VOL. LXII

VECTOR-VALUED CALDERÓN–ZYGMUND THEORY APPLIED TO TENT SPACES

BY

FRANCISCO J. RUIZ (ZARAGOZA) AND JOSÉ L. TORREA (MADRID)

0. Introduction. The concept of "tent space" was introduced by R. Coifman, Y. Meyer and E. M. Stein in [3] and [4]. These spaces seem well adapted for the study of a variety of questions in Harmonic Analysis. The theory developed in [3] and [4] uses a functional which maps functions on \mathbb{R}^{n+1}_+ into functions on \mathbb{R}^n , given by

$$A_q(f)(x) = \left\{ \int_{\Gamma(x)} |f(y,t)|^q \, d\alpha(y,t)/t^n \right\}^{1/q}$$

where $1 < q < \infty$, $\Gamma(x)$ is the cone of aperture 1 whose vertex is $x \in \mathbb{R}^n$, and $d\alpha(y,t) = dy dt/t$. The tent space $T_p^q(\alpha), 1 \leq p, q < \infty$ is defined as the space of functions f such that $A_q(f) \in L^p(\mathbb{R}^n)$.

In this note we study tent spaces $T_q^p(\alpha)$ for different measures α . Our purpose is twofold:

First, we show that the boundedness of an operator T from L^p into $T^p_q(\alpha)$ is equivalent to the boundedness of a related operator **S** from L^p to the Bochner–Lebesgue space L^p_A where A is an L^q -space; in some cases the operator **S** behaves as a vector-valued Calderón–Zygmund operator (see Theorem 1). The proof of this theorem says that, in some sense, $T^p_q(\alpha)$ is a subspace of L^p_A .

Secondly, in the case that μ is a Carleson measure we show that some operators, associated to particular kernels, are bounded from L^p into $T_q^p(\mu)$. This is applied to the Poisson integral (see Theorems 2 and 3). The method can be extended to vector-valued functions, and then some maximal operators fall under its scope (see Theorem 4).

The organization of this paper is as follows: in Section 1 we introduce some notations and state the main results, in Section 2 some technical re-

¹⁹⁹¹ Mathematics Subject Classification: Primary 42B20, 42B25.

Key words and phrases: tent spaces, Carleson measures, Poisson integral, Calderón–Zygmund theory.

The authors have been supported by a grant of CAICYT PB85-0338.

sults related to Carleson measures are presented, in Section 3 we give some applications, and Section 4 is devoted to the proofs.

1. Notations and main results. $\mathbb{R}^{n+1}_+ = \mathbb{R}^n \times [0, \infty)$ will be the usual upper half-space in \mathbb{R}^{n+1} . We shall denote by $\Gamma(x)$ the cone of aperture 1, $\Gamma(x) = \{(y,t) \in \mathbb{R}^{n+1}_+ : |x-y| < t\}$. Given a cube Q in \mathbb{R}^n , we shall denote by \widehat{Q} the *tent* over Q, i.e. if Q has center x and side length l, then $\widehat{Q} = \{(y,t) : |x-y| + t \leq l\}.$ A positive measure μ on \mathbb{R}^{n+1}_+ will be called a Carleson measure if there exists a constant C such that $\mu(\hat{Q}) \leq C|Q|$, for every cube Q in \mathbb{R}^n (where |Q| stands for the Lebesgue measure of Q in \mathbb{R}^n). Replacing balls with cubes leads to an equivalent definition.

For A, B Banach spaces, let $\mathcal{L}(A, B)$ stand for the set of bounded linear operators from A into B. We shall denote by $L^p_A(\mathbb{R}^n; dx), 1 \leq p < p$ ∞ , the Bochner–Lebesgue space of A-valued strongly measurable functions f defined on \mathbb{R}^n such that $\int \|f(x)\|_A^p dx < \infty$. Analogously, we define $L^p_B(\mathbb{R}^{n+1}_+; d\mu)$. Sometimes, we shall write $L^p_A(dx)$ or $L^p_B(d\mu)$, for short. $l^{r}(A), 1 < r < \infty$, stands for the usual space of A-valued r-summable sequences.

