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BY

FRANCISCO J. R U I Z (ZARAGOZA) AND JOSÉ L. TORREA (MADRID)

0. Introduction. The concept of “tent space” was introduced by
R. Coifman, Y. Meyer and E. M. Stein in [3] and [4]. These spaces seem
well adapted for the study of a variety of questions in Harmonic Analysis.
The theory developed in [3] and [4] uses a functional which maps functions
on Rn+1

+ into functions on Rn, given by

Aq(f)(x) =
{ ∫

Γ (x)

|f(y, t)|q dα(y, t)/tn
}1/q

where 1 < q < ∞, Γ (x) is the cone of aperture 1 whose vertex is x ∈ Rn,
and dα(y, t) = dy dt/t. The tent space T q

p (α), 1 ≤ p, q < ∞ is defined as the
space of functions f such that Aq(f) ∈ Lp(Rn).

In this note we study tent spaces T p
q (α) for different measures α. Our

purpose is twofold:
First, we show that the boundedness of an operator T from Lp into

T p
q (α) is equivalent to the boundedness of a related operator S from Lp

to the Bochner–Lebesgue space Lp
A where A is an Lq-space; in some cases

the operator S behaves as a vector-valued Calderón–Zygmund operator (see
Theorem 1). The proof of this theorem says that, in some sense, T p

q (α) is a
subspace of Lp

A.
Secondly, in the case that µ is a Carleson measure we show that some

operators, associated to particular kernels, are bounded from Lp into T p
q (µ).

This is applied to the Poisson integral (see Theorems 2 and 3). The method
can be extended to vector-valued functions, and then some maximal opera-
tors fall under its scope (see Theorem 4).

The organization of this paper is as follows: in Section 1 we introduce
some notations and state the main results, in Section 2 some technical re-
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sults related to Carleson measures are presented, in Section 3 we give some
applications, and Section 4 is devoted to the proofs.

1. Notations and main results. Rn+1
+ = Rn× [0,∞) will be the usual

upper half-space in Rn+1. We shall denote by Γ (x) the cone of aperture 1,
Γ (x) = {(y, t) ∈ Rn+1

+ : |x − y| < t}. Given a cube Q in Rn, we shall
denote by Q̂ the tent over Q, i.e. if Q has center x and side length l, then
Q̂ = {(y, t) : |x − y| + t ≤ l}. A positive measure µ on Rn+1

+ will be called
a Carleson measure if there exists a constant C such that µ(Q̂) ≤ C|Q|, for
every cube Q in Rn (where |Q| stands for the Lebesgue measure of Q in
Rn). Replacing balls with cubes leads to an equivalent definition.

For A,B Banach spaces, let L(A,B) stand for the set of bounded lin-
ear operators from A into B. We shall denote by Lp

A(Rn; dx), 1 ≤ p <
∞, the Bochner–Lebesgue space of A-valued strongly measurable functions
f defined on Rn such that

∫
‖f(x)‖p

A dx < ∞. Analogously, we define
Lp

B(Rn+1
+ ; dµ). Sometimes, we shall write Lp

A (dx) or Lp
B (dµ), for short.

lr(A), 1 < r < ∞, stands for the usual space of A-valued r-summable
sequences.

The space H1
A(Rn; dx) can be defined in terms of A-valued atoms in

the usual way (see [5]). In [2] it was proved that the Riesz transforms
Rj are defined in L1

A(Rn; dx) if the space A is U.M.D., and in this case
H1

A(Rn; dx) = {f ∈ L1
A(Rn; dx) : Rjf ∈ L1

A(Rn; dx), 1 ≤ j ≤ n}.
Given a positive measure µ on Rn+1

+ and 1 ≤ q < ∞, we define (see [4])
the following functional over B-valued functions on Rn+1

+ :

Aq(f)(x) =
{ ∫

Γ (x)

‖f(y, t)‖q
B dµ(y, t)/tn

}1/q

, x ∈ Rn .

The tent space T p
q,B (dµ), 1 ≤ p, q < ∞, is defined as the space of B-valued

strongly measurable functions f such that Aq(f) ∈ Lp(Rn). T p
q,B (dµ) is

equipped with the norm ‖f‖T p
q,B

(dµ) = ‖Aq(f)‖Lp .
In the following, we shall denote by Bp

q the space Lp
A(Rn; dx) where A

is Lq
B(Rn+1

+ ; dµ/tn). Now we state the main results.

