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1. Introduction. In his fundamental paper [22], Stein announced that
a Lipschitz α holomorphic function on a C2 domain in Cn, n > 1, is actually
Lipschitz 2α in complex tangential directions—the extra smoothness comes
for free. Details of the proof appear, for instance, in Krantz [12].

It is apparent (see Krantz [12]) that Stein’s result is optimal only in the
strongly pseudoconvex case. Near boundary points where the Levi form
degenerates, one expects even greater tangential smoothness. And near
strongly pseudoconcave points the Hartogs extension phenomenon tells us
that any holomorphic function will continue analytically past the bound-
ary, and hence be in every Lipschitz class. In the paper [16] Krantz uses
Kobayashi metric language to find a general version of Stein’s theorem which
contains all the aforementioned phenomena as special cases.

In the present paper we use results of Catlin [4] and Nagel–Stein–Wainger
[19] to work out what the theorem of Krantz [16] says in the case of finite
type domains in C2. In view of recent development concerning estimates
for the ∂-problem on such domains (see Fefferman–Kohn [8], Christ [6],
Nagel–Rosay–Stein–Wainger [20], Chang [5], Belanger [2], Range [21], it is
important to have detailed information about the relevant function spaces.
This paper is a first contribution to the theory.

Section 2 contains basic definitions and recalls the result of Krantz [16].
It also contains the statements of our main results. Section 3 contains a few
technical facts about the non-isotropic geometry of domains in C2. Section
4 contains the proofs of the main results. Section 5 has some applications
to the regularity properties for the solutions of the ∂-equations and some
concluding remarks.

Work of both authors supported in part by the National Science Foundation.
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2. Definitions, terminology, basic properties of finite type do-
mains in C2 and statement of theorems. If Ω ⊂ Rn is a bounded,
connected open set (a domain), define

Lipα(Ω) = {f continuous on Ω :
sup

x,x+h∈Ω,h6=0
|f(x+ h)− f(x)|/|h|α + ‖f‖L∞ ≡ ‖f‖Lipα

<∞}

for 0 < α < 1 and

Lip1(Ω) = {f continuous on Ω :
sup

x,x+h,x−h∈Ω,h6=0
|f(x+ h) + f(x− h)− 2f(x)|/|h|1 + ‖f‖L∞

≡ ‖f‖Lip1
<∞} ;

for α > 1 we say that f ∈ Lipα(Ω) if f ∈ C1(Ω), f ∈ Lipα−1(Ω), and
∇f ∈ Lipα−1(Ω) (with an obvious norm). See Krantz [13] for detailed dis-
cussion and motivation concerning these spaces. This reference also contains
a thorough discussion of the finite difference operator ∆k

h, whose definition
we now recall:

If f is a function on a domain Ω ⊂ Rn, x ∈ Ω, and h is sufficiently small
then

∆1
hf(x) ≡ f(x+ h)− f(x− h) ,

∆k
hf(x) ≡ ∆1

h(∆k−1
h f)(x), k ≥ 2 .

For a continuous function f on a domain Ω ⊂ Rn with C2 boundary and
0 < α < 1, f ∈ Lipα(Ω) if and only if

sup
Ω
|f(x)|+ sup

x,h
|∆k

hf(x)|/|h|α ≤ C .

(Of course the latter supremum is taken over x, h such that ∆k
hf(x) is well

defined on Ω.) Again see Krantz [13] for a proof that this finite difference
characterization of Lipα is equivalent to the original definition.

Now fix a C2 bounded domain Ω ⊂ Cn, i.e., assume that there is a
real valued C2 function r on Cn such that ∇r 6= 0 on ∂Ω and Ω = {z ∈
Cn : r(z) < 0}. Let B ⊂ Cn be the unit ball and let (Ω,B) denote the
collection of all holomorphic maps from B to Ω. For z ∈ Ω we define the
Eisenman–Kobayashi volume form (see Krantz [12]) to be

MΩ
K (z) = inf{1/|det JacC Φ(0)| : Φ ∈ (Ω,B), Φ(0) = z} .
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Once Ω is fixed and z ∈ Ω chosen there is (by a normal families argu-
ment) a function Φz ∈ (Ω,B) such that

MΩ
K (z, ξ) = 1/|det JacC Φz(0)| .

The function Φz is not necessarily unique. Nevertheless, another normal
families argument shows that the maps

z → ‖Φz(ζ)‖ and z → ‖(∂/∂z)βΦz(0)‖ ,

for any multi-index β, can be taken to be upper semicontinuous. (Here ‖·‖ is
the standard Euclidean norm.) By the Cauchy estimates, they are bounded
on compact sets. In particular, we may compose these functions with curves
in B and integrate.

Let D ⊂ C be the unit disc. If z ∈ Ω and ξ ∈ Cn then define the
infinitesimal Kobayashi metric to be

FΩ
K (z, ξ) = inf{|ξ|/‖ϕ′(0)‖ : ϕ ∈ (Ω,B) , ϕ(0) = z ,

ϕ′(0) is a multiple of ξ} .

Notice that the formulas for MΩ
K (z), FΩ

K (z, ξ) are analogous, but FΩ
K (z, ξ)

treats one direction at z at a time while MΩ
K (z) treats all directions simul-

taneously. Because in many examples it is very difficult to compare the two
quantities, we will mandate their comparability by replacing MΩ

K (z) with

M̃Ω
K (z) = inf{1/|det JacC Φ̃(0)| : Φ̃ ∈ (Ω,B), Φ̃(0) = z ,

|(JacC Φ̃
−1(z))(v(z))| ≤ 2FΩ

K (z, v(z))} ,

where v(z) is the unit outward normal which will be defined in a moment.
In short, we calculate M̃Ω

K (z) by restricting attention to Φ̃ with the prop-
erty that | JacC Φ̃

−1| is, in the normal direction, comparable to FΩ
K (z, v(z)).

Given a domain Ω, we assume that a semicontinuous assignment z → Φ̃z of
optimal Φ̃’s has been selected once and for all.

Now we describe our new Lipschitz classes. Fix a bounded domain Ω ⊂
Cn with C2 boundary and associated functions Φ̃z. For z ∈ Ω, let δ(z)
denote the Euclidean distance of z to ∂Ω. Choose ε = ε(Ω) > 0 such
that U = {z ∈ Cn : δ(z) < 2ε} is a tubular neighborhood of ∂Ω. Let
v : Ω → Cn be a C1 function which satisfies the condition: For points
z ∈ Ω ∩ {z ∈ Cn : δ(z) < 2ε} , v(z) is the (well-defined) outward unit
normal at z.

Define Ck(Ω) = Ck(Ω,C0) to be the class of all C∞ curves

γ : [0, 1] → Ω ∩ {z ∈ Cn : δ(z) < 2ε}

such that

|dγ(t)/dt| ≤ 1, ∀t ∈ [0, 1] ,
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and
|(d/dt)jγ(t)| ≤ C0, ∀t ∈ [0, 1], 2 ≤ j ≤ k .

Here C0 is a positive constant, fixed in advance.
We now attach a number β0(γ), its smoothness index, to each γ ∈ Ck(Ω).

We will see in what follows that β0(γ) ≥ 1 always. Generically, a holomor-
phic Lipschitz α function on Ω will turn out to be Lipschitz of order β0(γ)·α
along a curve γ. The Lipschitz norm will of course depend on the constant
C0 in the definition of Ck(Ω,C0).

The following notation will simplify formulas in the sequel: once a do-
mainΩ, a semicontinuous assignment of functions Φ̃z, and a curve γ ∈ Ck(Ω)
are fixed, we set

DN Φ̃γ(t) ≡
1

‖[JacC Φ̃
−1
γ(t)]v(γ(t))‖

,

DT Φ̃γ(t) ≡
1∥∥∥∥[JacC Φ̃γ(t)]

(
dγ(t)
dt

)∥∥∥∥ .
Note that when γ is complex normal with |dγ(t)/dt| = 1 then of course
DN Φ̃γ(t) = DT Φ̃γ(t).

For any curve γ ∈ Ck define

λ0(γ) = sup
t∈[0,h0]

logδ(γ(t)) |DN Φ̃γ(t)| .

Elementary estimates (see Krantz [16]) show that 1/2 ≤ λ0(γ) ≤ 1. For a
given curve γ and 0 < ζ small we define

γζ(t) = γ(t)− ζv(γ(t)) .

When we study the Lipschitz smoothness of a function f along a curve
γ ∈ Ck, we need only consider ∆k

h(f ◦ γ) for h small. Thus we restrict
attention to 0 < h < ε = ε(Ω). For γ ∈ Ck(Ω) and h fixed, define

σβ(t) = log
[DN Φ̃γ

hβ (t)]
[DT Φ̃γ

hβ (t)] ,

ϕ(β) =
1
β
− 1− λ0(γ)

[
1
h

h∫
0

σβ(t)dt− 1
]
, 1 ≤ β <∞ .

Elementary estimates on the Kobayashi metric (see [16]) show that 0 <
σβ(t) ≤ 1, ∀t ∈ [0, h0]. It follows that ϕ(1) ≥ 0 and, for β large enough,
ϕ(β) < 0. We select

β0(γ) = inf{β ∈ [1,∞) : ϕ(β) < 0} .

