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Introduction. This paper is concerned with the action of a special for-
mally real Jordan algebra U on an Euclidean space E, with the decompo-
sition of E under this action and with an application of this decomposition
to the study of Bessel functions on the self-adjoint homogeneous cone Ω
associated to U .

The special formally real Jordan algebras are classified: they are the
m×mHermitian matricesHm(F) (F = R,C,H) endowed with the symmetric
product

(1) A ◦B = 1
2 (AB +BA)

and the vector space Uq = R + V (V is a q-dimensional real vector space)
equipped with the product

(λ, u) ◦ (µ, v) = (λµ+B(u, v), λv + µu)

where λ, µ ∈ R, u, v ∈ V and B is a symmetric bilinear positive form on V .
The associated cones are given by the positive definite matrices and by the
light cones respectively.

For a special formally real Jordan algebra U there exists a Euclidean
space E and a Jordan algebra injective homomorphism φ : U → Sym+(E)
of U into the formally real Jordan algebra of the self-adjoint endomorphisms
of E endowed with the product (1) (the references for the results on Jordan
algebras needed in this paper are [1], [6], [5], [2], [3]). For the case Hm(F)
we take E = Mm,h(F) (the m × h matrices on F); φ(U)E is the matrix
product. For Uq we can take E = Cq, the Clifford algebra associated to V
and consider the imbedding of Uq in Cq (so that φ(U)E is a product in Cq).
Observe that U2 is isomorphic to H2(R) and we can choose E = M2,h(R)
in place of C2. One of the purposes of this paper is to show that a related
fact is true in general; we shall prove that if a special formally real Jordan
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algebra U with rank m acts on a Euclidean space E in the described way,
then E can be written as anm×h matrix, so that φ(U)E is a matrix product
which formally extends the Hermitian matrix case.

The main part of the paper deals with the Bessel functions introduced in
[3]. That paper ended with an asymptotic formula for the Bessel functions
on Ω, which was proved for particular choices of E and by algebra-by-
algebra arguments. Here we prove the result for general E and without
classification theory. The proof uses the stationary phase method, which
needs an imbedding of U in E and an explicit description of a basis of the
orthogonal complement.

The author wishes to thank Jacques Faraut for introducing him to the
study of Jordan algebras.

Notation. In this paper U will always be a simple n-dimensional special
formally real Jordan algebra with rank m and the symbol ◦ will denote the
product in a Jordan algebra. P is the quadratic representation P (x) =
2L2(x)−L(x2), where L(x)y = x◦y, also let P (x, y) = L(x)L(y)+L(y)L(x)−
L(x ◦ y). Let e be the identity of U and let {c1, . . . , cm} be an orthonormal
system of primitive idempotents (ci ◦ cj = 0 for i 6= j, ci ◦ ci = ci, c1 + . . .+
cm = e, m maximal). We have the Pierce decomposition of U relative to
the previous set of idempotents:

U =
⊕
i≤j

Ui,j

where Ui,i = Rci, Ui,j = L(ci)L(cj)U for i 6= j. The Ui,j ’s have the same
(real) dimension d. We fix an orthonormal basis

{cj}1≤j≤m ∪ {us
i,j}1≤i<j≤m ,1≤s≤d ,

where any us
i,j belongs to Ui,j . We write Us

i,j for the space Rus
i,j . Tr(x) will

denote the trace of an element x in U .
There exists an N -dimensional Euclidean space E with the following

property. Let Sym(E) be the space of self-adjoint endomorphisms of E
and Sym+(E) the same space when endowed with the Jordan product (1).
Sym+(E) is a formally real Jordan algebra [1,XI] and there exists a Jordan
algebra injective homomorphism φ : U → Sym+(E) such that φ(e) = id
([2]). Let Q : E → U be the quadratic form satisfying (φ(x)ξ, ξ) = (x,Q(ξ))
for any x ∈ U and ξ ∈ E; we denote by ψ the associated bilinear form. We
write Ei for the subspace φ(ci)E of E (1 ≤ i ≤ m).

