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SOME INDEFINITE METRICS AND COVARIANT DERIVATIVES
OF THEIR CURVATURE TENSORS

BY

W . R O T E R (WROC LAW)

1. Introduction. Let (M, g) be a Riemannian or pseudo-Riemannian
manifold.

We denote its curvature tensor, Ricci tensor, scalar curvature and Weyl
conformal curvature tensor by R, S, K and C respectively, while ∇ stands
for covariant differentiation with respect to g.

Nomizu and Ozeki proved the following remarkable result [11]:

Theorem A. In a Riemannian manifold , if ∇tR = 0 for some t ≥ 1,
then ∇R = 0.

Tanno extended this theorem as follows:

Theorem B (see [17], Theorem 2). Let (M, g) be a Riemannian mani-
fold.

(a) If ∇tS = 0 for some t ≥ 1, then ∇S = 0.
(b) If ∇tC = 0 for some t ≥ 1, then ∇C = 0.
(c) If ∇tK = 0 for some t ≥ 1, then K = constant.
(d) If ∇tP = 0 for some t ≥ 1, then ∇P = 0 and ∇R = 0, where P

denotes the Weyl projective curvature tensor of (M, g).

Moreover, investigating Riemannian manifolds with conformally related
metrics, Nickerson proved

Theorem C (see [10], Theorem 4.1). A conformally recurrent manifold
with C 6= 0 cannot be conformal to a Riemannian locally symmetric one.

In connection with the above theorems, an interesting question arises
whether these results are valid for pseudo-Riemannian manifolds.

Unfortunately, for a 4-dimensional indefinite metric Kăıgorodov has
proved [8] that Theorem A fails in general.

The present paper deals with examples (Examples 1 and 2) of certain
n-dimensional (n ≥ 4) metrics which show that neither Theorems A, B
(except case (c), which will be treated in a subsequent paper) nor Nickerson’s
Theorem C remain true for indefinite metrics.
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We shall also prove (Corollary 7) the existence of non-recurrent Ricci-
recurrent simple conformally recurrent metrics which are not conformal to
any essentially conformally symmetric one.

Throughout this paper, all manifolds under consideration are assumed
to be connected and of class C∞.

The present author is grateful to Professors K. Nomizu and U. Simon
whose interesting questions concerning Theorem A called the author’s
attention to problems considered in this paper.

2. Preliminaries. In the sequel we shall need the following definitions
and lemmas:

An n-dimensional (n ≥ 4) Riemannian or pseudo-Riemannian manifold
is called conformally symmetric [2] if its Weyl conformal curvature tensor

Chijk = Rhijk −
1

n− 2
(gijShk − gikShj + ghkSij − ghjSik)(1)

+
K

(n− 1)(n− 2)
(gijghk − ghjgik)

is parallel, i.e. if ∇C = 0.
Clearly, the class of conformally symmetric manifolds contains all locally

symmetric ones as well as all conformally flat manifolds of dimension n ≥ 4.
The existence of essentially conformally symmetric manifolds, i.e. con-

formally symmetric manifolds which are neither conformally flat nor locally
symmetric, will be shown in Section 3 (see also [3] and [4]). Such manifolds
cannot have definite metrics [5].

Let M be a manifold with a (possibly indefinite) metric g. A smooth
tensor field T on M will be called recurrent if

(2) Ti1...iqTj1...jq,l = Ti1...iq,lTj1...jq ,

where the comma denotes (here and in the sequel) covariant differentiation
with respect to g.

Every parallel tensor field is therefore recurrent.
Condition (2) states that at each point x ∈ M such that T (x) 6= 0 there

exists a (unique) covariant vector a (called the recurrence vector of T ) which
satisfies

(3) Ti1...iq,l = alTi1...iq .

The above definition of recurrency differs slightly from the classical one,
i.e. that given by (3). Obviously, both definitions are equivalent on the
subset of M where T does not vanish.

A Riemannian or pseudo-Riemannian manifold (M, g) will be called re-
current [18] (Ricci-recurrent [12]) if its curvature tensor (Ricci tensor) is
recurrent.
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Following Adati and Miyazawa [1], an n-dimensional (n ≥ 4) manifold
with a possibly indefinite metric will be called conformally recurrent if its
Weyl conformal curvature tensor is recurrent.