When no confusion is possible we write λ0 = λ0(γ), β0 = β0(γ).
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Definition 2.1. Let 0 < α < ∞. A continuous function f : Ω → C is
said to be in the space Lα(Ω) if

(i) For any γ ∈ Ck(Ω), t ∈ (0, h0), h sufficiently small, and k sufficiently
large,

|∆k
h(f ◦ γ(t))| ≤ C|h|β0λ0(α−1)+β0 .

(Here k > β0λ0(α− 1) + β0, |h| < min{|t|, |h0 − t|}/(2k) will do.)
(ii) If γ : [0, 1] → Ω satisfies |dγ(t)/dt| ≡ 1, |(d/dt)jγ(t)| ≤ C0, 2 ≤ j ≤

k, ∀t ∈ [0, h0], then
|∆k

h(f ◦ γ(t))| ≤ C|h|α .
Krantz’s principal result in [16] is:

Theorem 2.2. If Ω ⊂ Cn is a bounded domain with C2 boundary and
f : Ω → C is holomorphic and in Lipα(Ω) then f ∈ Lα(Ω).

Now we turn to domains of finite type in C2. We begin by recalling some
notions connected with the complex structure in ∂Ω. If Ω = {(z1, z2) ∈ C2 :
r(z) < 0} , P ∈ ∂Ω, U is a small neighborhood of P , and ∂r/∂z2 6= 0 on U
then we define the vector fields

Z1 =
∂r

∂z2

∂

∂z1
− ∂r

∂z1

∂

∂z2
and Z2 = 2

(
∂r

∂z1

∂

∂z1
+

∂r

∂z2

∂

∂z2

)
.

Set Zj = Xj + iYj . It is easy to see that X1, Y1, Y2 span the three di-
mensional real tangent space TP (∂Ω) at each point P ∈ U ∩ ∂Ω. The
vectors {X1, Y1}, equivalently {Z1, Z1}, span the maximal complex sub-
space TC

P (∂Ω) ⊂ TP (∂Ω) at each P ∈ U ∩∂Ω. Following convention, we set
Y2 = T, X2 = N .

For each P ∈ ∂Ω, we define the Levi form

λ(P ) = 〈∂r, [Z1, Z1]〉(P ) ,

where [Z1, Z1] = Z1Z1 − Z1Z1 denotes the Lie bracket.
Let L1 be the module spanned by Z1 and Z1 over the C∞ functions, and

for k ≥ 2 let Lk be the module spanned by elements of Lk−1 and elements
of the form [X,Z1], [X,Z1] with X ∈ Lk−1.

Definition 2.3. A point P ∈ ∂Ω is said to be of type κ (κ ≥ 2) if

〈∂r(P ), X(P )〉 = 0 , ∀X ∈ Lk−1 ,

while
〈∂r(P ), X(P )〉 6= 0 , for some X ∈ Lk .

R e m a r k . In some references our points of type κ are called points of
type κ− 1.

Definition 2.4. If Ω b C2 is a domain and P ∈ ∂Ω is of type κ, then
we say that ∂Ω is of type κ at P . We say that Ω is of type κ if there exists
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at least one point in ∂Ω of type κ and all other points in ∂Ω are of type not
greater than κ.

R e m a r k s. (1) It can be proved (see Kohn [9]) that the type of a given
point P must be an even integer if the boundary of Ω is pseudoconvex near
P .

(2) If P ∈ ∂Ω is a strongly pseudoconvex point, then P is of type 2.
Among pseudoconvex points, the converse is true as well.

For convenience, let L1 = Z1, L2 = Z1. Now, for z ∈ ∂Ω near P and
i1, . . . , ij = 1 or 2, define λi1,...,ij (P ) by the equation

[Lij
, [. . . [Li2 , Li1 ] . . .]]P = λi1,...,ij

(P )TP modTC(U) .

We define
Λj(P ) =

∑
|λi1,...,ij (P )| ,

where j ≥ 2 and the sum ranges over all i1, . . . , ik with k ≤ j and i1, . . . , ik =
1 or 2. Note than when j = 2, the function λ12(P ) is the usual Levi form
of ∂Ω at P .

Remark . Here we give another definition for finite type. A point
P ∈ ∂Ω has type κ if for every choice of vector fields Z1, Z1 and T , all
commutators of Z1 and Z1 at P of length less than κ have zero T component,
yet there is some commutator among Z1 and Z1 at P of length κ which has
a non-zero T component. This definition was first given by Kohn [9] and
is equivalent to Definition 2.3. We note (see Kohn [9], Bloom–Graham [3])
that in C2 this definition of type is equivalent to a definition in terms of order
of contact of one-dimensional non-singular complex varieties. The situation
in Cn is much more complicated, and there is no such simple description of
points of finite type (see D’Angelo [7]).

Following the results of Nagel–Stein–Wainger [19], [20], we now define
the “higher Levi invariant” Λ∂Ω(z, δ) for z ∈ ∂Ω near P and δ > 0 by

(2.5) Λ∂Ω(z, δ) =
κ∑

j=2

Λj(z)δj ,

where κ is the maximum type of any point on ∂Ω.
We also define another version of the “higher Levi invariant” µ∂Ω(z, δ)

for z ∈ ∂Ω near P and δ > 0 by

(2.6) µ∂Ω(z, δ) ≈ min
2≤j≤κ

(δ/Λj(z))1/j .

Remark . The functions Λ∂Ω , µ∂Ω depend on the choice of vector fields
Z1, Z1 and T . A different choice of r and hence of Z1, Z1 and T will result
in new functions Λ̃∂Ω , µ̃∂Ω . However, elementary considerations show that
the ratios Λ̃∂Ω/Λ∂Ω and µ̃∂Ω/µ∂Ω will be bounded and bounded away from
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zero near P . Thus our results will be independent of the choices that have
been made. Although we will generally work locally near a fixed point
P ∈ ∂Ω, we can, if necessary, patch the locally defined functions together to
obtain global functions Λ∂Ω(z, δ) and µ∂Ω(z, δ) defined for all z ∈ ∂Ω and
δ > 0.

The finite type hypothesis implies that for every compact set K in ∂Ω
there are constants C1 and C2 so that for z ∈ K and 0 ≤ δ ≤ 1

C1δ
κ ≤ Λ∂Ω(z, δ) ≤ C2δ

2 , C1

√
δ ≤ µ∂Ω(z, δ) ≤ C2

κ
√
δ .

From this remark we see that at points of type 2, Λ∂Ω(z, δ) ≈ δ2 for small
δ while at a point of maximum type κ,Λ∂Ω(z, δ) ≈ δκ for small δ. For
larger δ, the quantity Λ∂Ω(z, δ) provides a transition between points of type
2 and points of higher type. On the other hand, if we consider the function
µ∂Ω(z, δ), then at points of type 2, µ∂Ω(z, δ) ≈

√
δ for small δ. And at

points of type κ, µ∂Ω(z, δ) ≈ κ
√
δ for small δ. This explains why, in the

proof of Stein’s theorem, we can embed a polydisc which has “size” δ in the
normal direction and “size”

√
δ in the tangential directions. We can also see

that in the example |z1|2 + |z2|2κ < 1, along the curve of points of type 2κ
on ∂Ω (i.e., the equator (eiθ, 0), θ ∈ [0, 2π]), we can embed a polydisc which
has “size” δ in the normal direction but has “size” 2κ

√
δ in the tangential

direction.
Observe that the vector fields X1, Y1, T are well defined in U ∩ Ω. We

define the subspace Ck
1 (Ω) = Ck

1 (Ω,C0) = Ck
1 (Ω ∩ U,C0) ⊂ Ck(Ω,C0) by

the condition

dγ(t)/dt ∈ SpanR{X1(γ(t)), Y1(γ(t)), T (γ(t))} , 0 ≤ t ≤ 1 .

(Curves supported away from ∂Ω are of no interest so we content ourselves
with defining Ck

1 only on U ∩Ω.)
Now we recall the definition of a certain non-isotropic metric on ∂Ω

and metric space constructs which are associated to it. First, let C̃k
1 denote

continuous curves which are composed of the union of finitely many elements
of Ck

1 (that is, “piecewise” Ck
1 curves).

Definition 2.7. (i) For P,Q ∈ ∂Ω set

%̃(P,Q) = inf{δ > 0 : ∃γ ∈ C̃k
1 (Ω) with γ(0) = P, γ(1) = Q , and

dγ(t)
dt

= a(t)X1 + b(t)Y1 + c(t)T where

|a(t)| < δ , |b(t)| < δ, |c(t)| < Λ∂Ω(P, δ)} .

(ii) For P ∈ ∂Ω and δ > 0 set

B̃1(P, δ) = {Q ∈ ∂Ω : Q = exp(aX1 + bY1 + cT )(P )
with |a| < δ , |b| < δ, |c| < Λ∂Ω(P, d)} ,
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B̃(P, δ) = {Q ∈ ∂Ω : %̃(P,Q) < δ} .

(i′) For P,Q ∈ ∂Ω set

%(P,Q) = inf{δ > 0 : ∃γ ∈ C̃k
1 (Ω) with γ(0) = P, γ(1) = Q and

dγ(t)
dt

= a(t)X1 + b(t)Y1 + c(t)T where

|a(t)| < µ∂Ω(P, δ), |b(t)| < µ∂Ω(P, δ), |c(t)| < δ} .