Let Ω = expU be the homogeneous self-adjoint cone associated to U .
Then Q : E → Ω. We ask E to satisfy Q(E) = Ω. The set Σ = {ξ ∈ E :
Q(ξ) = e} is called the Stiefel manifold and the following polar decomposi-
tion holds a.e. [3]:

E = Ω ×Σ .
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Preliminary results. We begin with an elementary fact whose proof
will be omitted.

Lemma 1. The subspaces Ej = φ(cj)E (1 ≤ j ≤ m) of E are mutually
orthogonal and satisfy the direct sum decomposition E =

⊕
1≤j≤mEj. As a

consequence, for any ξ ∈ E, φ(ci)φ(cj)ξ = 0 provided i 6= j.

Lemma 2. Let ξi ∈ Ei and ξj ∈ Ej (i, j = 1, . . . ,m). Then ψ(ξi, ξj) ∈
Ui,j. Moreover , Q(ξi) = ‖ξi‖2ci.

P r o o f. By [3, Lemma 1] one knows that Q(φ(u)ξ) = P (u)Q(ξ), which
by linearization implies

(2) ψ(φ(x)ξ, φ(y)η) + ψ(φ(y)ξ, φ(x)η) = P (x, y)ψ(ξ, η) .

Now let x = ci, y = cj , ξ = ξi, η = ξj ; then by (2) and Lemma 1,
ψ(ξi, ξj) = P (ci, cj)ψ(ξi, ξj), which by [1,VII,2] implies the result. In par-
ticular, Q(ξi) = λci with λ = Tr(λci) = Tr(Q(ξi)) = (Q(ξi), e) = (ξi, ξi) =
‖ξi‖2 .

Lemma 3. Let ξ ∈ E and suppose Q(ξ) ∈ Uj,j. Then ξ ∈ Ej.

P r o o f. Write
ξ =

∑
1≤i≤m

φ(ci)ξ =
∑

1≤i≤m

ξi .

Then by Lemma 2,

Q(ξ) = ψ
( ∑

1≤i≤m

ξi,
∑

1≤i≤m

ξi

)
=

∑
1≤i≤m

Q(ξi) + 2
∑
h<k

ψ(ξh, ξk) =
∑

1≤i≤m

Q(ξi) .

The assumption and Lemma 1 now imply Q(ξi) = 0 for i 6= j and Lemma 2
again implies ξi = 0 for i 6= j. Therefore ξ ∈ Ej .

Lemma 4. Let {us
i,j}1≤s≤d be an orthonormal basis of Ui,j (1 ≤ i < j ≤

m). Then
us

i,j ◦ ut
i,j = δs,t(ci + cj)/2

(Kronecker’s δ).

P r o o f. We know [1,VIII] that Ui,j ◦Ui,j ⊆ Ui,i +Uj,j and that ci ◦ui,j =
1
2ui,j for any ui,j ∈ Ui,j (i 6= j). Then the associativity of the inner product

(us
i,j ◦ us

i,j , ci) = (us
i,j , u

s
i,j ◦ ci)

implies the result.

Lemma 5. Let ui,j be a normalized vector in Ui,j (i 6= j). Then for
ξi ∈ Ei the mapping

ξi → φ(
√

2ui,j)ξi
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is an inner product space isomorphism between Ei and Ej.

P r o o f. First we show that φ(ui,j)Ei ⊆ Ej . By Lemma 3 it is enough
to prove that Q(φ(ui,j)Ei) ⊆ Uj,j . Indeed, suppose ξi ∈ Ei, ‖ξi‖ = 1; then
by [3, Lemma 1], and Lemmas 2 and 3

Q(φ(
√

2ui,j)ξi) = 2P (ui,j)Q(ξi) = 2P (ui,j)ci
= 4ui,j ◦ (ui,j ◦ ci)− 2(ui,j ◦ ui,j) ◦ ci
= 2ui,j ◦ ui,j − (ci + cj) ◦ ci = (ci + cj)− ci .