Clearly, the class of conformally recurrent manifolds contains all confor-
mally symmetric ones as well as all recurrent manifolds of dimension n ≥ 4.

A conformally recurrent manifold (M, g) is said to be simple if its metric
is locally conformal to a non-conformally flat conformally symmetric one,
i.e., if for each point x ∈ M there exist a neighbourhood U of x and a
function p on U such that g = (exp 2p)g is a non-conformally flat conformally
symmetric metric.

Obviously, every non-conformally flat conformally symmetric manifold
is necessarily simple conformally recurrent.

Simple conformally recurrent manifolds can be characterized as follows:

Lemma 1 (see [14], Theorem 1). A conformally recurrent manifold is
simple conformally recurrent if and only if (i) C 6= 0 everywhere (which, in
view of (2), implies

(4) Chijk,l = alChijk

for some vector field aj , the recurrence vector of C), (ii) the recurrence
vector is locally a gradient (ai,j = aj,i), and (iii) the Ricci tensor S is a
Codazzi tensor (Sij,l = Sil,j).

The existence of non-simple conformally recurrent metrics with C 6= 0
has been established in [15].

In the general case, we have

Lemma 2 (see [13], Theorem 1). Let (M, g) be conformally recurrent. If
M admits a function p such that (M, g) with g = (exp 2p)g is conformally
recurrent , then

(e) plC
h

ijk + pjC
h

ikl + pkCh
ilj = 0

everywhere on M , pj = ∂jp.
(h) At each point x ∈ M such that C(x) 6= 0 we have aj = aj − 4pj and

prpr = 0, aj and aj being the recurrence vectors of C and C respectively.

Lemma 3 (see [13], Theorem 2). Let (M, g) be conformally recurrent. If
p is a function on M satisfying condition (e), then (M, g) with g = (exp 2p)g
is conformally recurrent.

Lemma 4 (see [13], Theorem 3). Let (M, g) and (M, g) be conformally
symmetric. If g = (exp 2p)g and p is a non-constant function on M , then
both (M, g) and (M, g) are conformally flat.

The following lemma is a generalization of a result of Matsumoto [9]:
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Lemma 5. Let (M, g) be a Riemannian or pseudo-Riemannian manifold
with dim M ≥ 3. Then for each t ≥ 1,

∇tP = 0 if and only if ∇tR = 0.

P r o o f. Suppose that ∇tP = 0. Then, by the definition of P , we have

Rhijl,q1...qt =
1

n− 1
(ghlSij,q1...qt

− ghjSil,q1...qt
) ,

whence,

Shl,q1...qt =
1
n

K,q1...qt
ghl .

But the last equation, in view of Sr
j,r = 1

2K,j , implies 1
2K,lq2...qt =

1
nK,lq2...qt

. Hence, Shl,q1...qt
= 0 and, consequently, ∇tR = 0. The con-

verse implication is trivial. This completes the proof.

R e m a r k 1. Lemma 5 seems to belong to the folklore. We have included
its proof for completeness.

Lemma 6. Let gij = (exp 2p)gij. Then we have ([7], pp. 89–90):

(5)
{

h

i j

}
=

{
h

i j

}
+ δh

i pj + δh
j pi − phgij ,

(6) Sij = Sij + (n− 2)(pi,j − pipj) + (pr
,r + (n− 2)prpr)gij ,

(7) C
h

ijk = Ch
ijk ,

where ph = ghrpr.

3. Basic examples. The following definitions will be convenient:
Let (M, g) be a pseudo-Riemannian manifold. If its curvature (Ricci)

tensor satisfies ∇tR = 0 (∇tS = 0) for some t ≥ 2 and ∇t−1R (∇t−1S)
does not vanish everywhere, then (M, g) is called t-symmetric (Ricci t-
symmetric). Similarly, if for the Weyl conformal (projective) curvature ten-
sor the condition ∇tC = 0 (∇tP = 0) holds for some t ≥ 2 and ∇t−1C
(∇t−1P ) does not vanish everywhere, then (M, g) is said to be conformally
(projectively) t-symmetric.