(ii′′) For P ∈ ∂Ω and δ > 0 set

B1(P, δ) = {Q ∈ ∂Ω : Q = exp(aX1 + bY1 + cT )(P ) where
|a| < µ∂Ω(P, δ), |b| < µ∂Ω(P, δ), |c| < δ} ,

B(P, δ) = {Q ∈ ∂Ω : %(P,Q) < δ} .
We have the following facts about the functions %̃, % and Λ∂Ω and µ∂Ω

and about the families of “balls” {B̃(P, δ)} and {B(P, δ)}:
(2.8) There are positive constants C1, C2 so that for all P ∈ ∂Ω and all

δ > 0
B̃1(P,C1δ) ⊂ B̃(P, δ) ⊂ B̃1(P,C2δ) ,
B1(P,C1δ) ⊂ B(P, δ) ⊂ B1(P,C2δ) .

We shall also need to consider certain non-isotropic subsets of the domain
Ω. First recall that a projection π : U → ∂Ω is a smooth mapping such that
for every P ∈ ∂Ω, π(P ) = P and π−1(P ) is a smooth curve in U which
intersects ∂Ω transversely at P . Projections always exist if ∂Ω is C2 and
the open set U is sufficiently small. For a projection π there are positive c1
and c2 such that if z ∈ U then

c1|r(z)| ≤ |π(z)− z| ≤ c2|r(z)| .
If π1 and π2 are two projections there is a positive constant c such that for
z ∈ U

|π1(z)− π2(z)| ≤ c|r(z)| .
Now fix a projection π : U → ∂Ω. We make the following

Definition 2.9. For z, w ∈ Ω ∩ U set

%(z, w) = inf{τ > 0 : %(π(z), π(w)) < τ , |r(z)| ≤ τ, |r(w)| < τ} .
Note that if z, w ∈ ∂Ω then this definition of % agrees with our earlier

Definition 2.8. Now our theorem is

Theorem 2.10. Let Ω ⊂ C2 be a domain with Cκ+1 boundary. If Ω
is pseudoconvex and of finite type κ and f : Ω → C is holomorphic and in
Lipα(Ω) with 0 < α < 1/κ, then

|f(γ)(0)− f(γ)(h)| ≤ CΛα
∂Ω(π(γ(0)), %̃(γ(0), γ(h))) ,
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∀ γ ∈ Cκ
1 (Ω,C0) , ∀h ∈ [0, h0/(2κ)] .

We can also prove a dual result:

Theorem 2.11. Let Ω ⊂ C2 be a domain with Cκ+1 boundary. Assume
that Ω is pseudoconvex and of finite type κ and f : Ω → C is holomorphic
and satisfies

|f(z)− f(w)| ≤ C%α(z, w)

for some α ∈ (0, 1), and all z, w ∈ Ω ∩ U . Then

|f(z)− f(w)| ≤ Cµα
∂Ω(π(z) , ‖z − w‖) .

R e m a r k. It is a straightforward exercise, using the metric calculations
of Catlin [4] (see also Aladro [1]), to see that the spaces described in The-
orems 2.10, 2.11 are precisely the spaces Lα of Krantz [16]. (More will be
said about this in Section 4, where the theorems are proved.) The philoso-
phy of [16] is to do function theory in an abstract metric setting; in specific
situations one calculates the relevant metric to arrive at an integration of
the theorems. In the present paper we use the important machinery of
Nagel–Stein–Wainger [19] and Nagel–Rosay–Stein–Wainger [20] to describe
the Lα for domains of finite type in C2. We restrict ourselves to considering
small α for the sake of both brevity and clarity. The treatment of α ≥ 1/κ
would entail the development of a rather elaborate calculus, which we defer
to another time.

3. Some technical facts and notation. We note here some technical
information, all of which is derived from [20]. We refer to [20] for further
details.

Set B#(P, δ) = {z ∈ Ω : π(z) ∈ B(P, δ), |r(z)| ≤ δ}. Observe that

B#(P, δ) ≈ {z ∈ Ω ∩ U : %(z, P ) < δ}, Vol(B#(P, δ)) ≈ δµ
∂Ω(P, δ) .

Next, there are positive constants δ0, ε0, c1, c2 such that for P ∈ ∂Ω
there is a biholomorphic HP : C2 → C2 with HP (0) = P and HP ({z : |z| <
ε0}) ⊆ U such that HP is the composition of a translation operator TP , a
unitary operator UP and the mapping

PP (%1, %2) =
(
%1, %2 +

κ∑
j=2

dj(P )%j
1

)
,

where dj : ∂Ω → C, j = 2, . . . , κ, are smooth. In particular, we have
|det JacC HP (P )| = 1.

For each P ∈ ∂Ω there is a smooth hP : C× R → R such that

(3.1) {z ∈ C2 : |z| < ε0 and HP (z) ∈ Ω} = {z ∈ C2 : |z| < ε0 and
Iz2 > hP (z1,Rz2)}.
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(3.2) hP (0, 0) = 0, ∇hP (0, 0) = 0, (∂jhP /∂zj
1)(0, 0) = (∂jhP /∂zj

1)(0, 0)
= 0 for 2 ≤ j ≤ κ.

(3.3) The set of functions {hP }P∈∂Ω is a bounded subset of the space
C∞({(z, t) : |z| < 2ε0 , |t| < 2ε0}).

Now hP has the following properties: For every P ∈ ∂Ω and 2 ≤ j ≤ κ

c1Λj(P ) ≤
∑

α+β≤j

∣∣∣∣∂α+βhP (0, 0)

∂zα
1 ∂z

β
1

∣∣∣∣ ≤ c2Λj(P ) .

For every P ∈ ∂Ω and all δ ≥ 0

c1µ∂Ω(P, δ) ≤ min
2≤m≤κ

({ ∑
α+β≤m

∣∣∣∣∂α+βhP (0, 0)

∂zα
1 ∂z

β
1

∣∣∣∣}−1

δ

)1/m

≤ c2µ∂Ω(P, δ) .

For every P ∈ ∂Ω and all δ with 0 ≤ δ ≤ δ0

B(P, c1δ) ⊂ HP ({(z1, t+ihP (z1, t)) : |z1| < µ∂Ω(P, δ), |t| < δ}) ⊂ B(P, c2δ) .

Once a projection π : U → ∂Ω is fixed we have: There are constants
δ0, c1, and c2 so that for every P ∈ ∂Ω and all δ with 0 < δ ≤ δ0

(3.4) B#(P, c1δ) ⊂ HP ({(z1, t+ iy + ihP (z1, t)) :
y ≥ 0, |z1| < µ∂Ω(P, δ), |t+ iy| < δ}) ⊂ B(P, c2δ) .

If we normalize π so that π(z) = P if and only if (HP )−1(z) = (0, it) for
some t ∈ R, then we have: There are positive constants δ0, c1, and c2 with
the following properties: let z, w ∈ Ω ∩ U with %(z, w) ≤ δ0 and assume
|r(z)| ≤ |r(w)|. Write P = π(z) and suppose

(3.5) (HP )−1(z) = (0, it) , (HP )−1(w) = (w1, s+ iy + ihP (w1, s))

with t, y ≥ 0, s ∈ R, w1 ∈ C. Then

(3.6) c1t ≤ |r(z)| ≤ c2t ;
(3.7) c1y ≤ |r(w)| ≤ c2y ;
(3.8) c1Λ∂Ω(P, %(z, w)) ≤ |s+ iy|+ Λ∂Ω(P, |w1|) ≤ c2Λ∂Ω(P, %(z, w)) .

If we define

B#
P (δ) = {(z1, t+ iy + ihP (z1, t)) : y ≥ 0, |z1| < µ∂Ω(P, δ), |t+ iy| < δ}

then, by (3.4) and (3.5), (HP )−1(B#(P, δ)) ≈ B#
P (δ).

The biholomorphic map HP allows us to pull back the vector fields
Z1, Z1, Z2, and Z2 defined on U to vector fields ZP

1 , Z
P
1 , Z

P
2 , and ZP

2 defined
on {z ∈ C2 : |z| < ε0} by the formulas

Z1(f ◦HP )(z) = (Z1f)(HP (z)), ZP
2 (f ◦HP )(z) = (Z2f)(HP (z)), etc.
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4. Proofs of the theorems. In Stein’s work, the key fact (for small
α) is that, for a holomorphic Lipschitz α function f ,

|∇f(z)| ≤ Cδ(z)α−1 ,

while for a tangential derivative Dτ

|Dτf(z)| ≤ Cδ(z)α−1/2 .

For us it is more convenient to formulate these matters differently.

Lemma 4.1. If f is a holomorphic Lipschitz α function on Ω and (∂/∂ζ)β

is any differential monomial then

|(∂/∂ζ)β(f ◦ Φ̃z)(0)| ≤ C|DN Φ̃z(0)|α .

Remark. It is a bit surprising that the estimate on the right is inde-
pendent of β. But examination of the chain rule on the left alleviates the
surprise.

P r o o f. This is contained in Krantz [16].