Theorem 1. Let µ be either a Carleson measure or the dx dt/t measure
on Rn+1

+ , A, B Banach spaces and 1 ≤ p < ∞, 1 < q < ∞. Then the
following are equivalent :

(i) An operator T is bounded from Lp
A(Rn; dx) into T p

q,B (dµ).
(ii) The operator S given by Sf(x)(y, t) = Tf(y, t)χΓ (x)(y, t) is bounded

from Lp
A(Rn; dx) into Bp

q .

Moreover , if T has an associated kernel K(x, y, t) in the sense of Theo-
rem 2 below satisfying (K.1) and (K.2) then S has an associated
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L(A,Lq
B(Rn+1

+ ; dµ/tn))-valued kernel (in the sense of standard vector-valued
theory of singular integrals, see [6]) given by

K(x, z)(a){(y, t)} = K(y, z, t)(a)χΓ (x)(y, t) ,

a ∈ A, x, z ∈ Rn, (y, t) ∈ Rn+1
+ , and satisfying

(K.3) If f is an A-valued function with compact support contained in
a cube Q, then

Sf(x) =
∫

Rn

K(x, z)f(z) dz for x 6∈ Q .

(K.4) If |x− z′| > 2|z − z′| then

‖K(x, z)−K(x, z′)‖ ≤ C
|z − z′|

|x− z′|n+1
.

Theorem 2. Let A and B be Banach spaces and µ a Carleson mea-
sure on Rn+1

+ . Let T be a bounded linear operator from Lp0
A (Rn; dx) into

Lp0
B (Rn+1

+ ; dµ) for some p0, 1 < p0 ≤ ∞. Suppose that there exists an
L(A,B)-valued function K in Rn × Rn × R+ \ {(x, x, t) : x ∈ Rn, t ≥ 0}
such that :

(K.1) For any pair (x, t) ∈ Rn+1
+ , the function y 7→ K(x, y, t) is locally in-

tegrable and if f is a function in Lp0
A (Rn; dx) with compact support

contained in a cube Q, then

Tf(x, t) =
∫

Rn

K(x, y, t)f(y) dy for (x, t) 6∈ Q̂ .

(K.2) There exists α > 0 such that

‖K(x, y, t)−K(x, y′, t)‖L(A,B) ≤ C
|y − y′|tα

(|x− y′|+ t)n+1+α

for |x− y′|+ t > 2|y − y′| .
Then:

(i) T maps Lp
A(Rn; dx) into T p

q,B (dµ) for 1 < p, q ≤ p0, q < ∞.
(ii) T maps H1

A(Rn) into T 1
q,B (dµ) for 1 < q ≤ p0, q < ∞.

(iii) T maps Lp
lr(A)(R

n; dx) into T p
q,lr(B) (dµ) for 1 < p, q ≤ r ≤ p0,

r < ∞.
(iv) T maps H1

lr(A)(R
n) into T 1

q,lr(B) (dµ), 1 < q ≤ r ≤ p0, r < ∞.

2. Some technical results. In [7] the following are proved:

Theorem A. Let A and B be Banach spaces, µ a Carleson mea-
sure on Rn+1

+ . Let T be a bounded linear operator from Lp0
A (Rn; dx) into
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Lp0
B (Rn+1

+ ; dµ) for some p0, 1 < p0 ≤ ∞. Assume that T has an associated
kernel K satisfying (K.1) of Theorem 2 and

(K.2′) ‖K(x, y, t)−K(x, y′, t)‖L(A,B) ≤ C
|y − y′|

(|x− y′|+ t)n+1

for |x− y′|+ t > 2|y − y′| .
Then:

(i) T maps Lp
lr(A)(R

n; dx) into Lp
lr(B)(R

n+1
+ ; dµ), 1 < p ≤ r ≤ p0.

(ii) T maps H1
lr(A)(R

n) into L1
lr(B)(R

n+1
+ ; dµ), 1 < r ≤ p0.

R e m a r k 1. When we speak about boundedness of an operator T from
Lp

lr(A) into Lp
lr(B) (or T p

q,lr(B)(dµ)) we mean that the assignment (f1, f2, . . .)
7→ (Tf1, T f2, . . .) (where the fi are A-valued functions) is bounded from
Lp

lr(A) into Lp
lr(B) (or T p

q,lr(B) (dµ)). Observe that the L(lr(A), lr(B))-valued
kernel associated to this new operator is given by K(x, y, t) = K(x, y, t)⊗Id,
and so ‖K(x, y, t)‖ = ‖K(x, y, t)‖. Therefore this operator is of the same
type as T and its kernel satisfies the same bounds.