To complete the proof we need to show that ‖φ(
√

2ui,j)ξi‖ = ‖ξi‖ for any
ξi ∈ Ei. Indeed, by Lemmas 2 and 3,

‖φ(
√

2ui,j)ξi‖2 = 2(φ(ui,j)ξi, φ(ui,j)ξi)
= 2(φ(ui,j ◦ ui,j)ξi, ξi) = (φ(ci + cj)ξi, ξi)

= (ci + cj , Q(ξi)) = (ci + cj , ‖ξi‖2ci) = ‖ξi‖2 .

A characterization of the Stiefel manifold. Lemma 2 and the iden-
tity Q(ξ) =

∑
1≤i≤mQ(ξi) + 2

∑
i<j ψ(ξi, ξj)) provide a simple characteri-

zation of the Stiefel manifold Σ.

Proposition. Let ξ =
∑

1≤i≤m φ(ci)ξ =
∑

1≤i≤m ξi belong to E. Then
ξ ∈ Σ if and only if ψ(ξi, ξj) = δijci.

An asymptotic formula for Bessel functions. Following [3] we
define the Bessel function

J(r) =
∫
Σ

e−i(σ,φ(
√

r)σ0) dβ(σ)

where σ0 ∈ Σ and is fixed once for all, r ∈ Ω and the measure has been
defined in [3]. The following theorem has been proved in [3] through classi-
fication theory and assuming particular choices of E:

Theorem 1. Let U be a special formally real Jordan algebra. Let x =∑
1≤j≤m λjcj be an element in Ω with distinct eigenvalues λ1 > . . . > λm

(> 0). Then, as t→ +∞,

J((tx)2) =
∫
Σ

e−it(φ(x)σ,σ0) dβ(σ)

= (2π/t)(N−n)/2
∑
ω

(|H(σω)|−1/2ei(π/4)s(σω)+it(φ(x)σω,σ0))

+O(t−((N−n)/2)−1) ,

where σω =
∑

1≤j≤m ωjφ(cj)σ0 (ωj = ±1); H(σω) denotes the Hessian
matrix of the function g(σ) = (φ(x)σ, σ0) and its determinant takes the
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value

|H(σω)| = (−1)N−n
∏
i<j

(
1
2 (ωiλi + ωjλj)

)d( ∏
1≤i≤m

ωiλi

)(N/m)−md+d−1

;

while s(σω) denotes the signature of H(σω) and is equal to

s(σω) = −
∑

1≤i≤m

((N/m)− d(i− 1)− 1)ωi .

The proof requires a few lemmas.

Lemma 6. Suppose that (Us
i,j , U

t
h,k) = 0; 1 ≤ i ≤ j ≤ m; 1 ≤ s ≤ d for

i 6= j, no s appears for i = j; 1 ≤ h ≤ k ≤ m; 1 ≤ t ≤ d for h 6= k, no t
appears for h = k (the hypothesis means that the triples (i, j, s) and (h, k, t)
do not coincide). Then

(φ(Us
i,j)σ0, φ(U t

h,k)σ0) = 0 .

P r o o f. For u, v ∈ U , (2) implies

(φ(u)σ0, φ(v)σ0) = (u, ψ(σ0, φ(v)σ0)) = (u, 1
2P (e, v)Q(σ0)) = (u, v) ,

which for u and v belonging to Us
i,j and U t

h,k respectively implies the result.

The previous argument also proves the following lemma.

Lemma 7. Same hypothesis as in Lemma 6 ; then

(φ(Us
i,j)σ0, φ(ch)φ(U t

h,k)σ0) = 0 .

Lemma 8. For any 1 ≤ i < j ≤ m and 1 ≤ s ≤ d we have

(φ(U)σ0, φ(ci − cj)φ(Us
i,j)σ0) = 0 .