Now we turn to the proof of Theorem 2.10. Before we prove the theorem,
we first state a result of Nagel–Rosay–Stein–Wainger [20] which we need to
use in our proof:

Lemma 4.2. Suppose Ω is a smooth, pseudoconvex , finite type domain
in C2 of type κ. There are constants C1 and C2 depending only on κ such
that if %̃(z, w) < δ, then

C1 ≤ Λ∂Ω(z, δ)/Λ∂Ω(w, δ) ≤ C2 ,

where %̃(z, w) denotes the non-isotropic distance between z and w defined in
Definition 2.7.

P r o o f o f T h e o r e m 2.10. We can use the same techniques as used
in the proof of Theorem 2.2 (see Krantz [16]). But this time we need to plug
in the non-isotropic distance function Λ∂Ω . Fix a holomorphic function f in
Lipα(Ω) with 0 < α < 1/κ. Here κ is the type of Ω. Suppose γ ∈ C̃κ+1

1 (Ω)
is a curve satisfying the property in Definition 2.7(i), with domain [0, h],
0 < h < ε = ε(Ω). Since 0 < α < κ−1 is small, we just need to estimate
|∆hf(γ(0))|. We define three auxiliary curves as follows: For 0 ≤ t ≤ h,

γ1(t) = γ(0)− Λ∂Ω(π(γ(0)), t)v(γ(0)) ,
γ2(t) = γ(h)− Λ∂Ω(π(γ(h)), t)v(γ(h)) ,
γ3(t) = γ(t)− Λ∂Ω(π(γ(t)), h)v(γ(t)) .
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Then, as usual,

|∆hf(γ(0))| = |f(γ(h))− f(γ(0))|
≤ |f(γ1(h))− f(γ1(0))|+ |f(γ2(h))− f(γ2(0))|+ |∆hf(γ3(0))|
≡ I + II + III .

Terms I and II are just the estimation in the normal direction, hence we
may apply directly the property that f ∈ Lipα(Ω):

|f(γ1(h))− f(γ1(0))| ≤ CΛα
∂Ω(π(γ1(0)), h) ;

|f(γ2(h))− f(γ2(0))| ≤ CΛα
∂Ω(π(γ2(0)), h) .

By Lemma 4.2, we know that

C1 ≤ Λ∂Ω(π(γ(0)), h)/Λ∂Ω(π(γ(h)), h) ≤ C2 .

Hence our last estimate is

≤ C̃Λα
∂Ω(π(γ(0)), h) ,

where C̃ = Cmax{C1, C2}.
To get an estimate for III we write

(4.3) ∆hf(γ3(0)) =
h∫

0

(f(γ3))′(h− s) ds

and estimate the integrand pointwise by

|(f(γ3))′(t)| = |(∇f · ∇Φ̃γ3(t) · (∇Φ̃γ3(t))
−1 · γ′3)(t)|

= |(fΦ̃γ3(t)) ((∇Φ̃γ3(t))
−1 · γ′3)(t)| = C|DN Φ̃γ3(t)|

α|DT Φ̃γ3(t)|
−1 .

By the remark after Definition 2.4, the problem reduces to knowing the size
of the largest polydisc with center γ3(t) which can be embedded in Ω. In
our case, it is easy to see that (see also Nagel–Stein–Wainger [19])

|DN Φ̃γ3(t)| ≈ C ′Λ∂Ω(π(γ3(t)), h) ≈ C∗Λ∂Ω(π(γ3(0)), h)

≈ C∗Λ∂Ω(π(γ(0)), %̃(γ(0), γ(h))) ,

and
|DT Φ̃γ3(t)| ≈ C ′′h ≈ C∗%̃(γ(0), γ(h)) .

Plugging all this information into (4.3), we obtain Theorem 2.10.

R e m a r k. As noted before, it is the shape of the polydisc that can
be imbedded in the domain near a given boundary point that controls the
geometry and the function theory. By the calculations in [1] and [4], this
polydisc is comparable to a Kobayashi metric ball. These observations are
the key to passing back and forth between the language of [16] and the
language of the present paper.
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In order to prove Theorem 2.11, we need to apply the biholomorphic
mapping HP defined in Nagel–Rosay–Stein–Wainger [20] and another ver-
sion of “higher Levi invariant” µ∂Ω(P, δ).

P r o o f o f T h e o r e m 2.11. Let us consider a small boundary neigh-
borhood V ⊂ Ω ∩ U . We shrink V if necessary so that x1, x2, x3, r is a
coordinate system on a neighborhood W of V with r(Q) being the “height”
of a point Q in W , i.e., r(Q) > 0 if Q ∈ V , r(Q) = 0 if Q ∈ V ∩ ∂Ω and
r(Q) < 0 if Q ∈ W \ V . Consider z, w ∈ V and %(z, w) < δ. We also set
δ = c‖z − w‖ where c is a fixed small constant. Since %(z, w) < δ, there
are two different cases: (i) ‖π(z) − π(w)‖ ≈ µ∂Ω(π(z), δ) � δ, and (ii)
‖π(z)− π(w)‖ ≤ δ. To handle case (i) is easy:

|f(z)− f(w)| ≤ |f(z)− f(π(z))|+ |f(π(z))− f(π(w))|+ |f(π(w))− f(w)|
= I + II + III .

Since %(z, w) < δ, we therefore have %(z, π(z)) ≈ |r(z)| ≤ δ ≈ ‖z − w‖ and
%(w, π(w)) ≈ |r(w)| ≤ δ ≈ ‖z − w‖. Then

I = |f(z)− f(π(z))| ≤ C%̃α(z, π(z)) ≤ C‖z − w‖α

≤ Cµα
∂Ω(π(z), ‖z − w‖) ,

III = |f(w)− f(π(w))| ≤ C%̃α(w, π(w)) ≤ C‖z − w‖α

≤ Cµα
∂Ω(π(w), ‖z − w‖) ≈ Cµα

∂Ω(π(z), ‖z − w‖) ,
II = |f(π(z))− f(π(w))| ≤ C%̃α(π(z), π(w)) ≈ Cµα

∂Ω(π(z), δ) .

To handle case (ii), we need to use the biholomorphic map defined in
Section 3. Let Hπ(z) be the biholomorphic map in (3.5). Then we have

(Hπ(z))−1(z) = (0, it), (Hπ(z))−1(w) = (w1, s+ iy + ihπ(z)(w1, s)) .

Then

|f(z)− f(w)| = |(f ◦Hπ(z)) ◦ (Hπ(z))−1(z)− (f ◦Hπ(z)) ◦ (Hπ(z))−1(w)|
= |(f ◦Hπ(z))(0, it)− (f ◦Hπ(z))(w1, s+ iy + ihπ(z)(w1, s))|
≤ |(f ◦Hπ(z))(0, it)− (f ◦Hπ(z))(0, iy)|

+ |(f ◦Hπ(z))(0, iy)

− (f ◦Hπ(z))(0, 0 + iy + ihπ(z)(w1, s))|
+ |(f ◦Hπ(z))(0, s+ iy + ihπ(z)(w1, s)

− (f ◦Hπ(z))(0, 0 + iy + ihπ(z)(w1, s))|
+ |(f ◦Hπ(z))(0, s+ iy + ihπ(z)(w1, s)

− (f ◦Hπ(z))(w1, s+ iy + ihπ(z)(w1, s))|
≡ I + II + III + IV .
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Using the fact that Hπ(z)(0, it) = z ∈ V ∩ B#(π(z), δ), Hπ(z)(w1, s + iy +
ihπ(z)(w1, s)) = w ∈ V ∩B#(π(z), δ) and the relation

B#
π(z)(δ) ≈ H−1

π(z)(B
#(π(z), δ)) ,

it is easy to see that Hπ(z)(0, 0 + iy), Hπ(z)(0, 0 + iy + ihπ(z)(w1, s)), and
Hπ(z)0, s+iy+ihπ(z)(w1, s)) are points in V ∩B#(π(z), δ). Now we estimate
the terms I to IV.

To estimate I, we just need to use the fact that if f is holomorphic in Ω,
then

I = |(f ◦Hπ(z))(0, it)− (f ◦Hπ(z))(0, iy)|

≤ max
V

∣∣∣∣ ∂∂ζ2 (f ◦Hπ(z))
∣∣∣∣ |t− y| ≤ C|c′|r(z)| − c′′|r(w)| |

≤ C∗|r(z)− r(w)| ≤ C∗|r(z)− r(w)|α

≤ c∗µα
∂Ω(π(z), |r(z)− r(w)|) .

Here we have applied the properties (3.6) with t ≈ c′|r(z)| and (3.7) with
y ≈ c′′|r(w)|. The last inequality holds for |r(z)|, |r(w)| small and 0 < α < 1.
The constant C∗ depends on the function f but is independent of Hπ(z). For
the second term we write

II = |(f ◦Hπ(z))(0, iy)− (f ◦Hπ(z))(0, iy + ihπ(z)(w1, s))|
= |(f ◦Hπ(z))(0, iy + ihπ(z)(0, 0))− (f ◦Hπ(z))(0, iy + ihπ(z)(w1, s))|

≤ max
V

∣∣∣∣ ∂∂ζ2 (f ◦Hπ(z))
∣∣∣∣ max

V
|∇hπ(z)| ‖(w1, s)− (0, 0)‖

≤ C∗µ∂Ω(π(z), δ) .

