COLLOQUIUM MATHEMATICUM

REPRESENTATIONS OF JORDAN ALGEBRAS AND SPECIAL FUNCTIONS

BY
GIANCARLO TRAVAGLINI (MILAN)
Introduction. This paper is concerned with the action of a special formally real Jordan algebra U on an Euclidean space E, with the decomposition of E under this action and with an application of this decomposition to the study of Bessel functions on the self-adjoint homogeneous cone Ω associated to U.

The special formally real Jordan algebras are classified: they are the $m \times m$ Hermitian matrices $H_{m}(\mathbb{F})(\mathbb{F}=\mathbb{R}, \mathbb{C}, \mathbb{H})$ endowed with the symmetric product

$$
\begin{equation*}
A \circ B=\frac{1}{2}(A B+B A) \tag{1}
\end{equation*}
$$

and the vector space $\mathbb{U}_{q}=\mathbb{R}+V$ (V is a q-dimensional real vector space) equipped with the product

$$
(\lambda, u) \circ(\mu, v)=(\lambda \mu+B(u, v), \lambda v+\mu u)
$$

where $\lambda, \mu \in \mathbb{R}, u, v \in V$ and B is a symmetric bilinear positive form on V. The associated cones are given by the positive definite matrices and by the light cones respectively.

For a special formally real Jordan algebra U there exists a Euclidean space E and a Jordan algebra injective homomorphism $\phi: U \rightarrow \operatorname{Sym}^{+}(E)$ of U into the formally real Jordan algebra of the self-adjoint endomorphisms of E endowed with the product (1) (the references for the results on Jordan algebras needed in this paper are [1], [6], [5], [2], [3]). For the case $H_{m}(\mathbb{F})$ we take $E=M_{m, h}(\mathbb{F})$ (the $m \times h$ matrices on \mathbb{F}); $\phi(U) E$ is the matrix product. For \mathbb{U}_{q} we can take $E=C_{q}$, the Clifford algebra associated to V and consider the imbedding of \mathbb{U}_{q} in C_{q} (so that $\phi(U) E$ is a product in C_{q}). Observe that \mathbb{U}_{2} is isomorphic to $H_{2}(\mathbb{R})$ and we can choose $E=M_{2, h}(\mathbb{R})$ in place of C_{2}. One of the purposes of this paper is to show that a related fact is true in general; we shall prove that if a special formally real Jordan
algebra U with rank m acts on a Euclidean space E in the described way, then E can be written as an $m \times h$ matrix, so that $\phi(U) E$ is a matrix product which formally extends the Hermitian matrix case.

The main part of the paper deals with the Bessel functions introduced in [3]. That paper ended with an asymptotic formula for the Bessel functions on Ω, which was proved for particular choices of E and by algebra-byalgebra arguments. Here we prove the result for general E and without classification theory. The proof uses the stationary phase method, which needs an imbedding of U in E and an explicit description of a basis of the orthogonal complement.

The author wishes to thank Jacques Faraut for introducing him to the study of Jordan algebras.

Notation. In this paper U will always be a simple n-dimensional special formally real Jordan algebra with rank m and the symbol \circ will denote the product in a Jordan algebra. P is the quadratic representation $P(x)=$ $2 L^{2}(x)-L\left(x^{2}\right)$, where $L(x) y=x \circ y$, also let $P(x, y)=L(x) L(y)+L(y) L(x)-$ $L(x \circ y)$. Let e be the identity of U and let $\left\{c_{1}, \ldots, c_{m}\right\}$ be an orthonormal system of primitive idempotents $\left(c_{i} \circ c_{j}=0\right.$ for $i \neq j, c_{i} \circ c_{i}=c_{i}, c_{1}+\ldots+$ $c_{m}=e, m$ maximal). We have the Pierce decomposition of U relative to the previous set of idempotents:

$$
U=\bigoplus_{i \leq j} U_{i, j}
$$

where $U_{i, i}=\mathbb{R} c_{i}, U_{i, j}=L\left(c_{i}\right) L\left(c_{j}\right) U$ for $i \neq j$. The $U_{i, j}$'s have the same (real) dimension d. We fix an orthonormal basis

$$
\left\{c_{j}\right\}_{1 \leq j \leq m} \cup\left\{u_{i, j}^{s}\right\}_{1 \leq i<j \leq m, 1 \leq s \leq d},
$$

where any $u_{i, j}^{s}$ belongs to $U_{i, j}$. We write $U_{i, j}^{s}$ for the space $\mathbb{R} u_{i, j}^{s}$. $\operatorname{Tr}(x)$ will denote the trace of an element x in U.

