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Introduction. This paper is concerned with the action of a special for-
mally real Jordan algebra U on an Euclidean space E, with the decompo-
sition of F under this action and with an application of this decomposition
to the study of Bessel functions on the self-adjoint homogeneous cone 2
associated to U.

The special formally real Jordan algebras are classified: they are the
mxm Hermitian matrices H,,(F) (F = R, C, H) endowed with the symmetric
product

(1) Ao B=1(AB+ BA)

and the vector space U, = R+ V (V is a ¢-dimensional real vector space)
equipped with the product

(A u) o (u,v) = (A + B(u,v), \v + pu)

where A\, p € R, u,v € V and B is a symmetric bilinear positive form on V.
The associated cones are given by the positive definite matrices and by the
light cones respectively.

For a special formally real Jordan algebra U there exists a Fuclidean
space F and a Jordan algebra injective homomorphism ¢ : U — Sym™ (E)
of U into the formally real Jordan algebra of the self-adjoint endomorphisms
of E endowed with the product (1) (the references for the results on Jordan
algebras needed in this paper are [1], [6], [5], [2], [3]). For the case H,,(F)
we take E = M,, ,(F) (the m x h matrices on F); ¢(U)E is the matrix
product. For U, we can take E = C, the Clifford algebra associated to V
and consider the imbedding of U, in C, (so that ¢(U)E is a product in Cj).
Observe that Us is isomorphic to H2(R) and we can choose E = My 5, (R)
in place of Cy. One of the purposes of this paper is to show that a related
fact is true in general; we shall prove that if a special formally real Jordan
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algebra U with rank m acts on a Euclidean space FE in the described way,
then E' can be written as an m x h matrix, so that ¢(U)E is a matrix product
which formally extends the Hermitian matrix case.

The main part of the paper deals with the Bessel functions introduced in
[3]. That paper ended with an asymptotic formula for the Bessel functions
on (2, which was proved for particular choices of F and by algebra-by-
algebra arguments. Here we prove the result for general E and without
classification theory. The proof uses the stationary phase method, which
needs an imbedding of U in E and an explicit description of a basis of the
orthogonal complement.

The author wishes to thank Jacques Faraut for introducing him to the
study of Jordan algebras.

Notation. In this paper U will always be a simple n-dimensional special
formally real Jordan algebra with rank m and the symbol o will denote the
product in a Jordan algebra. P is the quadratic representation P(z) =
2L%(x)—L(x?), where L(z)y = zoy, also let P(x,y) = L(z)L(y)+L(y)L(z)—
L(zoy). Let e be the identity of U and let {c1,..., ¢y} be an orthonormal
system of primitive idempotents (¢;oc; =0 fori # j, c;oc; = ¢, c1+... +
¢m = e, m maximal). We have the Pierce decomposition of U relative to
the previous set of idempotents:

U=,
i<j
where U, ; = Re;, U; j = L(c;)L(c;)U for @ # j. The U; ;’s have the same
(real) dimension d. We fix an orthonormal basis

{eihiciom U{ui jhicicicm 1<o<d s
where any u; ; belongs to U; ;. We write U7, for the space Ru; ;. Tr(z) will
denote the trace of an element x in U.

There exists an N-dimensional Euclidean space E with the following
property. Let Sym(E) be the space of self-adjoint endomorphisms of FE
and Sym™ (E) the same space when endowed with the Jordan product (1).
Sym™ (E) is a formally real Jordan algebra [1,XI] and there exists a Jordan
algebra injective homomorphism ¢ : U — Sym™(E) such that ¢(e) = id
([2]). Let @ : E — U be the quadratic form satisfying (¢(x)¢,€) = (2, Q(E))
for any z € U and £ € F; we denote by v the associated bilinear form. We
write F; for the subspace ¢(c;)E of E (1 <i <m).

Let 2 = expU be the homogeneous self-adjoint cone associated to U.
Then Q : E — 2. We ask E to satisfy Q(E) = 2. Theset ¥ = {£ € E:
Q(&) = e} is called the Stiefel manifold and the following polar decomposi-
tion holds a.e. [3]:

E=0xX.
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Preliminary results. We begin with an elementary fact whose proof
will be omitted.