Theorem B. Let A and B be Banach spaces. Let T be a linear operator
which is bounded from L∞A (Rn; w(x) dx) into L∞B (Rn+1

+ ; dv) for every pair
(w, v) which satisfies condition C1, i.e. sup{v(Q̂)/|Q| : Q 3 x} ≤ Cw(x), x-
a.e. (see [7]). Assume that T has an associated kernel K satisfying (K.1)
of Theorem 2 and (K.2′) of Theorem A. Then the following vector-valued
inequalities hold for any Carleson measure µ:

(i) T maps Lp
lr(A)(R

n; dx) into Lp
lr(B)(R

n+1
+ ; dµ) for 1 < p, r < ∞.

(ii) T maps H1
lr(A)(R

n) into L1
lr(B)(R

n+1
+ ; dµ) for 1 < r < ∞.

R e m a r k 2. If in the last theorem A is U.M.D., then (ii) can be written
as ∥∥∥{ ∞∑

j=0

‖Tfj‖r
B

}1/r∥∥∥
L1(dµ)

≤ C

n∑
i=0

∥∥∥{ ∞∑
j=0

‖Rifj‖r
A

}1/r∥∥∥
L1 (dx)

,

where R0f = f and Ri, i = 1, . . . , n, denote the Riesz transforms.

The following result, which we state for further reference, is a conse-
quence of Theorem B.

Proposition 1. The following conditions are equivalent :

(i) µ is a Carleson measure on Rn+1
+ .

(ii) For 1 < r, p < ∞∥∥∥{ ∞∑
j=0

|A1(fj)|r
}1/r∥∥∥

Lp (dx)
≤ C

∥∥∥{ ∞∑
j=0

|fj |r
}1/r∥∥∥

Lp (dµ)
.
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(iii) For 1 < q < r, p < ∞∥∥∥{ ∞∑
j=0

|Aq(fj)|r
}1/r∥∥∥

Lp (dx)
≤ C

∥∥∥{ ∞∑
j=0

|fj |r
}1/r∥∥∥

Lp (dµ)
.

(iv) The operator Tf(x, t) = t−n
∫

B(x;t)
f(y) dy is bounded from Lp

lr (dx)
into Lp

lr (dµ) for 1 < r, p < ∞ (where B(x; t) is the ball centered at x with
radius t).

(v) For 1 ≤ q ≤ p < ∞, T p
p (dµ) ⊆ T p

q (dµ).

P r o o f. To show that (ii)⇔(iii) it is enough to observe that for any q
with 1 ≤ q < ∞ and f positive, A1(f)(x) = {Aq(f1/q)(x)}q. On the other
hand, applying Fubini’s theorem we have∫

A1f(x)g(x) dx =
∫

f(y, t)Tg(y, t) dµ(y, t) for f(x, t) and g(x) positive,

and this identity gives us (ii)⇔(iv).
In order to prove (i)⇒(iv) observe that the operator T can be majorized

by the maximal operator M introduced by Fefferman and Stein, which sat-
isfies the vector-valued inequalities from Lp

lr (Rn; dx) into Lp
lr (R

n+1
+ ; dµ) for

1 < p, r < ∞, as a consequence of Theorem B (see [7]).
For the converse, take B = B(z; s) and (x, t) ∈ B̂; then B(x; t) ⊂ B(z; s).

Now, if (x, t) ∈ B̂ and f = χB(z;s), we have

Tf(x, t) = t−n
∫

B(x;t)

χB(z;s)(y) dy ≥ t−n
∫

B(x;t)

χB(x;t)(y) dy = cn

and therefore

µ(B̂) ≤ µ({(x, t) : Tf(x, t) ≥ cn}) ≤ c′n
∫
|Tf(x, t)|p dµ

≤ C
∫
|f |p dx ≤ C|B| .

Finally, we shall show that (iii)⇒(v)⇒(i). If we assume (iii), then for
1 ≤ q < p we have

‖Aq(f)‖Lp (dx) ≤ C‖f‖Lp (dµ) = cn‖f‖T p
p (dµ) ,

where in the last identity we have used the fact Lp (dµ) = T p
p (dµ) (see

Lemma 2 in Section 4).
On the other hand, if we take a ball B = B(x0; r), we have

rn(1−p/q)µ(B̂)p/q = r−np/q
∫
B

µ(B̂)p/q dx

= r−np/q
∫
B

( ∫
Γ (x)

|χ
B̂

(y, t)|q dµ(y, t)
)p/q

dx
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≤
∫
B

( ∫
Γ (x)

|χ
B̂

(y, t)|q dµ(y, t)/tn
)p/q

dx

≤
∫

Rn

( ∫
Γ (x)

|χ
B̂

(y, t)|q dµ(y, t)/tn
)p/q

dx ,

and by (v) this is less than∫
Rn

( ∫
Γ (x)

|χ
B̂

(y, t)|p dµ(y, t)/tn
)

dx = cnµ(B̂) .