There exists an N-dimensional Euclidean space E with the following property. Let $\operatorname{Sym}(E)$ be the space of self-adjoint endomorphisms of E and $\operatorname{Sym}^{+}(E)$ the same space when endowed with the Jordan product (1). $\operatorname{Sym}^{+}(E)$ is a formally real Jordan algebra $[1, \mathrm{XI}]$ and there exists a Jordan algebra injective homomorphism $\phi: U \rightarrow \operatorname{Sym}^{+}(E)$ such that $\phi(e)=\mathrm{id}$ ([2]). Let $Q: E \rightarrow U$ be the quadratic form satisfying $(\phi(x) \xi, \xi)=(x, Q(\xi))$ for any $x \in U$ and $\xi \in E$; we denote by ψ the associated bilinear form. We write E_{i} for the subspace $\phi\left(c_{i}\right) E$ of $E(1 \leq i \leq m)$.

Let $\Omega=\exp U$ be the homogeneous self-adjoint cone associated to U. Then $Q: E \rightarrow \bar{\Omega}$. We ask E to satisfy $Q(E)=\bar{\Omega}$. The set $\Sigma=\{\xi \in E:$ $Q(\xi)=e\}$ is called the Stiefel manifold and the following polar decomposition holds a.e. [3]:

$$
E=\Omega \times \Sigma .
$$

Preliminary results. We begin with an elementary fact whose proof will be omitted.

Lemma 1. The subspaces $E_{j}=\phi\left(c_{j}\right) E(1 \leq j \leq m)$ of E are mutually orthogonal and satisfy the direct sum decomposition $E=\bigoplus_{1 \leq j \leq m} E_{j}$. As a consequence, for any $\xi \in E, \phi\left(c_{i}\right) \phi\left(c_{j}\right) \xi=0$ provided $i \neq j$.

LEMMA 2. Let $\xi_{i} \in E_{i}$ and $\xi_{j} \in E_{j}(i, j=1, \ldots, m)$. Then $\psi\left(\xi_{i}, \xi_{j}\right) \in$ $U_{i, j}$. Moreover, $Q\left(\xi_{i}\right)=\left\|\xi_{i}\right\|^{2} c_{i}$.

Proof. By [3, Lemma 1] one knows that $Q(\phi(u) \xi)=P(u) Q(\xi)$, which by linearization implies

$$
\begin{equation*}
\psi(\phi(x) \xi, \phi(y) \eta)+\psi(\phi(y) \xi, \phi(x) \eta)=P(x, y) \psi(\xi, \eta) \tag{2}
\end{equation*}
$$

Now let $x=c_{i}, y=c_{j}, \xi=\xi_{i}, \eta=\xi_{j}$; then by (2) and Lemma 1, $\psi\left(\xi_{i}, \xi_{j}\right)=P\left(c_{i}, c_{j}\right) \psi\left(\xi_{i}, \xi_{j}\right)$, which by [1,VII,2] implies the result. In particular, $Q\left(\xi_{i}\right)=\lambda c_{i}$ with $\lambda=\operatorname{Tr}\left(\lambda c_{i}\right)=\operatorname{Tr}\left(Q\left(\xi_{i}\right)\right)=\left(Q\left(\xi_{i}\right), e\right)=\left(\xi_{i}, \xi_{i}\right)=$ $\left\|\xi_{i}\right\|^{2}$.

Lemma 3. Let $\xi \in E$ and suppose $Q(\xi) \in U_{j, j}$. Then $\xi \in E_{j}$.
Proof. Write

$$
\xi=\sum_{1 \leq i \leq m} \phi\left(c_{i}\right) \xi=\sum_{1 \leq i \leq m} \xi_{i} .
$$

Then by Lemma 2,

$$
\begin{aligned}
Q(\xi) & =\psi\left(\sum_{1 \leq i \leq m} \xi_{i}, \sum_{1 \leq i \leq m} \xi_{i}\right) \\
& =\sum_{1 \leq i \leq m} Q\left(\xi_{i}\right)+2 \sum_{h<k} \psi\left(\xi_{h}, \xi_{k}\right)=\sum_{1 \leq i \leq m} Q\left(\xi_{i}\right) .
\end{aligned}
$$

The assumption and Lemma 1 now imply $Q\left(\xi_{i}\right)=0$ for $i \neq j$ and Lemma 2 again implies $\xi_{i}=0$ for $i \neq j$. Therefore $\xi \in E_{j}$.