The space $H^1_A(\mathbb{R}^n; dx)$ can be defined in terms of A-valued atoms in the usual way (see [5]). In [2] it was proved that the Riesz transforms R_i are defined in $L^1_A(\mathbb{R}^n; dx)$ if the space A is U.M.D., and in this case
$$\begin{split} H^1_A(\mathbb{R}^n;\,dx) &= \{f \in L^1_A(\mathbb{R}^n;\,dx) : R_j f \in L^1_A(\mathbb{R}^n;\,dx), 1 \leq j \leq n\}.\\ \text{Given a positive measure } \mu \text{ on } \mathbb{R}^{n+1}_+ \text{ and } 1 \leq q < \infty, \text{ we define (see [4])} \end{split}$$

the following functional over *B*-valued functions on \mathbb{R}^{n+1}_+ :

$$A_{q}(f)(x) = \left\{ \int_{\Gamma(x)} \|f(y,t)\|_{B}^{q} d\mu(y,t)/t^{n} \right\}^{1/q}, \quad x \in \mathbb{R}^{n}$$

The tent space $T^p_{q,B}(d\mu), 1 \leq p, q < \infty$, is defined as the space of B-valued strongly measurable functions f such that $A_q(f) \in L^p(\mathbb{R}^n)$. $T^p_{q,B}(d\mu)$ is equipped with the norm $||f||_{T^{p}_{q,B}(d\mu)} = ||A_{q}(f)||_{L^{p}}$.

In the following, we shall denote by B_q^p the space $L_A^p(\mathbb{R}^n; dx)$ where A is $L^q_B(\mathbb{R}^{n+1}_+; d\mu/t^n)$. Now we state the main results.

THEOREM 1. Let μ be either a Carleson measure or the dx dt/t measure on \mathbb{R}^{n+1}_+ , A, B Banach spaces and $1 \leq p < \infty$, $1 < q < \infty$. Then the following are equivalent:

(i) An operator T is bounded from $L^p_A(\mathbb{R}^n; dx)$ into $T^p_{q,B}(d\mu)$.

(ii) The operator **S** given by $\mathbf{S}f(x)(y,t) = Tf(y,t)\chi_{\Gamma(x)}(y,t)$ is bounded from $L^p_A(\mathbb{R}^n; dx)$ into B^p_q .

Moreover, if T has an associated kernel K(x, y, t) in the sense of Theorem 2 below satisfying (K.1) and (K.2) then **S** has an associated $\mathcal{L}(A, L^q_B(\mathbb{R}^{n+1}_+; d\mu/t^n))$ -valued kernel (in the sense of standard vector-valued theory of singular integrals, see [6]) given by

$$\mathbf{X}(x,z)(a)\{(y,t)\} = K(y,z,t)(a)\chi_{\Gamma(x)}(y,t),$$

 $a \in A, x, z \in \mathbb{R}^n, (y, t) \in \mathbb{R}^{n+1}_+, and satisfying$

If f is an A-valued function with compact support contained in (K.3)a cube Q, then

$$\mathbf{S}f(x) = \int_{\mathbb{R}^n} \mathbf{K}(x,z)f(z) \, dz \quad \text{for } x \notin Q$$

(K.4) If |x - z'| > 2|z - z'| then

$$\|\mathbf{K}(x,z) - \mathbf{K}(x,z')\| \le C \frac{|z-z'|}{|x-z'|^{n+1}}$$

THEOREM 2. Let A and B be Banach spaces and μ a Carleson measure on \mathbb{R}^{n+1}_+ . Let T be a bounded linear operator from $L^{p_0}_A(\mathbb{R}^n; dx)$ into $L^{p_0}_B(\mathbb{R}^{n+1}_+; d\mu)$ for some $p_0, 1 < p_0 \leq \infty$. Suppose that there exists an $\mathcal{L}(A, B)$ -valued function K in $\mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^+ \setminus \{(x, x, t) : x \in \mathbb{R}^n, t \geq 0\}$ such that:

For any pair $(x,t) \in \mathbb{R}^{n+1}_+$, the function $y \mapsto K(x,y,t)$ is locally in-(K.1)tegrable and if f is a function in $L^{p_0}_A(\mathbb{R}^n; dx)$ with compact support contained in a cube Q, then

$$Tf(x,t) = \int_{\mathbb{R}^n} K(x,y,t)f(y) \, dy \quad \text{for } (x,t) \notin \widehat{Q}.$$

(K.2)There exists $\alpha > 0$ such that

$$|K(x, y, t) - K(x, y', t)||_{\mathcal{L}(A, B)} \le C \frac{|y - y'|t^{\alpha}}{(|x - y'| + t)^{n+1+\alpha}}$$

for $|x - y'| + t > 2|y - y'|$.

Then:

- $\begin{array}{ll} ({\rm i}) \ T \ maps \ L^p_A(\mathbb{R}^n; \ dx) \ into \ T^p_{q,B} \ (d\mu) \ for \ 1 < p,q \le p_0, \ q < \infty. \\ ({\rm ii}) \ T \ maps \ H^1_A(\mathbb{R}^n) \ into \ T^1_{q,B} \ (d\mu) \ for \ 1 < q \le p_0, \ q < \infty. \\ ({\rm iii}) \ T \ maps \ L^p_{l^r(A)}(\mathbb{R}^n; \ dx) \ into \ T^p_{q,l^r(B)} \ (d\mu) \ for \ 1 < p,q \le r \ \le \ p_0, \end{array}$ $r < \infty$.
- (iv) T maps $H^{1}_{l^{r}(A)}(\mathbb{R}^{n})$ into $T^{1}_{a,l^{r}(B)}(d\mu), 1 < q \leq r \leq p_{0}, r < \infty$.