3. Applications. Our first application deals with operators of Poisson
type.

Theorem 3. Let φ be a measurable function on Rn such that there exists
α > 0 with

(a) |φ(x)| ≤ C(|x|+ A)−n−α and (b) |∇φ(x)| ≤ C(|x|+ B)−n−1−α

where A,B, C are constants independent of x. For the function Φ(x, t) =
t−nφ(x/t), t ≥ 0, the operator

Φf(x, t) =
∫

Rn

Φ(x− y, t)f(y) dy ,

and for any Carleson measure µ, the following vector-valued inequalities
hold :

(3.1)
∥∥∥{ ∞∑

j=0

|Φ(fj)|r
}1/r∥∥∥

T p
q (dµ)

≤ Cp,q,r

∥∥∥{ ∞∑
j=0

|fj |r
}1/r∥∥∥

Lp (dx)

for 1 < p, q, r < ∞ ,

(3.2)
∥∥∥{ ∞∑

j=0

|Φ(fj)|r
}1/r∥∥∥

T 1
q (dµ)

≤ Cq,r

n∑
i=0

∥∥∥{ ∞∑
j=0

|Rifj |r
}1/r∥∥∥

L1 (dx)

for 1 < q, r < ∞ .

P r o o f. Observe that |Φf(x, t)| ≤ ‖f‖∞‖φ‖1, and thus for any pair
(v, w) satisfying condition C1 (see Theorem B), Φ maps L∞(Rn;w(x) dx)
into L∞(Rn+1

+ ; dµ). Moreover, it is easy to check from condition (b) that if
|x− y′|+ t > 2|y − y′| then

|Φ(x− y, t)− Φ(x− y′, t)| = t−n|φ((x− y)/t− φ((x− y′)/t)|

≤ C
|y − y′|tα

(|x− y′|+ t)n+1+α
,

and so Φ(x− y, t) satisfies (K.2) of Theorem 2 and, in particular, (K.2′) of
Theorem B. Therefore, Φ is bounded from Lp

lr (Rn; dx) into Lp
lr (R

n+1
+ ; dµ)
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for 1 < p, r < ∞ and any Carleson measure µ.
Summarizing, Φ satisfies the hypothesis of Theorem 2 with A = B = lr,

1 < r < ∞, and any p0 with 1 < p0 < ∞, and Theorem 3 is a consequence
of Theorem 2.

R e m a r k 3. In the case of positive linear operators, extensions to vector-
valued functions are trivial. Therefore, if φ is positive then the vector-
valued inequalities (3.1) and (3.2) remain true for 1 ≤ r ≤ ∞. This is
the case for the Poisson kernel P (x, t) = Φ(x, t), where φ(x) = P (x) =
cn(|x|2 + 1)−(n+1)/2 with cn = Γ ((n + 1)/2)π−(n+1)/2.

The next application can be viewed as Zo’s maximal theorem (see [9]):

Theorem 4. Let µ be a Carleson measure and φ a measurable function
in Rn+1

+ such that

(a)
∫

Rn |φ(x, t)| dx ≤ A < ∞,∀t ≥ 0,
(b) |∇xφ(x, t))| ≤ Ctα/(|x|+ t)n+1+α for some α > 0.

Then the operator

Mφf(x, t) = sup
δ>0

∣∣∣δ−n
∫

Rn

φ((x− y)/δ, t/δ)f(y) dy
∣∣∣

satisfies the vector-valued inequalities (3.1) and (3.2).

P r o o f. Let S be the linear operator defined by

Sf(x, t) =
{

δ−n
∫

Rn

φ((x− y)/δ, t/δ)f(y) dy
}

δ>0
.