In this section each Latin index runs over 1, 2, . . . , n, and each Greek
index over 2, 3, . . . , n − 1. Moreover, the comma (as well as ∇) denotes
covariant differentiation with respect to g.

Example 1. Let M denote the Euclidean n-space (n ≥ 4) endowed with
the indefinite metric gij given by

(8) gijdxidxj = Q(dx1)2 + kλµdxλdxµ + 2dx1dxn ,

(9) Q = (Akλµ + cλµ)xλxµ ,
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where [kλµ] is an arbitrary symmetric non-singular constant matrix , [cλµ]
is an arbitrary symmetric non-zero constant matrix satisfying kαβcαβ = 0
with [kλµ] = [kλµ]−1, and A is an arbitrary smooth non-constant function
of x1 only. Then:

(i) M is essentially conformally symmetric.
(ii) M is Ricci-recurrent and its scalar curvature vanishes everywhere.
(iii) M is not recurrent , but for each x ∈ M such that (∇R)(x) 6= 0 there

exists a vector b which satisfies Rhijk,lm = bmRhijk,l. The last condition
states that ∇R is recurrent.

(iv) If

(10) A =
t−1∑
l=0

ql(x1)l ,

where t ≥ 2, qi = const. (i = 0, 1, . . . , t − 1) and qt−1 6= 0, then M is
t-symmetric and Ricci t-symmetric.

P r o o f. One can easily check that in the metric (8) the only Christoffel
symbols not identically zero are

(11)
{

λ

1 1

}
= −1

2
kλωQ.ω ,

{
n

1 1

}
=

1
2
Q.1 ,

{
n

1 λ

}
=

1
2
Q.λ ,

where the dot denotes partial differentiation with respect to coordinates.
Moreover, in view of the formula

Rhijk =
1
2
(ghk.ij + gij.hk − ghj.ik − gik.hj)

+ gpq

({
p

h k

} {
q

i j

}
−

{
p

h j

} {
q

i k

})
it follows that the only components Rhijk not identically zero are ([16],
p. 179)

(12) R1λµ1 = 1
2Q.λµ .

It can also be found that

(13) S11 = 1
2kαβQ.αβ

and that all other components of S are identically zero.
By an elementary computation, we can easily show that the only com-

ponents of C, ∇S, ∇R and ∇C not identically zero are [14]

(14)
C1λµ1 =

1
2

(
Q.λµ −

1
n− 2

kλµ(kαβQ.αβ)
)

, S11,j =
1
2
kαβQ.αβj ,

R1λµ1,j =
1
2
Q.λµj , C1λµ1,j =

1
2

(
Q.λµj −

1
n− 2

kλµ(kαβQ.αβj)
)

.
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Substituting (9) into (12), (13) and (14), we easily obtain

(15)
S11 = (n− 2)A, R1λµ1 = Akλµ + cλµ, C1λµ1 = cλµ,

S11,j = (n− 2)A.j , R1λµ1,j = A.jkλµ, C1λµ1,j = 0,

which, since g11 = 0, implies (i) and (ii).
Moreover, using (11), R1λµ1,j = A′δ1

j kλµ and S11,j = (n − 2)A′δ1
j , one

can easily check that the only components of ∇tR and ∇tS not identically
vanishing are

(16)
R1λµ1,q1...qt = A(t)δ1

q1
δ1
q2

. . . δ1
qt

kλµ ,

S11,q1...qt = (n− 2)A(t)δ1
q1

δ1
q2

. . . δ1
qt

,

where the prime ((t) resp.) indicates the ordinary derivative (of order t
resp.) with respect to x1.

Assume now that (10) holds. Then, in view of (16), we get ∇tR = 0.
Since, by (10) and (16), ∇t−1R does not vanish, M is t-symmetric. More-
over, (16) yields ∇tS = 0, which, together with (10) and (16), shows that
M is also Ricci t-symmetric.