(Observe that, if U is the Jordan algebra of real m×m symmetric matrices
and E is the Euclidean space Mm(R) of square real matrices, this lemma
simply says that symmetric and skew-symmetric matrices are orthogonal in
Mm(R)).

P r o o f. Write the Pierce decomposition

U =
⊕

U t
h,k , 1 ≤ h ≤ k ≤ m, 1 ≤ t ≤ d for h 6= k ,

no t appears for h = k .

If the triples (i, j, s) and (h, k, t) are different we apply Lemma 7. Otherwise,
let us

i,j ∈ Us
i,j . Then by [3, Lemma 1], Lemma 4 and [1,VII]

(φ(us
i,j)σ0, φ(ci − cj)φ(us

i,j)σ0) = (σ0, φ(us
i,j)φ(ci − cj)φ(us

i,j)σ0)

= (σ0, φ(P (us
i,j)(ci − cj))σ0) = (e, P (us

i,j)(ci − cj))

= (e, 2us
i,j ◦ (us

i,j ◦ (ci − cj))− (us
i,j ◦ us

i,j)(ci − cj)) = 0 .
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Lemma 9. Let us
i,j be a normalized vector in Us

i,j (1 ≤ i < j ≤ m,
1 ≤ s ≤ d). Then the vectors φ(ci − cj)φ(us

i,j)σ0 are orthonormal in E.

P r o o f. By [3, Lemma 1] and Lemma 4

Q(φ(ci − cj)φ(us
i,j)σ0) = P (ci − cj)P (us

i,j)Q(σ0) = P (ci − cj)(us
i,j ◦ us

i,j)

= 1
2P (ci − cj)(ci + cj) = 1

2 (ci + cj) .

By Lemma 2 this implies ‖φ(ci − cj)φ(us
i,j)σ0‖ = 1.

To prove the orthogonality it enough to show that, say,

(3) (φ(ci)φ(us
i,j)σ0, φ(ch)φ(ut

h,k)σ0) = 0

when the triples (i, j, s) and (h, k, t) do not coincide. This is a consequence
of Lemmas 1 and 7.

P r o o f o f T h e o r e m 1. Let g(σ) = (φ(x)σ, σ0) be as in the statement
of the theorem. The Hessian of g at the point σω can be computed in
the following way. Let γ be a curve on the Stiefel manifold Σ such that
γ(0) = σω and γ′(0) = a ∈ (φ(U)σω)⊥. It has been proved in [3, p. 139]
that

g′′(σω)(a, a) = −(φ(y)a, a)
with φ(y)σω = φ(x)σ0. The isomorphism between the tangent space at σ0

and the tangent space at σω yields

g′′(σω)(a, a) = −(φ(y)b, b)

with a =
∑

1≤j≤m ωjφ(cj)b and b ∈ (φ(U)σw)⊥. We therefore need to fix
an orthonormal basis of this space.

By Lemma 9 there is a vector space V with orthonormal basis

{φ(ci − cj)φ(us
i,j)σ0}1≤i<j≤m,1≤s≤d

Let us put
Aj = Ej ∩ (V ⊕ φ(U)σ0) , 1 ≤ j ≤ m

(by Lemma 8, V and φ(U)σ0 are orthogonal). By Lemma 1 and (3)

(4) Aj = φ(Rcj)σ0 ⊕
⊕

1≤i≤m, i 6=j, 1≤s≤d

φ(cj)φ(Us
i,j)σ0 1 ≤ j ≤ m.

Let Rj be the orthogonal complement of Aj in Ej . Then

Ej = Aj ⊕Rj , 1 ≤ j ≤ m.