2. Some technical results. In [7] the following are proved:

THEOREM A. Let A and B be Banach spaces, μ a Carleson measure on \mathbb{R}^{n+1}_+ . Let T be a bounded linear operator from $L^{p_0}_A(\mathbb{R}^n; dx)$ into $L_B^{p_0}(\mathbb{R}^{n+1}_+; d\mu)$ for some $p_0, 1 < p_0 \leq \infty$. Assume that T has an associated kernel K satisfying (K.1) of Theorem 2 and

(K.2')
$$||K(x,y,t) - K(x,y',t)||_{\mathcal{L}(A,B)} \le C \frac{|y-y'|}{(|x-y'|+t)^{n+1}}$$

for $|x-y'|+t > 2|y-y'|$.

Then:

(i) T maps $L^{p}_{l^{r}(A)}(\mathbb{R}^{n}; dx)$ into $L^{p}_{l^{r}(B)}(\mathbb{R}^{n+1}_{+}; d\mu), 1$ (ii) <math>T maps $H^{1}_{l^{r}(A)}(\mathbb{R}^{n})$ into $L^{1}_{l^{r}(B)}(\mathbb{R}^{n+1}_{+}; d\mu), 1 < r \leq p_{0}.$

R e m a r k 1. When we speak about boundedness of an operator T from $L^p_{l^r(A)}$ into $L^p_{l^r(B)}$ (or $T^p_{q,l^r(B)}(d\mu)$) we mean that the assignment $(f_1, f_2, ...) \mapsto (Tf_1, Tf_2, ...)$ (where the f_i are A-valued functions) is bounded from $L^p_{l^r(A)}$ into $L^p_{l^r(B)}$ (or $T^p_{q,l^r(B)}(d\mu)$). Observe that the $\mathcal{L}(l^r(A), l^r(B))$ -valued kernel associated to this new operator is given by $\overline{K}(x, y, t) = K(x, y, t) \otimes \mathrm{Id}$, and so $\|\overline{K}(x, y, t)\| = \|K(x, y, t)\|$. Therefore this operator is of the same type as T and its kernel satisfies the same bounds.

THEOREM B. Let A and B be Banach spaces. Let T be a linear operator which is bounded from $L^{\infty}_{A}(\mathbb{R}^{n}; w(x) dx)$ into $L^{\infty}_{B}(\mathbb{R}^{n+1}; dv)$ for every pair (w, v) which satisfies condition C_{1} , i.e. $\sup\{v(\hat{Q})/|Q|: Q \ni x\} \leq Cw(x), x$ a.e. (see [7]). Assume that T has an associated kernel K satisfying (K.1) of Theorem 2 and (K.2') of Theorem A. Then the following vector-valued inequalities hold for any Carleson measure μ :

- (i) T maps $L^p_{l^r(A)}(\mathbb{R}^n; dx)$ into $L^p_{l^r(B)}(\mathbb{R}^{n+1}_+; d\mu)$ for $1 < p, r < \infty$.
- (ii) T maps $H^{1}_{l^{r}(A)}(\mathbb{R}^{n})$ into $L^{1}_{l^{r}(B)}(\mathbb{R}^{n+1}_{+}; d\mu)$ for $1 < r < \infty$.

 $\operatorname{Remark} 2.$ If in the last theorem A is U.M.D., then (ii) can be written as

$$\left\|\left\{\sum_{j=0}^{\infty} \|Tf_j\|_B^r\right\}^{1/r}\right\|_{L^1(d\mu)} \le C \sum_{i=0}^n \left\|\left\{\sum_{j=0}^{\infty} \|R_i f_j\|_A^r\right\}^{1/r}\right\|_{L^1(dx)},$$

where $R_0 f = f$ and $R_i, i = 1, ..., n$, denote the Riesz transforms.

The following result, which we state for further reference, is a consequence of Theorem B.