Here we have applied property (3.3) together with the fact that {hP }P∈∂Ω

is a bounded subset of the space C∞({(z, t) : |z| < 2ε0, |t| < 2ε0}). The
last inequality holds because z, w ∈ V ∩ B#(π(z), δ) and (0, iy), (w1, s +
iy + ihπ(z)(w1, s)) ∈ B#

π(z)(δ).
To estimate III and IV, we need to use the fact f is Lipschitz in the

non-isotropic sense. Thus

III = |(f ◦Hπ(z))(0, s+ iy + ihπ(z)(w1, s))

− (f ◦Hπ(z))(0, 0 + iy + ihπ(z)(w1, s))|
≤ C%α(Hπ(z)(0, s+ iy + ihπ(z)(w1, s)) ,

Hπ(z)(0, 0 + iy + ihπ(z)(w1, s))) ,

IV = |(f ◦Hπ(z))(0, s+ iy + ihπ(z)(w1, s))

− (f ◦Hπ(z))(w1, s+ iy + ihπ(z)(w1, s))|
≤ C%α(Hπ(z)(0, s+ iy + ihπ(z)(w1, s)) ,
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Hπ(z)(w1, s+ iy + ihπ(z)(w1, s))) .

Once again we apply the fact that Hπ(z)(B
#
π(z)(δ)) ≈ B#(π(z), δ), so that

%α(Hπ(z)(0, s+ iy + ihπ(z)(w1, s)),Hπ(z)(0, 0 + iy + ihπ(z)(w1, s)))
≈ δα ≤ µα

∂Ω(π(z), δ) ,

%α(Hπ(z)(0, s+ iy + ihπ(z)(w1, s)),Hπ(z)(w1, s+ iy + ihπ(z)(w1, s)))
≈ µα

∂Ω(π(z), δ) .

Combining the estimates of I to IV, we have

(4.4) I + II + III + IV ≤ C∗(µα
∂Ω(π(z), |r(z)− r(w)|) + µα

∂Ω(π(z), δ)) .

Now we set δ = c‖π(z)− π(w)‖ to obtain

|f(z)− f(w)| ≤ Cµα
∂Ω(π(z), ‖z − w‖) ;

the constant C depends on the function f but it can be absorbed into the
Lipschitz norm of f . This completes the proof.

5. Application to the regularity properties for the solutions of
the Cauchy–Riemann equation. In this section we apply the techniques
of non-isotropic geometry and the results in Section 2 to look at the Hölder
estimates for the solutions of the ∂-equation on finite type domains. Theo-
rem 5.1 below and its corollary give estimates on the non-isotropic Lipschitz
smoothness of both the Henkin and Kohn solution of ∂u = f when f has
coefficients which are Lp, p sufficiently large. Examples (see below) show
that the estimates are sharp.

In [5], the first-named author studied the Henkin solutions H and the
Kohn solution ∂

∗N = H − P0H for the Cauchy–Riemann equations on the
domain

Hκ =
{

(z′, zn+1) ∈ Cn+1 : Izn+1 >
( ∑

1≤j≤n

|zj |2
)κ}

, κ ∈ N .

These domains, while more complex than strongly pseudoconvex domains,
have the property that they are no more difficult to study for n > 1 than for
n = 1. In particular, the non-isotropic geometry is the same in all directions.
Thus, while Theorems 2.11 and 2.12 have been proved in full generality only
on domains in C2, their proofs apply without change to the domains Hκ.
We will apply these observations systematically as we proceed.

We computed in [5] that the kernel for the Henkin solution H has the
form

∑
k,`≥0EkF`, where Ek is a homogeneous kernel of degree −k in the

Euclidean sense, i.e.,

Ek(λ(z′, w′, t− s; %+ µ)) = Ek(λz′, λw′, λ(s− t);λ(%+ µ))

= λ−kEk(z′, w′, s− t; %+ µ) ,
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and the kernel F` is a homogeneous kernel of degree −` in the “finite type”
sense, i.e.,

F`(λ(z′w′, t− s; %+ µ)) = F`(λz′, λw′, λ2κ(s− t);λ2κ(%+ µ))

= λ−`F`(z′, w′, s− t; %+ µ) .

To simplify the computations, we just assume n = 1 and κ = 2. Since H
is not a convolution operator, we now need to go through many tedious
calculations to look at the Hölder estimates for H on the domains Hκ.

Once again, we need to deal with the non-isotropic geometry on Hκ.
Let z = (π(z), υ) = (z′, t; υ), w = (π(w);µ) = (w′, s;µ) ∈ Hκ with
π(z) = (z′, t), π(w) = (w′, s) ∈ ∂Hκ. Here υ = Izn+1−(

∑
1≤j≤n |zj |2)κ and

µ = Iwn+1−(
∑

1≤j≤n |wj |2)κ are the “height functions” defined onHκ. Fol-
lowing the results in Chang [5], we define the “quasi-metric” %̃(π(z), π(w))
on the boundary ∂Hκ as follows: %̃(π(z), π(w)) < δ if and only if∣∣∣∣12(t− s)− I

[
κ
( n∑

m=1

|wm|2
)κ−1( n∑

j=1

wjzj

)]∣∣∣∣
< C

{( n∑
m=1

|wm|2
)κ−1

δ2 + δ2κ
}

and (
∑n

j=1 |zj − wj |2)1/2 < δ.
Now the main result of this section is

Theorem 5.1. For κ ∈ N, let Hκ = {(z′, zn+1) ∈ Cn+1 : Izn+1 >
(
∑

1≤j≤n |zj |2)κ}. Let U be a boundary neighborhood of any type 2κ points.
If f is a ∂-closed (0, 1) form on Hκ with Lp(U) coefficients, then the Henkin
solutions H(f) for the ∂-equation satisfy

|H(f)(γ(0))−H(f)(γ(h))|

≤
{
C‖f‖Lp(U)(%̃(γ(0), γ(h)))1−(2n+4κ)/p if 2n+ 4κ < p <∞,
C‖f‖L∞(U)%̃(γ(0), γ(h)) log(%̃(γ(0), γ(h))) if p = ∞,

where γ ∈ C̃κ
1 (U).

Since the Bergman projection preserves the non-isotropic Lipschitz
spaces (see Chang [5] for the case Hκ and Nagel–Rosay–Stein–Wainger [20]
for finite type domains in C2), we can get the following corollary immedi-
ately:

Corollary. With the same hypotheses as in Theorem 5.1, the Kohn
solution ∂

∗N = H− P0H for the ∂-equation satisfies

|∂∗N(f)(γ(0))− ∂
∗N(f)(γ(h))|
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≤
{
C‖f‖Lp(U)(%̃(γ(0), γ(h)))1−(2n+4κ)/p if 2n+ 4κ < p <∞,
C‖f‖L∞(U)%̃(γ(0), γ(h)) log(%̃(γ(0), γ(h))) if p = ∞.

R e m a r k s. (1) When we restrict our attention to the case n = 1,
then Hκ is a finite type domain in C2. From the results of Christ [6],
Fefferman–Kohn [8], and Nagel–Rosay–Stein–Wainger [20], we know that
the Kohn solution for the Cauchy–Riemann equation maps L∞(U) into the
intersection of the standard Lipschitz space Lip1/(2κ)(U) (see [8]) and the
non-isotropic Lipschitz space Γ1(U) (see [20]). From Theorem 2.10, it is
easy to see the Henkin solutions H satisfy

|H(f)(γ(0))−H(f)(γ(h))| ≤ CΛ1
∂Ω(π(γ(0)), %̃(γ(0), γ(h))) ,

∀γ ∈ C̃κ
1 (U), ∀h ∈ [0, h0/(2κ)] ,

for f ∈ L∞(U).
(2) Theorem 5.1 is not only true for the case n = 1 but also true for

general n, which in some sense is more general than the results in [6], [8],
and [20]. Also our theorem not only deals with the case p = ∞ but also
with 2n+ 4κ < p <∞.

(3) Theorem 5.1 deals with the non-isotropic Lipschitz spaces which de-
scribe the correct geometric phenomena on these domains Hκ (hence on the
domains Eκ = {(z1, z2) ∈ C2 : |z1|2κ + |z2|2 < 1}, κ ∈ N). Therefore in some
sense our result is more general than the results of Belanger [2] and Range
[21].

(4) It should be noted that the paper [17] gives methods for constructing
examples to show that estimates for the ∂ problem which are presented here
are sharp.

P r o o f o f t h e T h e o r e m. As we discussed in Sections 2 and 3, we
consider the problem only on the tubular neighborhood {z ∈ C2 : δ(z) <
2ε} ∩ Hκ. Suppose that U is a small boundary neighborhood of 0 ∈ ∂Hκ

and that U ⊂ {z ∈ C2 : δ(z) < 2ε} ∩Hκ. Now, given f ∈ C∞(0,1)(U) which

satisfies ∂f = 0 and γ ∈ C̃κ
1 (U), we need to study

(5.2) H(f)(γ(h))−H(f)(γ(0)), ∀h ∈ [0, h0/4] .

As we have seen in [5], the crucial term for H = (K1,K2) + elliptic term is
E1F8. Let Op(H) be the standard integral operator defined by the kernel
H. To simplify notation, set

ψa,b = ψ(γ(a)− bvγ(a), w) .