By (a) it is clear that S is bounded from L∞(Rn;w(x) dx) into
L∞l∞(Rn+1

+ ; dv) for any pair (v, w) satisfying C1; moreover, S is given by
an L(C, l∞) ≡ l∞-valued kernel K(x, y, t) = {δ−nφ((x − y)/δ, t/δ)}δ>0

which satisfies (K.2) since φ satisfies (b). Therefore, by Theorem B, S
is bounded from Lp

lr (Rn; dx) into Lp
lr(l∞)(R

n+1
+ ; dµ) for 1 < p, r < ∞ and

from H1
lr (dx) into L1

lr(l∞)(R
n+1
+ ; dµ). Thus Theorem 2 applies, and S is

bounded from Lp
lr (Rn; dx) into T p

q,lr(l∞) dµ) for 1 < p, q, r < ∞ and from
H1

lr (dx) into T 1
q,lr(l∞) (dµ), 1 < q, r < ∞. The result follows by observing

that ‖Sf(x, t)‖l∞ = Mφf(x, t).

Corollary 1. Given ε, 0 < ε < 1, we define the maximal operator
Mεf(x, t) = sup |Q|−1

∫
Q
|f(y)| dy, where the supremum is taken over the

cubes in Rn containing x and having side length l(Q) such that εl(Q) ≤ t ≤
l(Q). Then Mε satisfies the vector-valued inequalities (3.1). (Observe that
in the limiting case ε = 0 this operator is M.)
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P r o o f. Take a differentiable function φε on Rn+1
+ such that if Q0 is the

unit cube in Rn, A = Q0 × ([−1, 1]− [−ε, ε]), B = 2Q0 × [−2, 2] then χA ≤
φε ≤ χB and |∇xφε(x, t))| ≤ Cεt

α/(|x| + t)n+1+α for some α > 0. Finally,
observe that Mεf(x, t) ≤ Mφεf(x, t) and apply Theorem 4 (notice that we
have used cubes instead of balls and therefore some constants depending
only on the dimension and ε should appear in the last inequality).

4. Proofs

Lemma 1. Let µ be a Carleson measure. Let ε, b > 0 and define Γ b(x) =
Γ (x) ∩ {(y, t) ∈ Rn+1

+ : t > b} and Γb(x) = Γ (x) ∩ {(y, t) ∈ Rn+1
+ : t < b}.

Then

(i)
∫

Γ b(x)

t−n−ε dµ(y, t) ≤ Cb−ε , (ii)
∫

Γb(x)

t−n+ε dµ(y, t) ≤ Cbε .

P r o o f. Let Γ b
j = Γ (x) ∩ {(y, t) ∈ Rn+1

+ : 2j−1b < t ≤ 2jb} and Γ j
b =

Γ (x) ∩ {(y, t) ∈ Rn+1
+ : 2−jb < t ≤ 2−j+1b}. We have∫

Γ b(x)

t−n−ε dµ(y, t) =
∞∑

j=1

∫
Γ b

j

t−n−ε dµ(y, t) ≤
∞∑

j=1

(2jb)−n−εµ(B̂(x; 2jb))

≤ Cb−ε
∞∑

j=1

(2j)−ε ≤ Cb−ε .

Part (ii) is analogous.

Lemma 2. Let µ be a positive measure on Rn+1
+ and A a Banach space.

Then T p
p,A (dµ) = Lp

A(Rn+1
+ ; dµ) for 1 < p < ∞.

P r o o f. By Fubini’s theorem,

‖Ap(f)‖p
Lp (dx) =

∫
Rn

( ∫
Γ (x)

|f(y, t)|p dµ(y, t)/tn
)

dx

=
∫

Rn+1
+

|f(y, t)|p
( ∫

Rn

χΓ (x)(y, t) dx/tn
)

dµ(y, t)/tn

= cn

∫
Rn

|f(y, t)|p dµ(y, t) .

P r o o f o f T h e o r e m 1. By the definition of the norm in T p
q,B (dµ) we

have

{‖Tf‖T p
q,B

(dµ)}p =
∫

Rn

( ∫
Γ (x)

‖Tf(y, t)‖q
B dµ(y, t)/tn

)p/q

dx
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=
∫

Rn

( ∫
Rn+1

+

‖Tf(y, t)‖q
BχΓ (x)(y, t) dµ(y, t)/tn

)p/q

dx

=
∫

Rn

( ∫
Rn+1

+

‖Sf(x)(y, t)‖q
B dµ(y, t)/tn

)p/q

dx

=
∫

Rn

{‖Sf(x)‖Lq
B

(dµ/tn)}p dx .