Lemma 4. Let $\left\{u_{i, j}^{s}\right\}_{1 \leq s \leq d}$ be an orthonormal basis of $U_{i, j}(1 \leq i<j \leq$ $m)$. Then

$$
u_{i, j}^{s} \circ u_{i, j}^{t}=\delta_{s, t}\left(c_{i}+c_{j}\right) / 2
$$

(Kronecker's δ).
Proof. We know $[1, \mathrm{VIII}]$ that $U_{i, j} \circ U_{i, j} \subseteq U_{i, i}+U_{j, j}$ and that $c_{i} \circ u_{i, j}=$ $\frac{1}{2} u_{i, j}$ for any $u_{i, j} \in U_{i, j}(i \neq j)$. Then the associativity of the inner product

$$
\left(u_{i, j}^{s} \circ u_{i, j}^{s}, c_{i}\right)=\left(u_{i, j}^{s}, u_{i, j}^{s} \circ c_{i}\right)
$$

implies the result.
Lemma 5. Let $u_{i, j}$ be a normalized vector in $U_{i, j}(i \neq j)$. Then for $\xi_{i} \in E_{i}$ the mapping

$$
\xi_{i} \rightarrow \phi\left(\sqrt{2} u_{i, j}\right) \xi_{i}
$$

is an inner product space isomorphism between E_{i} and E_{j}.
Proof. First we show that $\phi\left(u_{i, j}\right) E_{i} \subseteq E_{j}$. By Lemma 3 it is enough to prove that $Q\left(\phi\left(u_{i, j}\right) E_{i}\right) \subseteq U_{j, j}$. Indeed, suppose $\xi_{i} \in E_{i},\left\|\xi_{i}\right\|=1$; then by [3, Lemma 1], and Lemmas 2 and 3

$$
\begin{aligned}
Q\left(\phi\left(\sqrt{2} u_{i, j}\right) \xi_{i}\right) & =2 P\left(u_{i, j}\right) Q\left(\xi_{i}\right)=2 P\left(u_{i, j}\right) c_{i} \\
& =4 u_{i, j} \circ\left(u_{i, j} \circ c_{i}\right)-2\left(u_{i, j} \circ u_{i, j}\right) \circ c_{i} \\
& =2 u_{i, j} \circ u_{i, j}-\left(c_{i}+c_{j}\right) \circ c_{i}=\left(c_{i}+c_{j}\right)-c_{i} .
\end{aligned}
$$

To complete the proof we need to show that $\left\|\phi\left(\sqrt{2} u_{i, j}\right) \xi_{i}\right\|=\left\|\xi_{i}\right\|$ for any $\xi_{i} \in E_{i}$. Indeed, by Lemmas 2 and 3,

$$
\begin{aligned}
\left\|\phi\left(\sqrt{2} u_{i, j}\right) \xi_{i}\right\|^{2} & =2\left(\phi\left(u_{i, j}\right) \xi_{i}, \phi\left(u_{i, j}\right) \xi_{i}\right) \\
& =2\left(\phi\left(u_{i, j} \circ u_{i, j}\right) \xi_{i}, \xi_{i}\right)=\left(\phi\left(c_{i}+c_{j}\right) \xi_{i}, \xi_{i}\right) \\
& =\left(c_{i}+c_{j}, Q\left(\xi_{i}\right)\right)=\left(c_{i}+c_{j},\left\|\xi_{i}\right\|^{2} c_{i}\right)=\left\|\xi_{i}\right\|^{2} .
\end{aligned}
$$

A characterization of the Stiefel manifold. Lemma 2 and the identity $\left.Q(\xi)=\sum_{1<i<m} Q\left(\xi_{i}\right)+2 \sum_{i<j} \psi\left(\xi_{i}, \xi_{j}\right)\right)$ provide a simple characterization of the Stiefel manifold Σ.

Proposition. Let $\xi=\sum_{1 \leq i \leq m} \phi\left(c_{i}\right) \xi=\sum_{1 \leq i \leq m} \xi_{i}$ belong to E. Then $\xi \in \Sigma$ if and only if $\psi\left(\xi_{i}, \xi_{j}\right)=\delta_{i j} c_{i}$.

An asymptotic formula for Bessel functions. Following [3] we define the Bessel function

$$
J(r)=\int_{\Sigma} e^{-i\left(\sigma, \phi(\sqrt{r}) \sigma_{0}\right)} d \beta(\sigma)
$$

where $\sigma_{0} \in \Sigma$ and is fixed once for all, $r \in \Omega$ and the measure has been defined in [3]. The following theorem has been proved in [3] through classification theory and assuming particular choices of E :