This completes the proof of (iv).
Suppose that M is recurrent. Then, because of (15) and (2) (with R

instead of T ), we obtain cαβkλµ = cλµkαβ , which, since kαβcαβ = 0 by
assumption, implies cλµ = 0, a contradiction. Thus, M cannot be recur-
rent. The second part of (iii) is an immediate consequence of R1λµ1,lm =
1

A′ A
′′δ1

mR1λµ1,l. This completes the proof.

Hence, we have

Corollary 1. For each n ≥ 4 and for each t ≥ 2, there exist
n-dimensional essentially conformally symmetric non-recurrent Ricci-recur-
rent metrics which are t-symmetric and Ricci t-symmetric.

R e m a r k 2. It is easy to prove that for the metric (8), we have

index of [gij ] = index of [kλµ] + 1 ,

the index of a symmetric matrix being understood as the number of negative
entries in its diagonal form (for details see Remark 1 of [6]).

R e m a r k 3. Obviously, if Q = Akλµxλxµ (cλµ = 0) and [kλµ] has the
properties stated in Example 1, then (15) yields

R1λµ1 = Akλµ, S11 = (n− 2)A, C1λµ1 = 0,

S11,j = (n− 2)A′δ1
j , R1λµ1,l = A′δ1

l kλµ.

Thus, in view of (10) and (16), we have
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Corollary 2. For each n ≥ 4 and for each t ≥ 2, there exist
n-dimensional conformally flat recurrent metrics which are t-symmetric and
Ricci t-symmetric.

Since a parallel tensor vanishes if it vanishes at some point, Lemma 5
yields

Corollary 3. A pseudo-Riemannian manifold of dimension n ≥ 3 is
projectively t-symmetric if and only if it is t-symmetric.

Moreover, in view of Corollary 1, we get

Corollary 4. For each n ≥ 4 and for each t ≥ 2, there exist
n-dimensional essentially conformally symmetric Ricci-recurrent metrics
which are projectively t-symmetric. Such metrics are necessarily t-sym-
metric.

Example 2. Let M = {(x1, . . . , xn) ∈ Rn : x1 > 0 and n ≥ 4} be
endowed with the metric (8), where

(17) Q = (Akλµ + Bcλµ)xλxµ .

Assume moreover that [kλµ] and [cλµ] have the properties described in Ex-
ample 1, and A, B are smooth functions of x1 only such that A does not
identically vanish, B 6= const., B 6= 0 everywhere and A 6= cB (c = const.).
Then:

(i) M is simple conformally recurrent.
(ii) M is Ricci-recurrent , non-recurrent and its scalar curvature van-

ishes.
(iii) If B = a(x1)t−1, where t ≥ 2 and a = const. 6= 0, then ∇tC = 0

although ∇t−1C 6= 0 everywhere.
(iv) If B is as above and

A =
(t− 1)(t + 3)

16(x1)2
,

then (M, g) admits a conformal change of metric g → g = (exp 2p)g such
that (M, g) is locally symmetric.

P r o o f. Substituting (17) into (12), (13), and (14) we easily obtain

(18)
S11 = (n− 2)A, R1λµ1 = Akλµ + Bcλµ, C1λµ1 = Bcλµ,

S11,l = (n− 2)A.l, R1λµ1,l = A.lkλµ + B.lcλµ, C1λµ1,l = B.lcλµ,

which, because of C1λµ1,l = (log |B|)′δ1
l C1λµ1 = alC1λµ1, shows that M is

conformally recurrent and its recurrence vector is given by aj = (log |B|)′δ1
j .

Hence, in view of (18) and Lemma 1, M is simple conformally recurrent.
Moreover, equations (18) and g11 = 0 show that M is Ricci-recurrent and
that its scalar curvature vanishes everywhere.
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Assume now that M is recurrent. Then, because of (2) and (18), we get
(BA′−AB′)δ1

l cλµ = 0. But this implies A′−(B′/B)A = 0 and, consequently,
we must have A = cB (c = const.), a contradiction. Hence, M cannot be
recurrent.