Suppose that f is a function in Lp
A(Rn; dx) with compact support con-

tained in Q and x 6∈ Q. It is clear that if (y, t) ∈ Γ (x) then (y, t) 6∈ Q̂, and
therefore using (K.1) we obtain

Sf(x)(y, t) = Tf(y, t)χΓ (x)(y, t) =
{ ∫

Rn

K(y, z, t)f(z) dz
}

χΓ (x)(y, t) ,

which is (K.3).
Assume now that |x− z′| > 2|z − z′| and a ∈ A. Then

{‖K(x, z)(a)−K(x, z′)(a)‖Lq
B

(dµ/tn)}q

=
∫

Γ (x)

‖K(y, z, t)(a)−K(y, z′, t)(a)‖q
B dµ(y, t)/tn

≤ ‖a‖
( ∫

Γ |x−z′|(x)

+
∫

Γ|x−z′|(x)

)
‖K(y, z, t)−K(y, z′, t)‖q dµ(y, t)/tn

= ‖a‖{I1 + I2} .

If (y, t) ∈ Γ (x), then |y − x| < t, and therefore

2|z − z′| < |x− z′| ≤ |x− y|+ |y − z′| < t + |y − z′| .

Thus, by using (K.2) and Lemma 1(i), we have

I1 ≤ C|z − z′|q
∫

Γ |x−z′|(x)

(t + |y − z′|)−q(n+1)t−n dµ(y, t)

≤ C|z − z′|q
∫

Γ |x−z′|(x)

t−q(n+1)t−n dµ(y, t) ≤ C
|z − z′|q

|x− z′|(n+1)q
.

On the other hand, by (K.2) and Lemma 1(ii) we have

I2 ≤ C|z − z′|q
∫

Γ|x−z′|(x)

(t + |y − z′|)−q(n+1+α)t−αq−n dµ(y, t)

≤ C|z − z′|q
∫

Γ|x−z′|(x)

|x− z′|−q(n+1+α)t−αq−n dµ(y, t)
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≤ C
|z − z′|q|x− z′|αq

|x− z′|(n+1+α)q
= C

|z − z′|q

|x− z′|(n+1)q
.

This proves (K.4) and the theorem.

P r o o f o f T h e o r e m 2

C a s e 1 < p ≤ q ≤ p0. By Theorem A and Theorem 1, S is a bounded
linear operator from Lp

A(Rn; dx) into Bp
p , 1 < p ≤ p0, with an associated

kernel satisfying (K.2′). Thus the standard vector-valued theory of singular
integrals can be applied (see [6]), and we conclude that S is bounded from
Lp

A(Rn; dx) into Bp
q for 1 < p ≤ q ≤ p0 and from H1

A(Rn; dx) into B1
q

for 1 < q ≤ p0, i.e., T is bounded from Lp
A(Rn; dx) into T p

q,B (dµ) for
1 < p ≤ q ≤ p0 and from H1

A(Rn; dx) into T 1
q,B (dµ) for 1 < q ≤ p0.

C a s e 1 < q < p < p0. By Lemma 2 and Theorem A, T is bounded from
Lp

A(Rn; dx) into Bp
p , so by Proposition 1, T is bounded from Lp

A(Rn; dx)
into Bp

q .

In order to obtain (iii) and (iv), observe that by Theorem A and Theorem
1, S is bounded from Lp

lr(A)(R
n; dx) into lr(B)p

p for 1 < p ≤ r ≤ p0. Then,
by repeating the arguments above (with lr(A), lr(B) instead of A and B) we
find that S is bounded from Lp

lr(A)(R
n; dx) into lr(B)p

q for 1 < p ≤ q ≤ r ≤
p0 and fromH1

lr(A)(R
n; dx) into lr(B)1q for 1 < q ≤ r ≤ p0. This means that

T is bounded from Lp
lr(A)(R

n; dx) into T p
q,lr(B) (dµ) for 1 < p ≤ q ≤ r ≤ p0

and from H1
lr(A)(R

n; dx) into T 1
q,lr(B) (dµ) for 1 < q ≤ r ≤ p0.

The case 1 < q ≤ p ≤ r ≤ p0 follows since by Lemma 2 and Theorem A,
T is bounded from Lp

lr(A)(R
n; dx) into Lp

lr(B)(R
n+1
+ ; dµ) for 1 < p ≤ r ≤ p0,

and Proposition 1 again concludes the proof.

R e m a r k s. The idea of applying vector-valued Calderón–Zygmund the-
ory in the context of tent spaces can be found in [8] for the space T p

∞.
The fact that T p

q (α) is a subspace of Lp
A where A is Lq(Rn+1

+ ; dµ/tn) can
be used to develop a general abstract theory of the spaces T p

q (α) . This will
appear elsewhere.
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