Theorem 1. Let U be a special formally real Jordan algebra. Let $x=$ $\sum_{1 \leq j \leq m} \lambda_{j} c_{j}$ be an element in Ω with distinct eigenvalues $\lambda_{1}>\ldots>\lambda_{m}$ (>0). Then, as $t \rightarrow+\infty$,

$$
\begin{aligned}
J\left((t x)^{2}\right)= & \int_{\Sigma} e^{-i t\left(\phi(x) \sigma, \sigma_{0}\right)} d \beta(\sigma) \\
= & (2 \pi / t)^{(N-n) / 2} \sum_{\omega}\left(\left|H\left(\sigma_{\omega}\right)\right|^{-1 / 2} e^{i(\pi / 4) s\left(\sigma_{\omega}\right)+i t\left(\phi(x) \sigma_{\omega}, \sigma_{0}\right)}\right) \\
& +O\left(t^{-((N-n) / 2)-1}\right)
\end{aligned}
$$

where $\sigma_{\omega}=\sum_{1 \leq j \leq m} \omega_{j} \phi\left(c_{j}\right) \sigma_{0}\left(\omega_{j}= \pm 1\right) ; H\left(\sigma_{\omega}\right)$ denotes the Hessian matrix of the function $g(\sigma)=\left(\phi(x) \sigma, \sigma_{0}\right)$ and its determinant takes the
value

$$
\left|H\left(\sigma_{\omega}\right)\right|=(-1)^{N-n} \prod_{i<j}\left(\frac{1}{2}\left(\omega_{i} \lambda_{i}+\omega_{j} \lambda_{j}\right)\right)^{d}\left(\prod_{1 \leq i \leq m} \omega_{i} \lambda_{i}\right)^{(N / m)-m d+d-1}
$$

while $s\left(\sigma_{\omega}\right)$ denotes the signature of $H\left(\sigma_{\omega}\right)$ and is equal to

$$
s\left(\sigma_{\omega}\right)=-\sum_{1 \leq i \leq m}((N / m)-d(i-1)-1) \omega_{i}
$$

The proof requires a few lemmas.
Lemma 6. Suppose that $\left(U_{i, j}^{s}, U_{h, k}^{t}\right)=0 ; 1 \leq i \leq j \leq m ; 1 \leq s \leq d$ for $i \neq j$, no s appears for $i=j ; 1 \leq h \leq k \leq m ; 1 \leq t \leq d$ for $h \neq k$, no t appears for $h=k$ (the hypothesis means that the triples (i, j, s) and (h, k, t) do not coincide). Then

$$
\left(\phi\left(U_{i, j}^{s}\right) \sigma_{0}, \phi\left(U_{h, k}^{t}\right) \sigma_{0}\right)=0
$$

Proof. For $u, v \in U$, (2) implies

$$
\left(\phi(u) \sigma_{0}, \phi(v) \sigma_{0}\right)=\left(u, \psi\left(\sigma_{0}, \phi(v) \sigma_{0}\right)\right)=\left(u, \frac{1}{2} P(e, v) Q\left(\sigma_{0}\right)\right)=(u, v)
$$

which for u and v belonging to $U_{i, j}^{s}$ and $U_{h, k}^{t}$ respectively implies the result.
The previous argument also proves the following lemma.
Lemma 7. Same hypothesis as in Lemma 6; then

$$
\left(\phi\left(U_{i, j}^{s}\right) \sigma_{0}, \phi\left(c_{h}\right) \phi\left(U_{h, k}^{t}\right) \sigma_{0}\right)=0
$$

Lemma 8. For any $1 \leq i<j \leq m$ and $1 \leq s \leq d$ we have

$$
\left(\phi(U) \sigma_{0}, \phi\left(c_{i}-c_{j}\right) \phi\left(U_{i, j}^{s}\right) \sigma_{0}\right)=0
$$

(Observe that, if U is the Jordan algebra of real $m \times m$ symmetric matrices and E is the Euclidean space $M_{m}(\mathbb{R})$ of square real matrices, this lemma simply says that symmetric and skew-symmetric matrices are orthogonal in $\left.M_{m}(\mathbb{R})\right)$.

Proof. Write the Pierce decomposition

$$
\begin{array}{cl}
U=\bigoplus U_{h, k}^{t}, \quad & 1 \leq h \leq k \leq m, 1 \leq t \leq d \text { for } h \neq k \\
& \text { no } t \text { appears for } h=k
\end{array}
$$