PROPOSITION 1. The following conditions are equivalent:

- (i) μ is a Carleson measure on \mathbb{R}^{n+1}_+ .
- (ii) For $1 < r, p < \infty$

$$\left\|\left\{\sum_{j=0}^{\infty} |A_1(f_j)|^r\right\}^{1/r}\right\|_{L^p(dx)} \le C \left\|\left\{\sum_{j=0}^{\infty} |f_j|^r\right\}^{1/r}\right\|_{L^p(d\mu)}$$

(iii) For $1 < q < r, p < \infty$

$$\left\|\left\{\sum_{j=0}^{\infty} |A_q(f_j)|^r\right\}^{1/r}\right\|_{L^p(dx)} \le C \left\|\left\{\sum_{j=0}^{\infty} |f_j|^r\right\}^{1/r}\right\|_{L^p(d\mu)}.$$

(iv) The operator $Tf(x,t) = t^{-n} \int_{B(x;t)} f(y) \, dy$ is bounded from $L^p_{l^r}(dx)$ into $L^p_{l^r}(d\mu)$ for $1 < r, p < \infty$ (where B(x;t) is the ball centered at x with radius t).

(v) For $1 \le q \le p < \infty$, $T_p^p(d\mu) \subseteq T_q^p(d\mu)$.

Proof. To show that (ii) \Leftrightarrow (iii) it is enough to observe that for any q with $1 \leq q < \infty$ and f positive, $A_1(f)(x) = \{A_q(f^{1/q})(x)\}^q$. On the other hand, applying Fubini's theorem we have

$$\int A_1 f(x) g(x) \, dx = \int f(y,t) T g(y,t) \, d\mu(y,t) \quad \text{for } f(x,t) \text{ and } g(x) \text{ positive,}$$

and this identity gives us (ii) \Leftrightarrow (iv).

In order to prove (i) \Rightarrow (iv) observe that the operator T can be majorized by the maximal operator \mathfrak{M} introduced by Fefferman and Stein, which satisfies the vector-valued inequalities from $L_{lr}^p(\mathbb{R}^n; dx)$ into $L_{lr}^p(\mathbb{R}^{n+1}; d\mu)$ for $1 < p, r < \infty$, as a consequence of Theorem B (see [7]).

For the converse, take B = B(z; s) and $(x, t) \in \widehat{B}$; then $B(x; t) \subset B(z; s)$. Now, if $(x, t) \in \widehat{B}$ and $f = \chi_{B(z;s)}$, we have

$$Tf(x,t) = t^{-n} \int_{B(x;t)} \chi_{B(z;s)}(y) \, dy \ge t^{-n} \int_{B(x;t)} \chi_{B(x;t)}(y) \, dy = c_n$$

and therefore

$$\mu(\widehat{B}) \le \mu(\{(x,t) : Tf(x,t) \ge c_n\}) \le c'_n \int |Tf(x,t)|^p d\mu$$
$$\le C \int |f|^p dx \le C|B|.$$

Finally, we shall show that (iii) \Rightarrow (v) \Rightarrow (i). If we assume (iii), then for $1 \le q < p$ we have

$$||A_q(f)||_{L^p(dx)} \le C ||f||_{L^p(d\mu)} = c_n ||f||_{T^p_p(d\mu)},$$

where in the last identity we have used the fact $L^{p}(d\mu) = T_{p}^{p}(d\mu)$ (see Lemma 2 in Section 4).

On the other hand, if we take a ball $B = B(x_0; r)$, we have

$$r^{n(1-p/q)}\mu(\widehat{B})^{p/q} = r^{-np/q} \int_{B} \mu(\widehat{B})^{p/q} dx$$
$$= r^{-np/q} \int_{B} \left(\int_{\Gamma(x)} |\chi_{\widehat{B}}(y,t)|^{q} d\mu(y,t) \right)^{p/q} dx$$

$$\leq \int_{B} \left(\int_{\Gamma(x)} |\chi_{\widehat{B}}(y,t)|^{q} d\mu(y,t)/t^{n} \right)^{p/q} dx$$

$$\leq \int_{\mathbb{R}^{n}} \left(\int_{\Gamma(x)} |\chi_{\widehat{B}}(y,t)|^{q} d\mu(y,t)/t^{n} \right)^{p/q} dx,$$

and by (v) this is less than

$$\int_{\mathbb{R}^n} \left(\int_{\Gamma(x)} |\chi_{\widehat{B}}(y,t)|^p d\mu(y,t)/t^n \right) dx = c_n \mu(\widehat{B}).$$

3. Applications. Our first application deals with operators of Poisson type.

THEOREM 3. Let ϕ be a measurable function on \mathbb{R}^n such that there exists $\alpha > 0$ with