We are just considering the “dominated” kernel as follows:

Op(H)(f)(γ(h))−Op(H)(f)(γ(0))



244 D.-C. E. CHANG AND S. G. KRANTZ

=
∫
U

{
1

ϕ2(γ(h), w)ψ(γ(h), w)

− 1
ϕ2(γ(h)− Λ∂Ω(π(γ(0)), h)vγ(h), w)ψh,h

}
f(w) dV (w)

+
{ ∫

U

f(w) dV
ϕ2(γ(h)− Λ∂Ω(π(γ(0)), h)vγ(h), w)ψh,h

−
∫
U

f(w) dV
ϕ2(γ(0)− Λ∂Ω(π(γ(0)), h)vγ(h), w)ψh,h

}

+
∫
U

f(w) dV
ϕ2(γ(0)− Λ∂Ω(π(γ(0)), h)vγ(0), w)

×[ψ(γ(h)− hvγ(0), w)− ψ0,h]

+
∫
U

{
f(w)

ϕ2(γ(0)− Λ∂Ω(π(γ(0)), h)vγ(0), w)ψ0,h

− f(w)
ϕ2(γ(0), w)ψ(γ(0), w)

}
dV

≡ I1 + I2 + I3 + I4 .

Here vz is the unit outward normal to ∂Ω at z as defined in Section 2 and
dV = gdw1 dw1 ds dµ with g ∈ C∞(U) the Euclidean volume form on U .
We have

|I1| =
∣∣∣∣ h∫

0

d

dθ

{ ∫
U

f(w)dV (w)
ϕ2(γ(h)− Λ∂Ω(π(γ(0)), θ)vγ(h), w)ψh,θ

}
dθ

∣∣∣∣
≤ C

h∫
0

∫
U

Λ′∂Ω(π(γ(0)), θ)|f(w)| dV (w) dθ
|ϕ3(γ(h)− Λ∂Ω(π(γ(0)), θ)vγ(h), w)|ψh,θ

+ C
h∫

0

∫
U

|f(w)| dV (w) dθ
|ϕ2(γ(h)− Λ∂Ω(π(γ(0)), θ)vγ(h), w)|ψ2

h,θ

≤ C‖f‖Lp(U)

×
h∫

0

{ ∫
U

Λ′∂Ω(π(γ(0), θ))p′ dV (w)

|ϕ3(γ(h)− Λ∂Ω(π(γ(0)), θ)vγ(h), w)|ψp′

h,θ

}1/p′

dθ

+ C‖f‖Lp(U)

×
h∫

0

{ ∫
U

dV (w)

|ϕ2(γ(h)− Λ∂Ω(π(γ(0)), θ)vγ(h), w)|ψ2p′

h,θ

}1/p′

dθ
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≡ I11 + I12 ,

where p′ = p/(p − 1) with 2 + 4κ = 10 < p ≤ ∞. Thus estimating I1
amounts to estimating I11 and I12, which we do in a moment. It is also easy
to see that the estimates for the term I4 are just the same as those for I1.

On the other hand, the term I2 is dominated by

(5.3) |I2| =
∣∣∣∣ h∫

0

d

dθ

{ ∫
U

f(w)dV (w)
|ϕ2(γ(θ)− Λ∂Ω(π(γ(0)), h)vγ(θ), w)|ψh,h

}
dθ

∣∣∣∣ .
Now the curve θ → γ(θ) − Λ∂Ω(π(γ(0)), h)vγ(θ) is in C̃κ

1 (U). We use this,
together with the fact that a complex tangential derivative of ϕ is not greater
than C|z − w|, to majorize (5.2) by

C
h∫

0

∫
U

{Λ∂Ω(π(γ(0)), h) + |γ(θ)− w|}|f(w)| dV (w)
|ϕ3(γ(θ)− Λ∂Ω(π(γ(0)), h)vγ(θ), w)|ψh,h

dθ .

Since Λ∂Ω(π(γ(0)), h) ≈ C|(π(γ(0)))1|2h2 +Ch4 ≤ Ch, it is easy to see that

Λ∂Ω(π(γ(0)), h) + |γ(θ)− w| ≤ C(h+ |γ(θ)− w|) ≤ Cψ(γ(h)− hvγ(h), w) .

So (5.2) is not greater than (we omit again the trivial term C‖f‖Lph ≈
C‖f‖Lp %̃(π(γ(0)), π(γ(h))))

(5.4) C‖f‖Lp(U)

h∫
0

{ ∫
U

dV (w)
|ϕ3p′(γ(θ)− Λ∂Ω(π(γ(0)), h)vγ(θ), w)|

}1/p′

dθ

Thus to estimate I2 it is enough to control (5.4). Finally, the term I3 is
dominated by

(5.5) |I3| =
∣∣∣∣ h∫

0

d

dθ

{ ∫
U

f(w)dV (w)
|ϕ2(γ(0)− Λ∂Ω(π(γ(0)), h)vγ(0), w)ψθ,h

}
dθ

∣∣∣∣ .
Once again the curve θ → γ(θ) − hvγ(θ) is a curve in C̃κ

1 (U) ⊂ C̃κ(U), so
the complex derivatives of γ are dominated by a constant C. Thus the term
(5.5) is dominated by

(5.6) C‖f‖Lp(U)

×
h∫

0

{ ∫
U

dV (w)

|ϕ2p′(γ(0)− Λ∂Ω(π(γ(0)), h)vγ(0), w)ψ2p′

θ,h

}1/p′

dθ .

Estimating (5.6) is essentially the same as estimating I12.
In conclusion, all terms I1, I2, I3, and I4 are controlled once we have

estimated I11, I12, and (5.4). We proceed to this task. If we look at the
Henkin kernel for the ∂-equation on the domains Hκ (see [5]), we can choose
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a local coordinate system so that we may rewrite I11 and I12 as follows

I11 ≤ C‖f‖Lp(U)h+ C‖f‖Lp(U)

h∫
0

{ R∫
0

dµ

√
R2−µ2∫
0

r2 dr

×
1∫

−1

ds

[(%+ µ+ µ2 + θ4 + r4)2 + r2s2]3p′/2(r2 + θ2 + %2 + µ2)p′/2

}1/p′

θdθ ,

I12 ≤ C‖f‖Lp(U)h+ C‖f‖Lp(U)

h∫
0

{ R∫
0

dµ

√
R2−µ2∫
0

r2 dr

×
1∫

−1

ds

[(%+ µ+ µ2 + θ4 + r4)2 + r2s2]p′(r2 + θ2 + %2 + µ2)p′

}1/p′

θdθ

with % = dist(r(h), ∂Hκ), 0 < R ≤ 1 is a constant depending on Hκ. Here
we use the obvious estimates

Λ∂Ω(π(γ(0)), θ) ≤ cθ2 and
d(Λ∂Ω(π(γ(0)), θ))

dθ
≤ cθ1 .

Now we calculate the term I11 first:

‖f‖Lp(U)

h∫
0

{ R∫
0

dµ

√
R2−µ2∫
0

r2 dr

×
1∫

−1

ds

[(%+ µ+ µ2 + θ4 + r4)2 + r2s2]3p′/2(r2 + θ2 + %2 + µ2)p′/2

}1/p′

θdθ

≤
h∫

0

{ R∫
0

dµ

µ∫
0

r2 dr
1∫

−1

∗ ds
}1/p′

θdθ

+
h∫

0

{ R∫
0

dµ

√
µ∫

µ

r2 dr
1∫

−1

∗ ds
}1/p′

θdθ

+
h∫

0

{ R∫
0

dµ
R∫

√
µ

r2 dr
1∫

−1

∗ ds
}1/p′

θdθ

≡ A1 +A2 +A3 .

Write A1 as follows:

A1 =
h∫

0

{ θ4∫
0

dµ

µ∫
0

r2 dr
1∫

−1

∗ ds
}1/p′

θdθ
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+
h∫

0

{ 2θ∫
θ4

dµ

µ∫
0

r2 dr
1∫

−1

∗ ds
}1/p′

θdθ

+
h∫

0

{ R∫
2θ

dµ

µ∫
0

r2 dr
1∫

−1

∗ ds
}1/p′

θdθ

≡ A11 +A12 +A13 .