LEMMA 1. The subspaces E; = ¢(c;)E (1 < j < m) of E are mutually
orthogonal and satisfy the direct sum decomposition E = ®1<j<m E;. Asa
consequence, for any & € E, ¢(c;)p(c;) =0 provided i # j.

LEMMA 2. Let &; € E; and §j S Ej (Z,j =1,... ,m). Then w(&,gj) S
Ui.j. Moreover, Q(&) = ||& ¢

Proof. By [3, Lemma 1] one knows that Q(¢(u)§) = P(u)Q(§), which
by linearization implies

(2) Y(p(z)E, o(y)n) + ¢Y(o(y)E, ¢(x)n) = Pz, y)v(&,n).
Now let * = ¢;, y = ¢j, £ = &, n = &;; then by (2) and Lemma 1,
¥(&, &) = Plei, ¢)Y(&, &), which by [1,VIL2] implies the result. In par-
ﬁi(nﬁlzar, Q&) = A¢; with A = Tr(A¢;) = Tr(Q(&)) = (Q(&),e) = (&,&) =
&%

LEMMA 3. Let £ € E and suppose Q(§) € U; ;. Then & € Ej.

Proof. Write
€= ) dle)t= > &.
1<i<m 1<i<m
Then by Lemma 2,

QO =v( Y & X &)

1<i<m  1<i<m
= D QE)+2Y W& = > Q).
1<i<m h<k 1<i<m

The assumption and Lemma 1 now imply Q(§;) = 0 for ¢ # j and Lemma 2
again implies & = 0 for ¢ # j. Therefore £ € Ej.

LEMMA 4. Let {uj ;}1<s<a be an orthonormal basis of U; j (1 <i < j <
m). Then

ui joug ;= 0s(ci +¢5)/2

(Kronecker’s §).

Proof. We know [1,VIII] that U; joU,; ; C U, ;+U; ; and that ¢;ou, ; =
%um for any u; ; € U; ; (i # j). Then the associativity of the inner product

S

(ui,j ou; j, ;) = (ufvj,ufyj o¢;)

implies the result.

LEMMA 5. Let u;; be a normalized vector in U;; (i # j). Then for
& € E; the mapping

& — o(V2ui )&
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is an inner product space isomorphism between E; and Ej.

Proof. First we show that ¢(u; ;)E; C E;. By Lemma 3 it is enough
to prove that Q(¢(u; ;)E;) C Uj ;. Indeed, suppose & € E;, ||&]| = 1; then
by [3, Lemma 1], and Lemmas 2 and 3

Q(O(V2u; 5)&) = 2P(u; ;)Q(&i) = 2P (u; j)ci
= duij o (uijoci) = 2(uijouij)oc
= 2ui7j OUj 5 — (Cz‘ + Cj) oc; = (Ci + Cj) —C;.
To complete the proof we need to show that ||¢(v/2u; ;)& = [|&]| for any
& € F;. Indeed, by Lemmas 2 and 3,
lo(v2ui )&l = 2((ui g)6ir dlui j)&)
= 2(d(uij o ui )& &) = (¢(ci +¢5)&i, &)
= (ci +¢;,Q(&)) = (ci + ¢, |&ilPes) = ll&l*.

A characterization of the Stiefel manifold. Lemma 2 and the iden-

tity Q(€) = D 1<icm Q&) +232,;¥(&i,&;)) provide a simple characteri-
zation of the Stiefel manifold X.

