S be a family with
property (∗). Suppose there exist T ⊆ D, G ⊆ R with m(G) = 0, T +G = R,
and a set of reals X ∈ S with |X| = |T |. Then there exists a set of reals
Y ∈ S and a set V ⊆ R with m(V ) = 0 such that Y + V = R.

Recall that a set Y ⊆ R does not have strong measure zero iff there
exists a meagre set V ⊆ R such that Y +V = R (see F. Galvin, J. Mycielski
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and R. Solovay [5]). The corollaries below show that certain special sets are
not necessarily of strong first category (see [9], p. 210).

The proof of the following lemma is similar to the proof of Lemma 9 of
P. Erdős, K. Kunen and R. Mauldin [2].

Lemma 3. For every H ⊆ R with m(H) = 0 and for every perfect set E
there exists a perfect set E1 ⊆ E such that m(H − E1) = 0.

P r o o f o f T h e o r e m 6 . Let E1 ⊆ C be such that m(G − E1) = 0.
We may assume that X ⊆ E1. Let g : X

onto→ T . As S has property (∗),
graph(g) ∈ S. The function h : E1 × D → E1 + D, h(e, d) = e + d, is a
homeomorphism (Lemma 1). Let Y = h(graph(g)) and V = G−E1. Clearly
Y ∈ S and m(V ) = 0. We will show that V +Y = R. If z ∈ R then there are
t ∈ T and a ∈ G such that z = t + a. There is x ∈ X such that g(x) = t, so
x+t ∈ Y . Obviously a−x ∈ G−E1 = V , thus (a−x)+(x+t) = z ∈ V +Y .

Lemma 4 (P. Erdős, K. Kunen and R. Mauldin). If T ⊆ R is not always
of first category , then there is a set G with m(G) = 0 such that T + G = R.

P r o o f. See the proof of Theorem 3 of [2].

Corollary 1. There are Y ∈ K̃∗ and G ⊆ R with m(G) = 0 such that
Y + G = R.

P r o o f. By a theorem of E. Grzegorek [7] there are sets T 6∈ K∗ and
X ∈ K̃∗ such that |T | = |X|. We can assume that T ⊆ D. The statement
now follows from Lemma 4 and Theorem 6.

Recall that X ⊆ Rk is called a Q-set if every subset of X is a relative
Fσ.

Corollary 2. It is consistent that there exist a Q-set Y ⊆ R and G ⊆ R
with m(G) = 0 such that Y + G = R.

P r o o f. Notice that the family of Q-sets has property (∗). W. G. Fleiss-
ner and A. W. Miller [3] proved that it is consistent that there exist a Q-set
X and a Lusin set T0 with |T0| < |X|. It follows that there are a set T ⊆ D
of second category in D and a Q-set X such that |T | < |X|.

R e m a r k. Similar results for the families λ, K∗ ∩ β, λ ∩ β, etc. may be
obtained under the assumption of CH or MA.

The author wishes to express his thanks to Edward Grzegorek and Jakub
Jasiński for fruitful discussions.

Especially, the author would like to express his gratitude to the referee
for simplifying some proofs, in particular for a very elegant and nice version
of Lemma 1.
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