Using (11), (18) and C1λµ1,l = B′δ1
l cλµ one can now easily check that

the only components of ∇tC not identically vanishing are

C1λµ1,q1...qt = B(t)δ1
q1

δ1
q2

. . . δ1
qt

cλµ ,

which, since B = a(x1)t−1 by assumption, completes the proof of (iii).
From (18) it follows that any smooth function of x1 only (and in partic-

ular p = 1
4 (t− 1) log x1) satisfies condition (e) of Lemma 2.

Thus, by Lemma 3, (M, g) with g = (exp 2p)g = (x1)(t−1)/2g is confor-
mally recurrent.

On the other hand, the recurrence vector of (M, g) is given by aj = t−1
x1 δ1

j ,
which, in view of Lemma 2, shows that aj = 0.

Hence, (M, g) is conformally symmetric. It remains therefore to prove
that the Ricci tensor of (M, g) is parallel.

Since pi = ∂ip = 0 (i = 2, . . . , n), g11 = 0 and Sij = (n − 2)Aδ1
i δ1

j , it
follows that prSri as well as ∆1p = prpr and ∆2p = pr

,r vanish everywhere.
Thus, equations (5) and (6) imply

Sij;k = Sij,k − 2pkSij − piSjk − pjSik + (n− 2)pi,jk

+ 4(n− 2)pipjpk − 2(n− 2)(pipj,k + pjpi,k + pkpi,j) ,

where the semicolon denotes covariant differentiation with respect to g.
Moreover, using (11) and pi = 0 (i = 2, . . . , n) again, one can easily check
that the only component of ∇S not identically vanishing is

S11;1 = S11,1 − 4p1S11 + (n− 2)p1,11 + 4(n− 2)p3
1 − 6(n− 2)p1p1,1 .

But the last expression, in view of (11) and S11 = (n− 2)A, takes the form

(19) S11;1 = (n− 2)(p′′′ − 6p′p′′ + 4(p′)3 − 4Ap′ + A′) .

Using now the definitions of p and A one can easily verify that S is parallel.
This completes the proof.

Since in the above metric R1λµ1,q1...qt = (A(t)kλµ + B(t)cλµ)δ1
q1

. . . δ1
qt

,
Example 2 yields

Corollary 5. For each n ≥ 4 and for each t ≥ 2, there exist
n-dimensional non-recurrent simple conformally recurrent Ricci-recurrent
non-t-symmetric metrics which are conformally t-symmetric and conformal
to metrics with parallel curvature tensor.

R e m a r k 4. Assume that (M, g) has the properties described in Exam-
ple 2. If A = 1

4 (x1)−2 and B = (x1)−2, then, as one can easily verify, (M, g)
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is recurrent. Moreover, setting p = − 1
2 log x1, we get aj = 0 and S11;1 = 0.

Thus, we have

Corollary 6. For each n ≥ 4, there exist n-dimensional non-confor-
mally flat recurrent metrics which are conformal to metrics with parallel
curvature tensor (cf. [10], Corollary 4.2).

R e m a r k 5. Let p = 1
4 (t−1) log x1. Denote by g the metric described in

(iv) of Example 2. Then (M, g), where g = (exp 2p)g, is locally symmetric.
Assume that q is a smooth function on M such that (M, g1) with g1 =
(exp 2q)g is conformally symmetric. Then, by Lemma 4, the condition g =
(exp 2(p− q))g1 implies q = p + c, where c = const. Hence, by (19), (M, g1)
is locally symmetric too. This yields

Corollary 7. For each n ≥ 4 and for each t ≥ 2, there exist
n-dimensional non-recurrent simple conformally recurrent Ricci-recurrent
non-t-symmetric metrics which are conformally t-symmetric and not con-
formal to any essentially conformally symmetric metric.

R e m a r k 6. Nickerson’s result (Theorem C) is a consequence of Lem-
ma 2. Indeed, the definition of a conformally recurrent manifold used in
Nickerson’s paper is given by (4) with aj 6= 0 at some point. Since the
considered manifold is not conformally flat by assumption, (4) yields C 6= 0
everywhere. Assume now that (M, g) with g = (exp 2p)g is conformally
symmetric. Then, by Lemma 2, we must have prpr = 0, which, since
aj = aj − 4pj and the metric is positive definite, leads immediately to
the assertion.
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