If the triples (i, j, s) and (h, k, t) are different we apply Lemma 7. Otherwise, let $u_{i, j}^{s} \in U_{i, j}^{s}$. Then by [3, Lemma 1], Lemma 4 and [1,VII]

$$
\begin{aligned}
& \left(\phi\left(u_{i, j}^{s}\right) \sigma_{0}, \phi\left(c_{i}-c_{j}\right) \phi\left(u_{i, j}^{s}\right) \sigma_{0}\right)=\left(\sigma_{0}, \phi\left(u_{i, j}^{s}\right) \phi\left(c_{i}-c_{j}\right) \phi\left(u_{i, j}^{s}\right) \sigma_{0}\right) \\
& \quad=\left(\sigma_{0}, \phi\left(P\left(u_{i, j}^{s}\right)\left(c_{i}-c_{j}\right)\right) \sigma_{0}\right)=\left(e, P\left(u_{i, j}^{s}\right)\left(c_{i}-c_{j}\right)\right) \\
& \quad=\left(e, 2 u_{i, j}^{s} \circ\left(u_{i, j}^{s} \circ\left(c_{i}-c_{j}\right)\right)-\left(u_{i, j}^{s} \circ u_{i, j}^{s}\right)\left(c_{i}-c_{j}\right)\right)=0 .
\end{aligned}
$$

Lemma 9. Let $u_{i, j}^{s}$ be a normalized vector in $U_{i, j}^{s}(1 \leq i<j \leq m$, $1 \leq s \leq d)$. Then the vectors $\phi\left(c_{i}-c_{j}\right) \phi\left(u_{i, j}^{s}\right) \sigma_{0}$ are orthonormal in E.

Proof. By [3, Lemma 1] and Lemma 4

$$
\begin{aligned}
Q\left(\phi\left(c_{i}-c_{j}\right) \phi\left(u_{i, j}^{s}\right) \sigma_{0}\right) & =P\left(c_{i}-c_{j}\right) P\left(u_{i, j}^{s}\right) Q\left(\sigma_{0}\right)=P\left(c_{i}-c_{j}\right)\left(u_{i, j}^{s} \circ u_{i, j}^{s}\right) \\
& =\frac{1}{2} P\left(c_{i}-c_{j}\right)\left(c_{i}+c_{j}\right)=\frac{1}{2}\left(c_{i}+c_{j}\right) .
\end{aligned}
$$

By Lemma 2 this implies $\left\|\phi\left(c_{i}-c_{j}\right) \phi\left(u_{i, j}^{s}\right) \sigma_{0}\right\|=1$.
To prove the orthogonality it enough to show that, say,

$$
\begin{equation*}
\left(\phi\left(c_{i}\right) \phi\left(u_{i, j}^{s}\right) \sigma_{0}, \phi\left(c_{h}\right) \phi\left(u_{h, k}^{t}\right) \sigma_{0}\right)=0 \tag{3}
\end{equation*}
$$

when the triples (i, j, s) and (h, k, t) do not coincide. This is a consequence of Lemmas 1 and 7.

Proof of Theorem 1. Let $g(\sigma)=\left(\phi(x) \sigma, \sigma_{0}\right)$ be as in the statement of the theorem. The Hessian of g at the point σ_{ω} can be computed in the following way. Let γ be a curve on the Stiefel manifold Σ such that $\gamma(0)=\sigma_{\omega}$ and $\gamma^{\prime}(0)=a \in\left(\phi(U) \sigma_{\omega}\right)^{\perp}$. It has been proved in [3, p. 139] that

$$
g^{\prime \prime}\left(\sigma_{\omega}\right)(a, a)=-(\phi(y) a, a)
$$

with $\phi(y) \sigma_{\omega}=\phi(x) \sigma_{0}$. The isomorphism between the tangent space at σ_{0} and the tangent space at σ_{ω} yields

$$
g^{\prime \prime}\left(\sigma_{\omega}\right)(a, a)=-(\phi(y) b, b)
$$

with $a=\sum_{1 \leq j \leq m} \omega_{j} \phi\left(c_{j}\right) b$ and $b \in\left(\phi(U) \sigma_{w}\right)^{\perp}$. We therefore need to fix an orthonormal basis of this space.

By Lemma 9 there is a vector space V with orthonormal basis

$$
\left\{\phi\left(c_{i}-c_{j}\right) \phi\left(u_{i, j}^{s}\right) \sigma_{0}\right\}_{1 \leq i<j \leq m, 1 \leq s \leq d}
$$

Let us put

$$
A_{j}=E_{j} \cap\left(V \oplus \phi(U) \sigma_{0}\right), \quad 1 \leq j \leq m
$$

(by Lemma 8, V and $\phi(U) \sigma_{0}$ are orthogonal). By Lemma 1 and (3)

$$
\begin{equation*}
A_{j}=\phi\left(\mathbb{R} c_{j}\right) \sigma_{0} \oplus \bigoplus_{1 \leq i \leq m, i \neq j, 1 \leq s \leq d} \phi\left(c_{j}\right) \phi\left(U_{i, j}^{s}\right) \sigma_{0} \quad 1 \leq j \leq m \tag{4}
\end{equation*}
$$