Then

A11 ≤
h∫

0

{ θ4∫
0

dµ

µ∫
0

r2 dr
1∫

−1

ds

(r2s2 + θ2 + µ2)3p′/2(θ2)p′/2

}1/p′

θdθ(5.7)

≤ C
h∫

0

{
(θ2)−3p′θ−p′

}1/p′{ θ4∫
0

µ3 dµ
}1/p′

θdθ

≤ Ch−4+12/p′ ≤ Ch−4+12(1−1/p) ≤ Ch1−10/p

≈ C(%̃(γ(0), γ(h)))1−10/p if 10 < p ≤ ∞ ,

A12 ≤
h∫

0

{ 2θ∫
θ4

dµ

µ∫
0

r2 dr
1∫

−1

ds

(r8 + r2s2 + µ2)3p′θp′

}1/p′

θdθ(5.8)

≤ C
h∫

0

{ 2θ∫
θ4

µ3−3p′ dµ
}1/p′

θ−1θdθ ≤ Ch−2+3/p′

= Ch−2+3(1−1/p) ≤ Ch1−10/p

≈ C(%̃(γ(0), γ(h)))1−10/p if 10 < p ≤ ∞ ,

A13 ≤
h∫

0

{ R∫
2θ

dµ

µ∫
0

r2 dr
1∫

−1

ds

(θ4 + r4 + µ)3p′µp′

}1/p′

θdθ(5.9)

≤ C
h∫

0

{ R∫
2θ

µ3−4p′ dµ
}1/p′

θdθ

≤ C
h∫

0

θ−4+3/p′ θdθ ≤ Ch−2+4/p′

= Ch−2+4(1−1/p) ≤ Ch1−10/p{
≈ C(%̃(γ(0), γ(h)))1−10/p if 10 < p <∞,

≤ Ch log h ≈ C%̃(γ(0), γ(h)) log(%̃(γ(0), γ(h))) if p = ∞ .
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Next we estimate the term A2:

A2 =
∣∣∣∣ h∫

0

{ R∫
0

dµ

√
µ∫

µ

r2dr

×
1∫

−1

ds

[(%+ µ+ µ2 + θ4 + r4)2 + r2s2]3p′/2(r2 + θ2 + %2 + µ2)p′/2

}1/p′

θdθ

∣∣∣∣
≤

h∫
0

{ θ∫
0

dµ

√
µ∫

µ

r2dr
1∫

−1

ds

[µ2 + r2s2]3p′/2θp′

}1/p′

θdθ

+
h∫

0

{ R∫
θ

dµ

√
µ∫

µ

r2 dr
1∫

−1

ds

[µ2 + r2s2]3p′/2θp′

}1/p′

θdθ

≡ A21 +A22 .

We have

A21 = C
h∫

0

{ θ∫
0

dµ

√
µ∫

µ

r2 dr
1∫

−1

ds

[µ2 + r2s2]3p′/2

}1/p′

θ−1θ1 dθ(5.10)

≤ C
h∫

0

{ θ∫
0

µ3/2−3p′/2 dµ
}1/p′

dθ

≤ C
h∫

0

θ5/(2p′)−3/2 dθ ≤ Ch−1/2+5(1−1/p)/2

= Ch2−5/(2p) ≤ Ch1−10/p

≈ C(%̃(γ(0), γ(h)))1−10/p if 10 < p ≤ ∞ ,

A22 ≤
∣∣∣∣ h∫

0

{ R∫
θ

dµ

√
µ∫

µ

r2 dr
1∫

−1

ds

[µ2 + r2s2]3p′/2θp′

}1/p′

θdθ

∣∣∣∣(5.11)

≤ C
∣∣∣ h∫

0

{ R∫
θ

µ3/2−3p′/2 dµ
}1/p′

dθ
∣∣∣

≤ C
∣∣∣ h∫

0

{R5/(2p′)−3/2 + θ5/(2p′)−3/2} dθ
∣∣∣

≤ Ch+ C̃h−1/2+5(1−1/p)/2

≤ C ′h ≈ C%̃(γ(0), γ(h)) if 10 < p ≤ ∞ .
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Now we represent the term A3 as follows:

A3 =
h∫

0

{ θ∫
0

dµ
R∫

√
µ

r2 dr
1∫

−1

∗ ds
}1/p′

θdθ

+
h∫

0

{ R∫
θ

dµ
R∫

√
µ

r2 dr
1∫

−1

∗ ds
}1/p′

θdθ

≡ A31 +A32 .

We have

A31 ≤
∣∣∣∣ h∫

0

{ θ∫
0

dµ
R∫

√
µ

r2 dr
1∫

−1

ds

[µ2 + r2s2]3p′/2θp′

}1/p′

θdθ

∣∣∣∣(5.12)

≤
∣∣∣∣ h∫

0

{ θ∫
0

dµ
R∫

√
µ

r2 dr
1∫

−1

ds

[µ2 + r2s2]3p′/2θp′

}1/p′

θdθ

∣∣∣∣
≤ C

∣∣∣∣ h∫
0

{ θ∫
0

dµ
R∫

√
µ

r2−3p′ dr
1∫

−1

ds

[s2 + v2]3p′/2

}1/p′

dθ

∣∣∣∣
≤ C

∣∣∣ h∫
0

{ θ∫
0

(R3−3p′ + µ3/2−3p′/2) dµ
}1/p′

dθ
∣∣∣

≤ C
∣∣∣ h∫

0

(R3/p′−3θ1/p′ + θ5/(2p′)−3/2) dθ
∣∣∣

≤ C ′h1+1/p′ + C̃h5/(2p′)−1/2 = C ′h1+1/p′ + C̃h2−5/(2p)

≤ Ch ≈ C ′′%̃(γ(0), γ(h)) if 10 < p <∞ .

When p = ∞, i.e., p′ = 1, then

C
h∫

0

{ θ∫
0

dµ
R∫

√
µ

r2−3 dr
}1

dθ

≤ C ′
h∫

0

θ∫
0

(logR+ logµ) dµ dθ

≤ C ′
h∫

0

logR · θdθ + C ′
h∫

0

(θ log θ + θ) dθ

≤ C̃h+ C̃h2 log h ≤ C̃h+ C̃h log h
≈ C ′′%̃(γ(0), γ(h)) + C ′′%̃(γ(0), γ(h)) log(%̃(γ(0), γ(h))) .
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Next,

A32 ≤
∣∣∣∣ h∫

0

{ R∫
θ

dµ
R∫

√
µ

r2 dr
1∫

−1

ds

[µ2 + r2s2]3p′/2θp′

}1/p′

θdθ

∣∣∣∣(5.13)

≤
∣∣∣∣ h∫

0

{ R∫
θ

dµ
R∫

√
µ

r2−3p′ dr
1∫

−1

ds

[s2 + v2]3p′/2

}1/p′

θ−1θ1 dθ

∣∣∣∣
≤ C

∣∣∣ h∫
0

{ R∫
θ

(R3−3p′ + µ3/2−3p′/2) dµ
}1/p′

dθ
∣∣∣

≤ C
∣∣∣ h∫

0

{R4−3p′(R+ θ) +R5/2−3p′/2 + θ5/2−3p′/2}1/p′ dθ
∣∣∣

≤ C ′h+ C̃h−1/2+5/(2p′)

≤ C ′′h+ C̃h2−5/(2p) ≈ C%̃(γ(0), γ(h)) if 10 < p ≤ ∞ .

When we calculate the term I12, we also need to consider the integral in
three parts:

C‖f‖Lp(U)

h∫
0

{ R∫
0

dµ

√
R2−µ2∫
0

r2 dr

×
1∫

−1

ds

[(%+ µ+ µ2 + θ4 + r4)2 + r2s2]p′(r2 + θ2 + %2 + µ2)p′

}1/p′

dθ

≤ C
{ h∫

0

{ R∫
0

dµ

µ∫
0

r2 dr
1∫

−1

∗ ds
}1/p′

dθ

+
h∫

0

{ R∫
0

dµ

√
µ∫

µ

r2 dr
1∫

−1

∗ ds
}1/p′

dθ

+
h∫

0

{ R∫
0

dµ
R∫

√
µ

r2 dr
1∫

−1

∗ ds
}1/p′

dθ
}

≡ B1 +B2 +B3 .

Write B1 as follows:

B1 = C
h∫

0

{ θ2∫
0

dµ

µ∫
0

r2 dr
1∫

−1

∗ ds
}1/p′

dθ
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+ C
h∫

0

{ 2θ∫
θ2

dµ

µ∫
0

r2 dr
1∫

−1

∗ ds
}1/p′

dθ

+ C
h∫

0

{ R∫
2θ

dµ

µ∫
0

r2 dr
1∫

−1

∗ ds
}1/p′

dθ

≡ B11 +B12 +B13 .

We have

B11 ≤
h∫

0

{ θ2∫
0

dµ

µ∫
0

r2 dr
1∫

−1

ds

[(µ2 + µ) + %]2p′µ2p′

}1/p′

dθ(5.14)

≤ C
h∫

0

{ θ2∫
0

µ−2p′µ−2p′+3 dµ
}1/p′

dθ

≤ C
h∫

0

θ−8+8/p′ dθ ≤ Ch1−8/p

≤ Ch1−10/p ≈ C(%̃(γ(0), γ(h)))1−10/p if 10 < p <∞ ;

if p = ∞ (p′ = 1), then

B11 ≤ C
h∫

0

log θ dθ ≤ Ch log h(5.14′)

≈ C%̃(γ(0), γ(h)) log(%̃(γ(0), γ(h))) .

Estimating the terms B12 and B13 is almost the same, so we just look at
B12:

B12 ≤
h∫

0

{ 2θ∫
θ2

dµ

µ∫
0

r2 dr
1∫

−1

ds

[(µ2 + µ) + %]2p′

}1/p′

dθ(5.15)

≤ C
h∫

0

{ 2θ∫
θ2

µ−2p′µ−2p′+3 dµ
}1/p′

dθ

≤ C
h∫

0

θ−4+4/p′ dθ ≤ Ch1−4/p

≤


Ch1−10/p if 10 < p <∞,

C
h∫

0

log θ dθ ≤ Ch log h ≈ C%̃(γ(0), γ(h)) log(%̃(γ(0), γ(h)))

if p = ∞.
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It is easy to see that the estimation of the terms B2 and B3 is almost the
same, so we just look at the term B2:

B2 = C
h∫

0

{ 2θ∫
0

dµ

√
µ∫

µ

r2 dr
1∫

−1

∗ ds
}1/p′

dθ

+ C
h∫

0

{ R∫
2θ

dµ

√
µ∫

µ

r2 dr
1∫

−1

∗ ds
}1/p′

dθ ≡ B21 +B22 .