PROPOSITION. Let £ =3 i, (¢i)§ = X1 i<, i belong to E. Then
€ € 5 if and only if (6, &) = oy

An asymptotic formula for Bessel functions. Following [3] we
define the Bessel function

J(T) = f e—i(d,(f)(ﬁ)ao) d/B(O-)
X

where g9 € X and is fixed once for all, » € {2 and the measure has been
defined in [3]. The following theorem has been proved in [3] through classi-
fication theory and assuming particular choices of E':

THEOREM 1. Let U be a special formally real Jordan algebra. Let x =
Zl<j<m Ajcj be an element in £2 with distinct eigenvalues Ay > ... > Ay,

(> 0). Then, ast — +o0,

J((t2)?) = [ e7H¢@790) 45(q)
X

- (zﬂ/t)(N—“W Z(‘H(gw)‘_1/2€i(7r/4)5(0w)+it(¢(w)f’w700))

+ Ot~ ((N=n)/2)=1y
where 0, = Y i, wid(cj)oo (w; = £1); H(oy) denotes the Hessian
matriz of the function g(o) = (p(x)o,00) and its determinant takes the
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value
(N/m)—md+d—1

1) = DY T (3 +030)) ( TT @it ,

i<j 1<i<m
while s(o,,) denotes the signature of H(oy) and is equal to
s(ow)=— > ((N/m)—d(i —1) - Dw;.
1<i<m
The proof requires a few lemmas.
LEMMA 6. Suppose that (U?;,Uj ) =0; 1 <i<j<m;1<s<d for
1% j, no s appears fori =j; 1 < h<k<m;1<t<dforh#k not

appears for h = k (the hypothesis means that the triples (i, j,s) and (h,k,t)
do not coincide). Then

(¢(Uis,j)00, ¢(Uitz,k)00) =0.
Proof. For u,v € U, (2) implies
(¢(w)ao, ¢(v)ao) = (u,P(a0, p(v)00)) = (u, 3P(e,v)Q(00)) = (u,v),
which for u and v belonging to U7 ; and U}; i Tespectively implies the result.
The previous argument also proves the following lemma.
LEMMA 7. Same hypothesis as in Lemma 6; then
((ﬁ(UiS,j)UO; ¢(Ch)¢(Ui,k)Uo) =0.
LEMMA 8. Forany 1 <i<j<m and 1 < s <d we have
(@(U)oo, ¢(ci — ¢;)¢(Uy j)o0) = 0.
(Observe that, if U is the Jordan algebra of real m x m symmetric matrices
and FE is the Euclidean space M,,(R) of square real matrices, this lemma

simply says that symmetric and skew-symmetric matrices are orthogonal in
M, (R)).

Proof. Write the Pierce decomposition
U=@Uj,, 1<h<k<m,1<t<dforh#k,
no t appears for h = k.

If the triples (4, j, s) and (h, k, t) are different we apply Lemma 7. Otherwise,
let u; ; € U7;. Then by [3, Lemma 1], Lemma 4 and [1,VII]

(o(u; ;)o0, d(ci — cj)d(uj ;)o0) = (00, p(ui ;)d(ci — cj)d(u; ;)oo)
= (00, ¢(P(u; ;)(ci — ¢j))o0) = (e, P(uj ;)(ci — ¢j))

= (e, QUf,j 0 (uf] o(ci— Cj)) - (Uzsg © ufg)(cz - Cj)) =0.
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LEMMA 9. Let uj; be a normalized vector in U7, (1 < i < j < m,
1 < s <d). Then the vectors ¢(c; — c;)p(u; ;)o0 are orthonormal in E.

Proof. By [3, Lemma 1] and Lemma 4

Q(o(ci — ¢;)d(uf j)o0) = Plei — ¢;)P(uf ;)Q(00) = Plei — ¢;)(uf j o uj ;)
= 3P(ci —¢j)(ci+¢5) = 5(ci +¢j)-
By Lemma 2 this implies [[¢(c; — ¢;)¢(u; ;)oo = 1.
To prove the orthogonality it enough to show that, say,
(3) (6(ci)d(us ;) o0, p(cn)d(up, ) o0) = 0
when the triples (4, j, s) and (h, k,t) do not coincide. This is a consequence

of Lemmas 1 and 7.