(a)
$$|\phi(x)| \le C(|x|+A)^{-n-\alpha}$$
 and (b) $|\nabla\phi(x)| \le C(|x|+B)^{-n-1-\alpha}$

where A, B, C are constants independent of x. For the function $\Phi(x,t) = t^{-n}\phi(x/t), t \ge 0$, the operator

$$\Phi f(x,t) = \int_{\mathbb{R}^n} \Phi(x-y,t) f(y) \, dy$$

and for any Carleson measure μ , the following vector-valued inequalities hold:

$$(3.1) \quad \left\| \left\{ \sum_{j=0}^{\infty} |\Phi(f_j)|^r \right\}^{1/r} \right\|_{T^p_q(d\mu)} \le C_{p,q,r} \left\| \left\{ \sum_{j=0}^{\infty} |f_j|^r \right\}^{1/r} \right\|_{L^p(dx)} for \ 1 < p, q, r < \infty,$$

$$(3.2) \quad \left\| \left\{ \sum_{j=0}^{\infty} |\Phi(f_j)|^r \right\}^{1/r} \right\|_{T^1_q(d\mu)} \le C_{q,r} \sum_{i=0}^{n} \left\| \left\{ \sum_{j=0}^{\infty} |R_i f_j|^r \right\}^{1/r} \right\|_{L^1(dx)} for \ 1 < q, r < \infty.$$

Proof. Observe that $|\Phi f(x,t)| \leq ||f||_{\infty} ||\phi||_1$, and thus for any pair (v,w) satisfying condition C_1 (see Theorem B), Φ maps $L^{\infty}(\mathbb{R}^n; w(x) dx)$ into $L^{\infty}(\mathbb{R}^{n+1}_+; d\mu)$. Moreover, it is easy to check from condition (b) that if |x-y'|+t>2|y-y'| then

$$\begin{aligned} |\Phi(x-y,t) - \Phi(x-y',t)| &= t^{-n} |\phi((x-y)/t - \phi((x-y')/t)| \\ &\leq C \frac{|y-y'|t^{\alpha}}{(|x-y'|+t)^{n+1+\alpha}} \,, \end{aligned}$$

and so $\Phi(x - y, t)$ satisfies (K.2) of Theorem 2 and, in particular, (K.2') of Theorem B. Therefore, Φ is bounded from $L^p_{lr}(\mathbb{R}^n; dx)$ into $L^p_{lr}(\mathbb{R}^{n+1}; d\mu)$

for $1 < p, r < \infty$ and any Carleson measure μ .

Summarizing, Φ satisfies the hypothesis of Theorem 2 with $A = B = l^r$, $1 < r < \infty$, and any p_0 with $1 < p_0 < \infty$, and Theorem 3 is a consequence of Theorem 2.

Remark 3. In the case of positive linear operators, extensions to vectorvalued functions are trivial. Therefore, if ϕ is positive then the vectorvalued inequalities (3.1) and (3.2) remain true for $1 \leq r \leq \infty$. This is the case for the Poisson kernel $P(x,t) = \Phi(x,t)$, where $\phi(x) = P(x) = c_n(|x|^2 + 1)^{-(n+1)/2}$ with $c_n = \Gamma((n+1)/2)\pi^{-(n+1)/2}$.

The next application can be viewed as Zo's maximal theorem (see [9]):

THEOREM 4. Let μ be a Carleson measure and ϕ a measurable function in \mathbb{R}^{n+1}_+ such that

(a) $\int_{\mathbb{R}^n} |\phi(x,t)| \, dx \leq A < \infty, \forall t \geq 0,$ (b) $|\nabla_x \phi(x,t))| \leq Ct^{\alpha}/(|x|+t)^{n+1+\alpha} \text{ for some } \alpha > 0.$

Then the operator

$$\mathfrak{M}_{\phi}f(x,t) = \sup_{\delta > 0} \left| \delta^{-n} \int_{\mathbb{R}^n} \phi((x-y)/\delta, t/\delta) f(y) \, dy \right|$$

satisfies the vector-valued inequalities (3.1) and (3.2).

Proof. Let S be the linear operator defined by

$$Sf(x,t) = \left\{ \delta^{-n} \int_{\mathbb{R}^n} \phi((x-y)/\delta, t/\delta) f(y) \, dy \right\}_{\delta > 0}.$$

By (a) it is clear that S is bounded from $L^{\infty}(\mathbb{R}^n; w(x) dx)$ into $L^{\infty}_{l^{\infty}}(\mathbb{R}^{n+1}_+; dv)$ for any pair (v, w) satisfying C₁; moreover, S is given by an $\mathcal{L}(\mathbb{C}, l^{\infty}) \equiv l^{\infty}$ -valued kernel $K(x, y, t) = \{\delta^{-n}\phi((x-y)/\delta, t/\delta)\}_{\delta>0}$ which satisfies (K.2) since ϕ satisfies (b). Therefore, by Theorem B, S is bounded from $L^p_{l^r}(\mathbb{R}^n; dx)$ into $L^p_{l^r(l^\infty)}(\mathbb{R}^{n+1}_+; d\mu)$ for $1 < p, r < \infty$ and from $H^1_{l^r}(dx)$ into $L^1_{l^r(l^\infty)}(\mathbb{R}^{n+1}_+; d\mu)$. Thus Theorem 2 applies, and S is bounded from $L^p_{l^r}(\mathbb{R}^n; dx)$ into $T^p_{q, l^r(l^\infty)} d\mu$ for $1 < p, q, r < \infty$ and from $H^1_{l^r}(dx)$ into $T^1_{q,l^r(l^\infty)}(d\mu), 1 < q, r < \infty$. The result follows by observing that $||Sf(x,t)||_{l^{\infty}} = \mathfrak{M}_{\phi}f(x,t).$