Now we fix an orthonormal basis {rj
i } of Rj which (by moving j and by

applying Lemma 1) provides an orthonormal basis of

R =
⊕

1≤j≤m

Rj
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(the dimension of the Rj ’s will be computed later). Then, by Lemmas 1
and 8,

E = (φ(U)σ0)⊕ V ⊕R

and we fix

(5) {rj
i } ∪ {φ(ci − cj)φ(us

i,j)σ0}

as an orthonormal basis of V ⊕R = (φ(U)σ0)⊥.
Let b be an element in (5). If b belongs to V then, say, b = φ(ch −

ck)φ(ut
h,k)σ0, therefore, by Lemma 9 we get

(φ(y)b, b) = (y,Q(b)) =
∑

1≤j≤m

ωjλj(cj , Q(φ(ch − ck)φ(ut
h,k)σ0))

=
∑

1≤j≤m

ωjλj(cj , (ch + ck)/2) = (ωhλh + ωkλk)/2

while for b in R we have, say, b = rk
i (∈ Ek); then by Lemma 2

(φ(y)b, b) = (y,Q(b)) =
∑

1≤j≤m

ωjλj(cj , ck) = ωkλk .

Now we compute the dimensions of the above spaces. We have

dim((φ(U)σ0)⊕ V ) = (m+m(m− 1)d/2) +m(m− 1)d/2 .

Therefore
dimR = N −m2d+md−m.

By (4)
dimAj = 1 + (m− 1)d , 1 ≤ j ≤ m.

By Lemma 5, the Ej ’s have the same dimension N/m. Then

dimRj =
N

m
−md+ d− 1 , 1 ≤ j ≤ m.

Therefore the Hessian is

|H(σω)| = (−1)N−n
∏
h<k

(
1
2 (ωhλh + ωkλk)

)d( ∏
1≤k≤m

ωkλk

)(N/m)−md+d−1

.

We now turn to the computation of the signature. Since λh > λk (for
h < k) the sign of ωhλh +ωkλk is the sign of ωh. Therefore the signature is

−
∑

1≤i≤m

d(m− i)ωi −
(
N

m
−md+ d− 1

) ∑
1≤i≤m

ωi

= −
∑

1≤i≤m

(
N

m
− d(i− 1)− 1

)
ωi .
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By the stationary phase method (see [4]) this ends the proof of the
theorem.

A particular matrix realization of E. In this section we use the pre-
vious results to write E as an m× v matrix space (with vector coefficients)
so that the action φ(U)E reduces to a matrix product which coincides with
the usual one in the Hermitian case. Such a construction is therefore inter-
esting only for the Jordan algebra Uq (see the Introduction) and we shall
spend a few words on this case.

Let U be a simple special formally real Jordan algebra and let E be a
Euclidean space as in the Notation.

Let x =
⊕

i≤j xi,j belong to U (xi,j ∈ Ui,j). We associate to x the m×m
matrix

(6) X = [Xi,j ]i,j=1,...,m

where

Xi,j =
{
φ(ci)φ(xi,j) for i ≤ j,
φ(ci)φ(xj,i) for i > j,

so that the matrix coefficients are d-dimensional for i 6= j and 1-dimensional
for i = j.

Let ξ be an element in E. From now on the symbol

Span
( ∏

φ(U)ξ
)

will denote the linear span of the elements
∏

u∈A φ(u)ξ, where the product
is over any subset of the basis of U .

Now let E1 = φ(c1)E and let G ⊆ E1 such that Span(
∏
φ(U)G) = E

(such a G exists because of Lemma 5). Let g1 be a unit vector in G and
suppose Span(

∏
φ(U)g1)  E; then Span(

∏
φ(U)g1) ! G. Now we choose

g2 ∈ G orthogonal to Span(
∏
φ(U)g1) and we go on until we obtain an

orthogonal set {g1, . . . , gv} in G. Let Gh = Span(
∏
φ(U)gh) (1 ≤ h ≤ v).

Then (Gh, Gk) = 0 for h 6= k and we write

E =
⊕

1≤h≤v

Gh .

Let Gh
p = Gh ∩ Ep = φ(cp)Gh, 1 ≤ h ≤ v, 1 ≤ p ≤ m. Then by Lemma 1

E =
⊕

1≤h≤v, 1≤p≤m

Gh
p .