Let R_{j} be the orthogonal complement of A_{j} in E_{j}. Then

$$
E_{j}=A_{j} \oplus R_{j}, \quad 1 \leq j \leq m
$$

Now we fix an orthonormal basis $\left\{r_{i}^{j}\right\}$ of R_{j} which (by moving j and by applying Lemma 1) provides an orthonormal basis of

$$
R=\bigoplus_{1 \leq j \leq m} R_{j}
$$

(the dimension of the R_{j} 's will be computed later). Then, by Lemmas 1 and 8,

$$
E=\left(\phi(U) \sigma_{0}\right) \oplus V \oplus R
$$

and we fix

$$
\begin{equation*}
\left\{r_{i}^{j}\right\} \cup\left\{\phi\left(c_{i}-c_{j}\right) \phi\left(u_{i, j}^{s}\right) \sigma_{0}\right\} \tag{5}
\end{equation*}
$$

as an orthonormal basis of $V \oplus R=\left(\phi(U) \sigma_{0}\right)^{\perp}$.
Let b be an element in (5). If b belongs to V then, say, $b=\phi\left(c_{h}-\right.$ $\left.c_{k}\right) \phi\left(u_{h, k}^{t}\right) \sigma_{0}$, therefore, by Lemma 9 we get

$$
\begin{aligned}
(\phi(y) b, b) & =(y, Q(b))=\sum_{1 \leq j \leq m} \omega_{j} \lambda_{j}\left(c_{j}, Q\left(\phi\left(c_{h}-c_{k}\right) \phi\left(u_{h, k}^{t}\right) \sigma_{0}\right)\right) \\
& =\sum_{1 \leq j \leq m} \omega_{j} \lambda_{j}\left(c_{j},\left(c_{h}+c_{k}\right) / 2\right)=\left(\omega_{h} \lambda_{h}+\omega_{k} \lambda_{k}\right) / 2
\end{aligned}
$$

while for b in R we have, say, $b=r_{i}^{k}\left(\in E_{k}\right)$; then by Lemma 2

$$
(\phi(y) b, b)=(y, Q(b))=\sum_{1 \leq j \leq m} \omega_{j} \lambda_{j}\left(c_{j}, c_{k}\right)=\omega_{k} \lambda_{k} .
$$

Now we compute the dimensions of the above spaces. We have

$$
\operatorname{dim}\left(\left(\phi(U) \sigma_{0}\right) \oplus V\right)=(m+m(m-1) d / 2)+m(m-1) d / 2
$$

Therefore

$$
\operatorname{dim} R=N-m^{2} d+m d-m
$$

By (4)

$$
\operatorname{dim} A_{j}=1+(m-1) d, \quad 1 \leq j \leq m
$$

By Lemma 5, the E_{j} 's have the same dimension N / m. Then

$$
\operatorname{dim} R_{j}=\frac{N}{m}-m d+d-1, \quad 1 \leq j \leq m
$$

Therefore the Hessian is
$\left|H\left(\sigma_{\omega}\right)\right|=(-1)^{N-n} \prod_{h<k}\left(\frac{1}{2}\left(\omega_{h} \lambda_{h}+\omega_{k} \lambda_{k}\right)\right)^{d}\left(\prod_{1 \leq k \leq m} \omega_{k} \lambda_{k}\right)^{(N / m)-m d+d-1}$.
We now turn to the computation of the signature. Since $\lambda_{h}>\lambda_{k}$ (for $h<k)$ the sign of $\omega_{h} \lambda_{h}+\omega_{k} \lambda_{k}$ is the sign of ω_{h}. Therefore the signature is

$$
\begin{aligned}
-\sum_{1 \leq i \leq m} d(m-i) \omega_{i}-\left(\frac{N}{m}-m d\right. & +d-1) \sum_{1 \leq i \leq m} \omega_{i} \\
& =-\sum_{1 \leq i \leq m}\left(\frac{N}{m}-d(i-1)-1\right) \omega_{i}
\end{aligned}
$$

By the stationary phase method (see [4]) this ends the proof of the theorem.

A particular matrix realization of E. In this section we use the previous results to write E as an $m \times v$ matrix space (with vector coefficients) so that the action $\phi(U) E$ reduces to a matrix product which coincides with the usual one in the Hermitian case. Such a construction is therefore interesting only for the Jordan algebra \mathbb{U}_{q} (see the Introduction) and we shall spend a few words on this case.

Let U be a simple special formally real Jordan algebra and let E be a Euclidean space as in the Notation.