COROLLARY 1. Given ε , $0 < \varepsilon < 1$, we define the maximal operator $\mathfrak{M}_{\varepsilon}f(x,t) = \sup |Q|^{-1} \int_{Q} |f(y)| \, dy$, where the supremum is taken over the cubes in \mathbb{R}^n containing x and having side length l(Q) such that $\varepsilon l(Q) \leq t \leq$ l(Q). Then $\mathfrak{M}_{\varepsilon}$ satisfies the vector-valued inequalities (3.1). (Observe that in the limiting case $\varepsilon = 0$ this operator is \mathfrak{M} .)

Proof. Take a differentiable function ϕ_{ε} on \mathbb{R}^{n+1}_+ such that if Q_0 is the unit cube in \mathbb{R}^n , $A = Q_0 \times ([-1,1] - [-\varepsilon,\varepsilon])$, $B = 2Q_0 \times [-2,2]$ then $\chi_A \leq \phi_{\varepsilon} \leq \chi_B$ and $|\nabla_x \phi_{\varepsilon}(x,t)\rangle| \leq C_{\varepsilon} t^{\alpha}/(|x|+t)^{n+1+\alpha}$ for some $\alpha > 0$. Finally, observe that $\mathfrak{M}_{\varepsilon} f(x,t) \leq \mathfrak{M}_{\phi_{\varepsilon}} f(x,t)$ and apply Theorem 4 (notice that we have used cubes instead of balls and therefore some constants depending only on the dimension and ε should appear in the last inequality).

4. Proofs

LEMMA 1. Let μ be a Carleson measure. Let $\varepsilon, b > 0$ and define $\Gamma^b(x) = \Gamma(x) \cap \{(y,t) \in \mathbb{R}^{n+1}_+ : t > b\}$ and $\Gamma_b(x) = \Gamma(x) \cap \{(y,t) \in \mathbb{R}^{n+1}_+ : t < b\}$. Then

(i)
$$\int_{\Gamma^{b}(x)} t^{-n-\varepsilon} d\mu(y,t) \le Cb^{-\varepsilon}$$
, (ii) $\int_{\Gamma_{b}(x)} t^{-n+\varepsilon} d\mu(y,t) \le Cb^{\varepsilon}$.

Proof. Let $\Gamma_j^b = \Gamma(x) \cap \{(y,t) \in \mathbb{R}^{n+1}_+ : 2^{j-1}b < t \le 2^jb\}$ and $\Gamma_b^j = \Gamma(x) \cap \{(y,t) \in \mathbb{R}^{n+1}_+ : 2^{-j}b < t \le 2^{-j+1}b\}$. We have

$$\begin{split} \int\limits_{\Gamma^b(x)} t^{-n-\varepsilon} \, d\mu(y,t) &= \sum_{j=1}^{\infty} \int\limits_{\Gamma_j^b} t^{-n-\varepsilon} \, d\mu(y,t) \leq \sum_{j=1}^{\infty} (2^j b)^{-n-\varepsilon} \mu(\widehat{B}(x;2^j b)) \\ &\leq C b^{-\varepsilon} \sum_{j=1}^{\infty} (2^j)^{-\varepsilon} \leq C b^{-\varepsilon} \, . \end{split}$$

Part (ii) is analogous.

LEMMA 2. Let μ be a positive measure on \mathbb{R}^{n+1}_+ and A a Banach space. Then $T^p_{p,A}(d\mu) = L^p_A(\mathbb{R}^{n+1}_+; d\mu)$ for 1 .