Now we decompose an element ξ in E as

(7) ξ =
⊕

1≤h≤v, 1≤p≤m

ξh
p
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and we associate to ξ the m× v matrix

(8) Ξ =
[
ξh
p

]
1≤h≤v, 1≤p≤m

Lemma 5 and a moment’s reflection show that (8) depends only on ξ.
We now state a lemma whose easy proof is omitted.

Lemma 10. Let ξp belong to Ep = φ(cp)E. Then φ(ui,j)ξp = 0 for any
ui,j ∈ Ui,j (if i 6= p and j 6= p).

The statement of the next theorem follows the notation introduced in
this section.

Theorem 2. Let x ∈ U , ξ ∈ E, let X be the m×m matrix associated to
x in (6) and let Ξ be the m× v matrix associated to ξ in (8). Then XΞ is
the m× v matrix associated to φ(x)ξ.

P r o o f. Let ξ =
⊕

1≤h≤v, 1≤p≤m ξh
p as in (7). By linearity it suffices

to prove the result for, say, ξ = ξh
p (whose matrix Ξ is zero but for the

(p, h)-coefficient). By applying Lemmas 1, 5 and 10 we have

φ(x)ξh
p =

∑
i≤j

φ(xi,j)ξh
p =

∑
i≤p

φ(xi,p)ξh
p +

∑
p<i

φ(xp,i)ξh
p

=
∑
i≤p

φ(ci)φ(xi,p)ξh
p +

∑
p<i

φ(ci)φ(xp,i)ξh
p .

Any element φ(ci)φ(xi,p)ξh
p or φ(ci)φ(xp,i)ξh

p belongs to Ei; then, by defi-
nition, each one of them belongs to the corresponding space Gh

i (same i).
Hence the matrix associated to φ(x)ξh

p is

Γ = [γi,j ]1≤i≤m, 1≤j≤v

where γi,j = 0 for j 6= p and γi,p = φ(ci)φ(xi,p)ξh
p for i ≤ p and γi,p =

φ(ci)φ(xp,i)ξh
p for i > p. This ends the proof.

We now describe the above argument for the case U = Hm(C), E =
Mm,v(C). In this case we fix E1 to be zero but for the first row and we can
choose G to be the subspace of E1 whose elements have real entries. Now
fix g1, . . . , gv as the natural basis of G and the above construction yields
Mm,v(C).

Now consider the case U = Uq = R + V , E = Cq (the Clifford algebra
associated to V ). Let e1̂, . . . , eq̂ be an orthonormal basis of V with respect
to B (see the Introduction). Then e0 = (1, 0), ej = (0, eĵ) (1 ≤ j ≤ q) give
an orthonormal basis of Uq and φ : ej → Fj denotes the imbedding of Uq in
Cq (see e.g. [3]). Now fix the idempotents c1 = (e0 +e1)/2, c2 = (e0−e1)/2.
Then E = E1 ⊕ E2, where

E1 = (F0 + F1)C1
q , E2 = (F0 − F1)C1

q ,
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where (cf.[3]) C1
q is the linear span of the products of Fj ’s with any j 6= 1.

Now we follow the argument of this section by fixing g1 = F0 + F1. Then a
short computation shows that

Span
(∏

φ(Uq)g1
)

= Span
(∏

φ(Uq)(F0 + F1)
)

= (F0 + F1) eC
1
q + (F0 − F1) oC

1
q

where eC
1
q (oC

1
q ) is the subspace of C1

q containing the elements obtained by
multiplying an even (odd) number of Fj ’s (j 6= 0, j 6= 1). Then Cq turns
out to be the matrix[

(F0 + F1) eC
1
q (F0 + F1) oC

1
q

(F0 − F1) oC
1
q (F0 − F1) eC

1
q

]
.

The previous argument shows that (besides Cq) we can take E as an
m× v matrix with vector coefficients.
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