Proof of Theorem 1. Let g(0) = (¢(x)o, 00) be as in the statement
of the theorem. The Hessian of ¢ at the point o, can be computed in
the following way. Let v be a curve on the Stiefel manifold X' such that
7(0) = o, and 7/(0) = a € (¢(U)o,)L. It has been proved in [3, p. 139)
that

g//(aw)(av a) = _((;S(y)av a)

with ¢(y)o, = ¢(x)og. The isomorphism between the tangent space at oy
and the tangent space at o, yields

9" (0w)(a,a) = —(é(y)b,b)
with a = >3, ., w;jd(c;)b and b € (¢(U)ow)t. We therefore need to fix
an orthonormal basis of this space.

By Lemma 9 there is a vector space V with orthonormal basis
{o(ci — Cj)¢(Uf,j)00}1§i<jgm,1§sgd
Let us put
Aj=E;n(VooU)o), 1<j<m

(by Lemma 8, V' and ¢(U)og are orthogonal). By Lemma 1 and (3)
(4)  Aj=d(Rej)oo & &b P(cj)p(Uj)og  1<j<m.

1<i<m, i#£j, 1<s<d
Let R; be the orthogonal complement of A; in E;. Then

E; =A;®R;, 1<3<m.

Now we fix an orthonormal basis {r/} of R; which (by moving j and by
applying Lemma 1) provides an orthonormal basis of

R= P R

1<j<m
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(the dimension of the R;’s will be computed later). Then, by Lemmas 1
and 8,

E= (U)o @ Ve&R
and we fix
(5) {r1} U{o(ci — cj)o(u; ;)oo}
as an orthonormal basis of V & R = (¢(U)ao)*.

Let b be an element in (5). If b belongs to V then, say, b = ¢(cp, —
ck)¢(u}2’k)ao, therefore, by Lemma 9 we get

(¢(y)b,b) = (y,Q(b)) = Z wjj(cj, Q((cn — ek )d(uf, 1,)00))

= > widiley, (on + k)/2) = (wrdn +widr)/2

1<j<m
while for b in R we have, say, b = ¥ (€ E}); then by Lemma 2
()b, b) = (1, QD) = > wiA;lcj, ) = widk
1<j<m
Now we compute the dimensions of the above spaces. We have
dim((¢(U)oo) @ V) = (m+m(m —1)d/2) + m(m — 1)d/2.
Therefore
dimR =N — m?d+md —m.
By (4)
dimA;=1+(m—-1)d, 1<j<m.
By Lemma 5, the E;’s have the same dimension N/m. Then
diij:%—mcH-d—l, 1<53<m.

Therefore the Hessian is

H() = 0 T (3 + o) (TT wnhe)

h<k 1<k<m

(N/m)—md+d—1

We now turn to the computation of the signature. Since A\, > A\ (for
h < k) the sign of wpAp + wi Ay is the sign of wy,. Therefore the signature is

-y d(mz’)wi(i\zmd+d1> > wi

1<i<m 1<i<m

== > (Z—d(i—l)—l)wi.

1<i<m
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By the stationary phase method (see [4]) this ends the proof of the
theorem.

A particular matrix realization of E. In this section we use the pre-
vious results to write E' as an m x v matrix space (with vector coefficients)
so that the action ¢(U)E reduces to a matrix product which coincides with
the usual one in the Hermitian case. Such a construction is therefore inter-
esting only for the Jordan algebra U, (see the Introduction) and we shall
spend a few words on this case.

Let U be a simple special formally real Jordan algebra and let E be a
Euclidean space as in the Notation.

Let z = P, ;,; belong to U (z;,; € U; ;). We associate to z the m xm
matrix

(6) X =[X,,]

ij=1,...,m
where
X, = {¢(Cz‘)¢(ﬂﬂz‘,j) for 7 < j,
’ ¢(ci)¢(xs,:) fori>j,
so that the matrix coefficients are d-dimensional for ¢ # j and 1-dimensional
for i = j.
Let £ be an element in E. From now on the symbol

span ([T o(0)¢)

will denote the linear span of the elements ], 4 ¢(u){, where the product
is over any subset of the basis of U.