Proof. By Fubini's theorem,

$$\begin{aligned} \|A_p(f)\|_{L^p(dx)}^p &= \int\limits_{\mathbb{R}^n} \left(\int\limits_{\Gamma(x)} |f(y,t)|^p d\mu(y,t)/t^n \right) dx \\ &= \int\limits_{\mathbb{R}^{n+1}_+} |f(y,t)|^p \left(\int\limits_{\mathbb{R}^n} \chi_{\Gamma(x)}(y,t) dx/t^n \right) d\mu(y,t)/t^n \\ &= c_n \int\limits_{\mathbb{R}^n} |f(y,t)|^p d\mu(y,t) \,. \end{aligned}$$

Proof of Theorem 1. By the definition of the norm in $T_{q,B}^{p}\left(d\mu\right)$ we have

$$\{\|Tf\|_{T^{p}_{q,B}(d\mu)}\}^{p} = \int_{\mathbb{R}^{n}} \left(\int_{\Gamma(x)} \|Tf(y,t)\|_{B}^{q} d\mu(y,t)/t^{n}\right)^{p/q} dx$$

$$= \int_{\mathbb{R}^{n}} \left(\int_{\mathbb{R}^{n+1}_{+}} \|Tf(y,t)\|_{B}^{q} \chi_{\Gamma(x)}(y,t) \, d\mu(y,t)/t^{n} \right)^{p/q} dx$$

$$= \int_{\mathbb{R}^{n}} \left(\int_{\mathbb{R}^{n+1}_{+}} \|\mathbf{S}f(x)(y,t)\|_{B}^{q} \, d\mu(y,t)/t^{n} \right)^{p/q} dx$$

$$= \int_{\mathbb{R}^{n}} \{\|\mathbf{S}f(x)\|_{L_{B}^{q}(d\mu/t^{n})}\}^{p} \, dx \, .$$

Suppose that f is a function in $L^p_A(\mathbb{R}^n; dx)$ with compact support contained in Q and $x \notin Q$. It is clear that if $(y,t) \in \Gamma(x)$ then $(y,t) \notin \hat{Q}$, and therefore using (K.1) we obtain

$$\mathbf{S}f(x)(y,t) = Tf(y,t)\chi_{\Gamma(x)}(y,t) = \Big\{ \int_{\mathbb{R}^n} K(y,z,t)f(z)\,dz \Big\}\chi_{\Gamma(x)}(y,t)\,,$$

which is (K.3).

Assume now that |x - z'| > 2|z - z'| and $a \in A$. Then $\{ \| \mathbf{K}(x, z)(a) - \mathbf{K}(x, z')(a) \|_{L^q} |_{d_{1,1}(t_T)} \}^q$

$$\{ \| \mathbf{K}(x,z)(a) - \mathbf{K}(x,z')(a) \|_{L^q_B(d\mu/t^n)} \}^q$$

= $\int_{\Gamma(x)} \| K(y,z,t)(a) - K(y,z',t)(a) \|_B^q d\mu(y,t)/t^n$
 $\leq \| a \| \Big(\int_{\Gamma^{|x-z'|}(x)} + \int_{\Gamma_{|x-z'|}(x)} \Big) \| K(y,z,t) - K(y,z',t) \|^q d\mu(y,t)/t^n$
= $\| a \| \{ I_1 + I_2 \}.$

If $(y, t) \in \Gamma(x)$, then |y - x| < t, and therefore

$$2|z - z'| < |x - z'| \le |x - y| + |y - z'| < t + |y - z'|.$$

Thus, by using (K.2) and Lemma 1(i), we have

$$I_{1} \leq C|z - z'|^{q} \int_{\Gamma^{|x-z'|}(x)} (t + |y - z'|)^{-q(n+1)} t^{-n} d\mu(y, t)$$

$$\leq C|z - z'|^{q} \int_{\Gamma^{|x-z'|}(x)} t^{-q(n+1)} t^{-n} d\mu(y, t) \leq C \frac{|z - z'|^{q}}{|x - z'|^{(n+1)q}}$$

On the other hand, by (K.2) and Lemma 1(ii) we have

$$I_{2} \leq C|z - z'|^{q} \int_{\Gamma_{|x-z'|}(x)} (t + |y - z'|)^{-q(n+1+\alpha)} t^{-\alpha q - n} d\mu(y, t)$$

$$\leq C|z - z'|^{q} \int_{\Gamma_{|x-z'|}(x)} |x - z'|^{-q(n+1+\alpha)} t^{-\alpha q - n} d\mu(y, t)$$

.

$$\leq C \frac{|z-z'|^q |x-z'|^{\alpha q}}{|x-z'|^{(n+1+\alpha)q}} = C \frac{|z-z'|^q}{|x-z'|^{(n+1)q}}$$

This proves (K.4) and the theorem.