We have

B21 ≤ C
h∫

0

{ 2θ∫
0

dµ

√
µ∫

µ

r2 dr
1∫

−1

ds

(µ2 + r2s2)p′θ2p′

}1/p′

dθ(5.16)

≤ C
h∫

0

{ 2θ∫
0

dµ

√
µ∫

µ

r2−2p′ dr · µ
r

∞∫
−∞

ds

(1 + s2)p′

}
θ−2 dθ

≤ C ′
h∫

0

{ 2θ∫
0

µ(µ2−2p′ + µ1−p′) dµ
}1/p′

θ−2 dθ

≤ C ′
h∫

0

(θ4/p′−2 + θ3/p′−1)θ−2 dθ ≤ C̃(h−3+4/p′ + h−2+3/p′)

≤ C̃(h−3+4(1−1/p) + h−2+3(1−1/p))

≤ C̃h1−1/p ≈ C̃(%̃(γ(0), γ(h)))1−10/p if 10 < p ≤ ∞ .

For the term B22, we have

B22 ≤ C
h∫

0

{ R∫
2θ

dµ

√
µ∫

µ

r2 dr
1∫

−1

ds

(µ2 + r2s2)p′r2p′

}1/p′

dθ(5.17)

≤ C
h∫

0

{ R∫
2θ

dµ

√
µ∫

µ

r2−2p′−2p′ dr · µ
r

∞∫
−∞

ds

1 + s2

}1/p′

dθ

≤ C
h∫

0

{ R∫
2θ

µ(µ2−4p′ + µ1−2p′) dµ
}1/p′

dθ

≤ C ′
h∫

0

(R4/p′−4 +R3/p′−2 + θ4/p′−4 + θ3/p′−2) dθ

≤ C̃h1−10/p ≈ C̃(%̃(γ(0), γ(h)))1−10/p if 10 < p ≤ ∞ .

Finally, we turn our attention to the term (5.4). In fact, (5.4) is domi-
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nated by

C‖f‖Lp(U)

h∫
0

{ ∫
U

dV (w)
|ϕ3p′(γ(θ)− Λ∂Ω(π(γ(0), h)vγ(θ), w)|

}1/p′

dθ(5.18)

≤ C‖f‖Lp(U)

h∫
0

{ R∫
0

dµ

√
R2−µ2∫
0

r2 dr

×
1∫

−1

ds

[(%+ µ+ µ2 + θ4 + r4)2 + r2s2]3p′/2

}1/p′

dθ

= C‖f‖Lp(U)

{ h∫
0

{ R∫
0

dµ

µ∫
0

r2 dr
1∫

−1

∗ ds
}1/p′

dθ

+
h∫

0

{ R∫
0

dµ

√
µ∫

µ

r2 dr
1∫

−1

∗ ds
}1/p′

dθ

+
h∫

0

{ R∫
0

dµ
R∫

√
µ

r2 dr
1∫

−1

∗ ds
}1/p′

dθ
}

≡ D1 +D2 +D3 .

Write D1 as follows:

D1 = C
{ h∫

0

{ θ2∫
0

dµ

µ∫
0

r2 dr
1∫

−1

∗ ds
}1/p′

dθ

+
h∫

0

{ 2θ∫
θ2

dµ

µ∫
0

r2 dr
1∫

−1

∗ ds
}1/p′

dθ

+
h∫

0

{ R∫
2θ

dµ

µ∫
0

r2 dr
1∫

−1

∗ ds
}1/p′

dθ
}

≡ D11 +D12 +D13 .

We have

D11 ≤ C
h∫

0

{ θ2∫
0

dµ

µ∫
0

r2 dr
1∫

−1

ds

[(µ+ %)2 + r2s2]3p′/2

}1/p′

dθ(5.19)

≤ C
h∫

0

{ θ2∫
0

µ3µ−3p′ dµ
}1/p′

dθ ≤ C
h∫

0

θ8/p′−6 dθ
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≤ C ′h−5+8/p′ ≤ C̃h1−10/p

≈ C(%̃(γ(0), γ(h)))1−10/p if 10 < p ≤ ∞ .

Estimating the terms D12 and D13 is almost the same, so we just look at
D12:

D12 ≤ C
h∫

0

{ 2θ∫
θ2

dµ

µ∫
0

r2 dr
1∫

−1

ds

[(µ+ %)2 + r2s2]3p′/2

}1/p′

dθ(5.20)

≤ C

∣∣∣∣ h∫
0

{ 2θ∫
θ2

µ3µ−3p′ dµ

}1/p′

dθ

∣∣∣∣ ≤ C ′
h∫

0

(θ4/p′−3 + θ8/p′−6) dθ

≤ C ′h4/p′−2 + C ′′h8/p′−5 ≤ C ′h−2+4(1−1/p) + C ′′h−5+8(1−1/p)

≤ C̃h1−10/p ≈ C(%̃(γ(0), γ(h)))1−10/p if 10 < p ≤ ∞ .

Next,

D2 = C
{ h∫

0

{ 2θ∫
0

dµ

√
µ∫

µ

r2 dr
1∫

−1

∗ ds
}1/p′

dθ

+
h∫

0

{ R∫
2θ

dµ

√
µ∫

µ

r2 dr
1∫

−1

∗ ds
}1/p′

dθ
}

≡ D21 +D22 .

We have

D21 ≤ C
h∫

0

{ 2θ∫
0

dµ

√
µ∫

µ

r2 dr
1∫

−1

ds

[(µ+ %)2 + r2s2]3p′/2

}1/p′

dθ(5.21)

≤ C
h∫

0

{ 2θ∫
0

dµ

√
µ∫

µ

r2−3p′ dr
1∫

−1

ds

[s2 + v2]3p′/2

}1/p′

dθ

≤ C
h∫

0

{ 2θ∫
0

µ3/2−3p′/2 dµ
}1/p′

dθ

≤ C ′′
h∫

0

θ5/(2p′)−3/2 dθ ≤ C ′′h5/(2p′)−1/2

≤ C ′′h1−10/p ≈ C̃(%̃(γ(0), γ(h)))1−10/p if 10 < p <∞ ,

D22 ≤ C
h∫

0

{ R∫
2θ

dµ

√
µ∫

µ

r2 dr
1∫

−1

ds

[(µ+ %)2 + r2s2]3p′/2

}1/p′

dθ(5.22)
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≤ C
h∫

0

{ R∫
2θ

dµ

√
µ∫

µ

r2−3p′ dr
1∫

−1

ds

[s2 + µ2]3p′/2

}1/p′

dθ

≤ C ′
h∫

0

{ R∫
2θ

µ3/2−3p′/2 dµ
}1/p′

dθ ≤ C ′′
h∫

0

R5/(2p′)−3/2 dθ

≤ C ′′h ≤ C(%̃(γ(0), γ(h)))1−10/p if 10 < p <∞ .

Combining the results from (5.7) to (5.21), we can see that our estimates
are complete.

R e m a r k . In our calculations (5.7) to (5.21), it appears that our es-
timate for the Lipschitz class is always better than the critical index, i.e.,
α = 1 − 10/p. But when we consider γ ∈ C̃k

1 and parallel to the type 4
points (i.e., the Rz2-axis), then d(Λ∂Ω(π(γ(0)), θ))/ dθ = θ3 6= θ1. Then the
computations really give us the critical index. For example

A11 =
h∫

0

{ θ4∫
0

dµ

√
µ∫

0

r2 dr
1∫

−1

ds

(r4 + θ4 + µ4 + %)3p′(θ2)p′/2

}1/p′

θ3 dθ

≥ C ′
h∫

0

{ θ4∫
0

dµ

√
µ∫

0

r2 dr
1∫

−1

ds

(θ2 + θ4 + θ4 + %)3p′(θ2)p′/2

}1/p′

θ3 dθ .

Let % = 0 (i.e. consider the boundary ∂Hκ). Then

A11 ≥ C ′
h∫

0

{ θ4∫
0

µ3/2 dµ
}1/p′

θ3θ−13 dθ

= C ′
h∫

0

θ10/p′−10 dθ = C̃h10/p′−9 = C̃h−9+10((1−1/p) = C̃h1−10/p

≈ C(%̃(γ(0), γ(h)))1−10/p if 10 < p <∞ .

REFERENCES

[1] G. Aladro, The comparability of the Kobayashi approach region and the admissible
approach region, Illinois J. Math. 33 (1989), 42–63.
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[21] R. M. Range, On Hölder estimates for ∂u = f on weakly pseudoconvex domains, in:

Proc. Internat. Conf., Cortona 1976–1977, Scuola Norm. Sup., Pisa 1978, 247–267.
[22] E. M. Ste in, Singular integrals and estimates for the Cauchy–Riemann equations,

Bull. Amer. Math. Soc. 79 (1973), 440–445.

DEPARTMENT OF MATHEMATICS DEPARTMENT OF MATHEMATICS

UNIVERSITY OF MARYLAND WASHINGTON UNIVERSITY

COLLEGE PARK, MARYLAND 20742 ST. LOUIS, MISSOURI 63130

U.S.A. U.S.A.
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