Let $x=\bigoplus_{i \leq j} x_{i, j}$ belong to $U\left(x_{i, j} \in U_{i, j}\right)$. We associate to x the $m \times m$ matrix

$$
\begin{equation*}
X=\left[X_{i, j}\right]_{i, j=1, \ldots, m} \tag{6}
\end{equation*}
$$

where

$$
X_{i, j}= \begin{cases}\phi\left(c_{i}\right) \phi\left(x_{i, j}\right) & \text { for } i \leq j, \\ \phi\left(c_{i}\right) \phi\left(x_{j, i}\right) & \text { for } i>j,\end{cases}
$$

so that the matrix coefficients are d-dimensional for $i \neq j$ and 1-dimensional for $i=j$.

Let ξ be an element in E. From now on the symbol

$$
\operatorname{Span}\left(\prod \phi(U) \xi\right)
$$

will denote the linear span of the elements $\prod_{u \in A} \phi(u) \xi$, where the product is over any subset of the basis of U.

Now let $E_{1}=\phi\left(c_{1}\right) E$ and let $G \subseteq E_{1}$ such that $\operatorname{Span}\left(\prod \phi(U) G\right)=E$ (such a G exists because of Lemma 5). Let g^{1} be a unit vector in G and suppose $\operatorname{Span}\left(\prod \phi(U) g^{1}\right) \nsubseteq E$; then $\operatorname{Span}\left(\prod \phi(U) g^{1}\right) \nsupseteq G$. Now we choose $g^{2} \in G$ orthogonal to $\operatorname{Span}\left(\prod \phi(U) g^{1}\right)$ and we go on until we obtain an orthogonal set $\left\{g^{1}, \ldots, g^{v}\right\}$ in G. Let $G^{h}=\operatorname{Span}\left(\prod \phi(U) g^{h}\right)(1 \leq h \leq v)$. Then $\left(G^{h}, G^{k}\right)=0$ for $h \neq k$ and we write

$$
E=\bigoplus_{1 \leq h \leq v} G^{h} .
$$

Let $G_{p}^{h}=G^{h} \cap E_{p}=\phi\left(c_{p}\right) G^{h}, 1 \leq h \leq v, 1 \leq p \leq m$. Then by Lemma 1

$$
E=\bigoplus_{1 \leq h \leq v, 1 \leq p \leq m} G_{p}^{h}
$$

Now we decompose an element ξ in E as

$$
\begin{equation*}
\xi=\bigoplus_{1 \leq h \leq v, 1 \leq p \leq m} \xi_{p}^{h} \tag{7}
\end{equation*}
$$

and we associate to ξ the $m \times v$ matrix

$$
\begin{equation*}
\Xi=\left[\xi_{p}^{h}\right]_{1 \leq h \leq v, 1 \leq p \leq m} \tag{8}
\end{equation*}
$$

Lemma 5 and a moment's reflection show that (8) depends only on ξ.
We now state a lemma whose easy proof is omitted.
Lemma 10. Let ξ_{p} belong to $E_{p}=\phi\left(c_{p}\right) E$. Then $\phi\left(u_{i, j}\right) \xi_{p}=0$ for any $u_{i, j} \in U_{i, j}($ if $i \neq p$ and $j \neq p)$.

The statement of the next theorem follows the notation introduced in this section.

Theorem 2. Let $x \in U, \xi \in E$, let X be the $m \times m$ matrix associated to x in (6) and let Ξ be the $m \times v$ matrix associated to ξ in (8). Then $X \Xi$ is the $m \times v$ matrix associated to $\phi(x) \xi$.

Proof. Let $\xi=\bigoplus_{1 \leq h \leq v, 1 \leq p \leq m} \xi_{p}^{h}$ as in (7). By linearity it suffices to prove the result for, say, $\xi=\xi_{p}^{h}$ (whose matrix Ξ is zero but for the (p, h)-coefficient). By applying Lemmas 1,5 and 10 we have

$$
\begin{aligned}
\phi(x) \xi_{p}^{h} & =\sum_{i \leq j} \phi\left(x_{i, j}\right) \xi_{p}^{h}=\sum_{i \leq p} \phi\left(x_{i, p}\right) \xi_{p}^{h}+\sum_{p<i} \phi\left(x_{p, i}\right) \xi_{p}^{h} \\
& =\sum_{i \leq p} \phi\left(c_{i}\right) \phi\left(x_{i, p}\right) \xi_{p}^{h}+\sum_{p<i} \phi\left(c_{i}\right) \phi\left(x_{p, i}\right) \xi_{p}^{h} .
\end{aligned}
$$

Any element $\phi\left(c_{i}\right) \phi\left(x_{i, p}\right) \xi_{p}^{h}$ or $\phi\left(c_{i}\right) \phi\left(x_{p, i}\right) \xi_{p}^{h}$ belongs to E_{i}; then, by definition, each one of them belongs to the corresponding space G_{i}^{h} (same i). Hence the matrix associated to $\phi(x) \xi_{p}^{h}$ is

$$
\Gamma=\left[\gamma_{i, j}\right]_{1 \leq i \leq m,} 1 \leq j \leq v
$$

where $\gamma_{i, j}=0$ for $j \neq p$ and $\gamma_{i, p}=\phi\left(c_{i}\right) \phi\left(x_{i, p}\right) \xi_{p}^{h}$ for $i \leq p$ and $\gamma_{i, p}=$ $\phi\left(c_{i}\right) \phi\left(x_{p, i}\right) \xi_{p}^{h}$ for $i>p$. This ends the proof.