Proof of Theorem 2

 $C a s \in 1 . By Theorem A and Theorem 1,$ **S**is a boundedlinear operator from $L^p_A(\mathbb{R}^n; dx)$ into B^p_p , 1 , with an associatedkernel satisfying (K.2'). Thus the standard vector-valued theory of singular integrals can be applied (see [6]), and we conclude that **S** is bounded from $L^p_A(\mathbb{R}^n; dx)$ into B^p_q for $1 and from <math>H^1_A(\mathbb{R}^n; dx)$ into B^1_q for $1 < q \le p_0$, i.e., T is bounded from $L^p_A(\mathbb{R}^n; dx)$ into $T^p_{q,B}(d\mu)$ for $1 and from <math>H^1_A(\mathbb{R}^n; dx)$ into $T^1_{q,B}(d\mu)$ for $1 < q \leq p_0$.

Case $1 < q < p < p_0$. By Lemma 2 and Theorem A, T is bounded from $L^p_A(\mathbb{R}^n; dx)$ into B^p_p , so by Proposition 1, T is bounded from $L^p_A(\mathbb{R}^n; dx)$ into B_a^p .

In order to obtain (iii) and (iv), observe that by Theorem A and Theorem 1, **S** is bounded from $L^p_{lr(A)}(\mathbb{R}^n; dx)$ into $l^r(B)^p_p$ for 1 . Then,by repeating the arguments above (with $l^r(A)$, $l^r(B)$ instead of A and B) we find that **S** is bounded from $L^p_{l^r(A)}(\mathbb{R}^n; dx)$ into $l^r(B)^p_q$ for 1 p_0 and from $H^1_{l^r(A)}(\mathbb{R}^n; dx)$ into $l^r(B)^1_q$ for $1 < q \leq r \leq p_0$. This means that $T \text{ is bounded from } L^p_{l^r(A)}(\mathbb{R}^n; dx) \text{ into } T^p_{q,l^r(B)}(d\mu) \text{ for } 1$ $and from <math>H^1_{l^r(A)}(\mathbb{R}^n; dx) \text{ into } T^1_{q,l^r(B)}(d\mu) \text{ for } 1 < q \le r \le p_0$. The case $1 < q \le p \le r \le p_0$ follows since by Lemma 2 and Theorem A, $T \text{ is bounded from } L^p_{l^r(A)}(\mathbb{R}^n; dx) \text{ into } L^p_{l^r(B)}(\mathbb{R}^{n+1}_+; d\mu) \text{ for } 1 ,$

and Proposition 1 again concludes the proof.

Remarks. The idea of applying vector-valued Calderón–Zygmund theory in the context of tent spaces can be found in [8] for the space T^p_{∞} .

The fact that $T^p_q(\alpha)$ is a subspace of L^p_A where A is $L^q(\mathbb{R}^{n+1}; d\mu/t^n)$ can be used to develop a general abstract theory of the spaces $T^p_q(\alpha)$. This will appear elsewhere.

Acknowledgement. We thank the referee for his suggestions which have contributed to clarify and improve Proposition 1 and the proof of Theorem 2.

REFERENCES

J. Alvarez and M. Milman, Spaces of Carleson measures: duality and interpola-[1]tion, Ark. Mat. 25 (1987), 155-174.

CALDERÓN-ZYGMUND THEORY

- [2] D. L. Burkholder, A geometric condition that implies the existence of certain singular integrals of Banach-space-valued functions, in: Conf. Harmonic Analysis in Honor of A. Zygmund, Wadsworth, Belmont, Calif., 1983, 270–286.
- [3] R. R. Coifman, Y. Meyer et E. M. Stein, Un nouvel espace fonctionnel adapté à l'étude des opérateurs définis par des intégrales singulières, in: Proc. Conf. Harmonic Analysis, Cortona, Lecture Notes in Math. 992, Springer, Berlin 1983, 1–15.
- [4] --, --, Some new function spaces and their applications to harmonic analysis, J. Funct. Anal. 62 (1985), 304–335.
- R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645.
- [6] J. L. Rubio de Francia, F. J. Ruiz and J. L. Torrea, *Calderón-Zygmund theory* for operator-valued kernels, Adv. in Math. 62 (1986), 7-48.
- [7] F. J. Ruiz and J. L. Torrea, Weighted and vector-valued inequalities for potential operators, Trans. Amer. Math. Soc. 295 (1986), 213–232.
- [8] —, —, Vector-valued Calderón-Zygmund theory and Carleson measures on spaces of homogeneous nature, Studia Math. 88 (1988), 221–243.
- [9] F. Zo, A note on approximation of the identity, Studia Math. 55 (1976), 111-122.

DEPARTAMENTO DE MATEMÁTICASDEPARTAMENTO DE MATEMÁTICASFACULTAD DE CIENCIASFACULTAD DE CIENCIASUNIVERSIDAD DE ZARAGOZAUNIVERSIDAD AUTÓNOMA DE MADRID50009 ZARAGOZA, SPAIN28049 MADRID, SPAIN

Reçu par la Rédaction le 20.12.1989; en version modifiée le 5.9.1990