Now let Eq = ¢(c1)E and let G C E; such that Span([[¢(U)G) = E
(such a G exists because of Lemma 5). Let g' be a unit vector in G and
suppose Span([]¢(U)g') & E; then Span([]#(U)g') 2 G. Now we choose
g> € G orthogonal to Span([J¢(U)g') and we go on until we obtain an
orthogonal set {g*,...,¢"} in G. Let G" = Span([]#(U)g") (1 < h < v).
Then (G", G*¥) = 0 for h # k and we write

E = @ G".

1<h<wv
Let G;’ =Ghn E, = d)(cp)Gh, 1<h<wv,1<p<m. Then by Lemma 1
E= & a.
1<h<wv, 1<p<m
Now we decompose an element £ in E as

(7) ¢e= D g

1<h<v, 1<p<m
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and we associate to £ the m x v matrix

(8) == kﬂlghgv, 1<p<m

Lemma 5 and a moment’s reflection show that (8) depends only on &.

We now state a lemma whose easy proof is omitted.

LEMMA 10. Let &, belong to E, = ¢(cp)E. Then ¢(u; ;)& = 0 for any
uij € Ui ; (if i # p and j # p).

The statement of the next theorem follows the notation introduced in
this section.

THEOREM 2. Let x € U, £ € E, let X be the m X m matrix associated to
x in (6) and let = be the m x v matriz associated to £ in (8). Then XZ= is
the m x v matriz associated to ¢p(x)§.

Proof. Let £ = @1 ey 1<pm &y @ in (7). By linearity it suffices
to prove the result for, say, & = f;} (whose matrix = is zero but for the
(p, h)-coefficient). By applying Lemmas 1, 5 and 10 we have

Sy =D bl@i )y =D d(xip)eh + > dlwpi)é)

i<j i<p p<t
= Z ¢(Ci)¢(9€i,p)§£ + Z ¢(Ci)¢($p,i)f£ .
i<p p<t

Any element ¢(ci)¢(xi7p)§£ or (ﬁ(ci)gb(xp,i)fg belongs to Ej;; then, by defi-
nition, each one of them belongs to the corresponding space G? (same 7).
Hence the matrix associated to ¢ ()&} is

I'=[ijlicicm, 1<j<o

where v;; = 0 for j # p and v, = ¢(ci)P(w;p)E) for @ < p and ~;, =
¢(ci)p(wp,i)El for i > p. This ends the proof.

We now describe the above argument for the case U = H,,(C), E =
M, »(C). In this case we fix E; to be zero but for the first row and we can
choose G to be the subspace of F; whose elements have real entries. Now
fix g',...,g" as the natural basis of G and the above construction yields
My, (C).

Now consider the case U = U, = R+ V, E = C, (the Clifford algebra
associated to V). Let ej,...,e; be an orthonormal basis of V' with respect
to B (see the Introduction). Then ey = (1,0), e; = (0,¢;) (1 < j < q) give
an orthonormal basis of U, and ¢ : e; — F}; denotes the imbedding of U, in
Cy (see e.g. [3]). Now fix the idempotents ¢; = (eg+€1)/2, c2 = (e —e1)/2.
Then E = E1 ® E5, where

Ey = (Fo+ F1)Cy Ey = (Fy— F1)C;
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where (cf.[3]) C] is the linear span of the products of F;’s with any j # 1.
Now we follow the argument of this section by fixing ¢! = Fy + F;. Then a
short computation shows that

span (T] ¢(U)g" ) = Span ([T (U (Fy + F1))
= (Fo+ F1) Cy + (Fo — F1) ,C,

where EC’; (OC;) is the subspace of C’; containing the elements obtained by
multiplying an even (odd) number of F;’s (j # 0, j # 1). Then C, turns
out to be the matrix
[(Fo +F) Cy (Fo+ F1) ocﬂ
(Fo — F1) ,C;  (Fo— F1) C;
The previous argument shows that (besides C;) we can take E as an
m X v matrix with vector coefficients.
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