We now describe the above argument for the case $U=H_{m}(\mathbb{C}), E=$ $M_{m, v}(\mathbb{C})$. In this case we fix E_{1} to be zero but for the first row and we can choose G to be the subspace of E_{1} whose elements have real entries. Now fix g^{1}, \ldots, g^{v} as the natural basis of G and the above construction yields $M_{m, v}(\mathbb{C})$.

Now consider the case $U=\mathbb{U}_{q}=\mathbb{R}+V, E=C_{q}$ (the Clifford algebra associated to V). Let $e_{\hat{1}}, \ldots, e_{\hat{q}}$ be an orthonormal basis of V with respect to B (see the Introduction). Then $e_{0}=(1,0), e_{j}=\left(0, e_{\hat{j}}\right)(1 \leq j \leq q)$ give an orthonormal basis of \mathbb{U}_{q} and $\phi: e_{j} \rightarrow F_{j}$ denotes the imbedding of \mathbb{U}_{q} in C_{q} (see e.g. [3]). Now fix the idempotents $c_{1}=\left(e_{0}+e_{1}\right) / 2, c_{2}=\left(e_{0}-e_{1}\right) / 2$. Then $E=E_{1} \oplus E_{2}$, where

$$
E_{1}=\left(F_{0}+F_{1}\right) C_{q}^{1}, \quad E_{2}=\left(F_{0}-F_{1}\right) C_{q}^{1}
$$

where (cf.[3]) C_{q}^{1} is the linear span of the products of F_{j} 's with any $j \neq 1$. Now we follow the argument of this section by fixing $g^{1}=F_{0}+F_{1}$. Then a short computation shows that

$$
\begin{aligned}
\operatorname{Span}\left(\prod \phi\left(\mathbb{U}_{q}\right) g^{1}\right) & =\operatorname{Span}\left(\prod \phi\left(\mathbb{U}_{q}\right)\left(F_{0}+F_{1}\right)\right) \\
& =\left(F_{0}+F_{1}\right){ }_{e} C_{q}^{1}+\left(F_{0}-F_{1}\right){ }_{o} C_{q}^{1}
\end{aligned}
$$

where ${ }_{e} C_{q}^{1}\left({ }_{o} C_{q}^{1}\right)$ is the subspace of C_{q}^{1} containing the elements obtained by multiplying an even (odd) number of F_{j} 's $(j \neq 0, j \neq 1)$. Then C_{q} turns out to be the matrix

$$
\left[\begin{array}{ll}
\left(F_{0}+F_{1}\right)_{e} C_{q}^{1} & \left(F_{0}+F_{1}\right)_{o} C_{q}^{1} \\
\left(F_{0}-F_{1}\right)_{o} C_{q}^{1} & \left(F_{0}-F_{1}\right)_{e} C_{q}^{1}
\end{array}\right] .
$$

The previous argument shows that (besides C_{q}) we can take E as an $m \times v$ matrix with vector coefficients.

REFERENCES

[1] H. Braun and M. Koecher, Jordan-Algebren, Springer, Berlin, 1966.
[2] J. Dorfmeister, Theta functions for the special formally real Jordan algebras, Invent. Math. 44 (1978), 103-108.
[3] J. Faraut and G. Travaglini, Bessel functions associated with representations of formally real Jordan algebras, J. Funct. Anal. 71 (1987), 123-141.
[4] M. V. Fedoryuk, The stationary phase and pseudodifferential operators, Uspekhi Mat. Nauk 26 (1) (1971), 67-112; English transl.: Russian Math. Surveys 26 (1) (1971), 65-115.
[5] K. McCrimmon, Jordan algebras and their applications, Bull. Amer. Math. Soc. 84 (1978), 612-627.
[6] I. Satake, Algebraic structure of symmetric domains, Iwanami Shoten and Princeton Univ. Press, Princeton, N.J., 1980.

DIPARTIMENTO DI MATEMATICA
UNIVERSITÀ DEGLI STUDI DI MILANO
VIA SALDINI 50, 20133 MILANO, ITALY

