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1. Introduction. First we formulate our problem in a more general
set-up. Let X = (Ω1 = EN , F 1 = EN , xt, P

1
x ) be a Markov process with

transition operator P (x, dz) and values in a measurable space (E, E). Let
(wi), i = 1, 2, . . . , be a sequence of i.i.d. Rd-valued random vectors defined
on a probability space (Ω2 = Rd, F 2 = B(Rd), P 2). Assume that the wi

have positive density g(y) with respect to d-dimensional Lebesgue measure.
Define the probability space Ω = Ω1 × Ω2, F = F 1 ⊗ F 2, Px = P 1

x ⊗ P 2.
Clearly X defined on Ω by xt(ω1, ω2) = xt(ω1) for ω1 ∈ Ω1, ω2 ∈ Ω2 is
independent of (wi) where wi(ω1, ω2) = wi(ω2), and has the same transition
function P (x, dz). Assume that we cannot observe (xt) directly. The only
information about X is given through the Rd-valued observation process
Y = (yn)n=0,1,..., y0 = 0, yn = h(xn, wn), where for x fixed, h(x, ·) is
a diffeomorphism of Rd, i.e., a 1-1, C1 transformation with nonvanishing
Jacobian.

For a given initial law ν of X, define the so-called filtering process

π(ν)
n (f) def= Eν{f(xn)|y1, . . . , yn} Pν a.s.

for f ∈ B(E), the space of bounded measurable functions on E. From the
Kallianpur–Striebel formula (see (6) of [6]) we obtain

(1) π
(ν)
n+1(f) =

σ
(ν)
n+1(f)

σ
(ν)
n+1(1)

def= S(f, yn+1, π
(ν)
n )

with

(2) σ
(ν)
n+1(f)

=
∫
E

∫
E

f(z)g(w(z, yn+1))|Jacobian w(z, yn+1)|P (x, dz) σ(ν)
n (dx) ,

σ
(ν)
0 (·) = ν(·) ,

where w(x, z) for x fixed is the inverse function to h(x, z).
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The filtering process π
(ν)
n considered as a process on P(E), the space of

probability measures on E, is Markov (Lemma 3 of [6]) with respect to the
observation σ-field Gn

def= σ(y1, . . . , yn). Therefore one can study the limit
behaviour of π

(ν)
n as n → ∞. This problem was the subject of the papers

[2], [3], [6]. For further reference let us recall

Proposition (Theorem 2 in [6]). Assume that X has a unique invariant
measure µ. Then there exists a unique invariant measure for the filtering
process π

(ν)
n if and only if

(3) lim sup
n→∞

∫
E

|Pnf(x)− µ(f)|µ(dx) = 0

for each f ∈ C(E), the space of bounded continuous functions on E.

Unfortunately, in practical applications we usually do not know the ini-
tial law of X. Therefore we construct recursively an approximate filter-
ing process π

(ν),η
n . Namely, we replace in (1) the actual initial law ν by

η ∈ P(E), i.e., we set

(4) π
(ν),η
0 (·) = η(·), π

(ν),η
n+1 (·) = S(·, yn+1, π

(ν),η
n ) .

The process π
(ν),η
0 is not Markov unless ν = η. To regain the Markov

property we consider the pair: state + approximate filtering process.

Lemma. The pair (xn, π
(ν),η
n ) forms a homogeneous Markov process.

P r o o f. It suffices to observe the following: for any bounded measurable
function f on E × P(E) we have

E{f(xn+1, π
(ν),η
n+1 )|xn, π(ν),η

n }

= E{E{f(xn+1, S(·, yn+1, π
(ν),η
n+1 ))|xn, xn+1, π

(ν),η
n }|xn, π(ν),η

n }

=
∫
E

∫
Rd

f(u, S(·, h(u, z), π(ν),η
n ))g(z) dz P (xn, du) .

The problem of limit behaviour of the state + approximate filtering
process (xn, π

(ν),η
n ) was posed in the continuous time case by Professor

H. Kushner in [3]. More precisely, he conjectures that if X has a unique
invariant measure µ and (3) is satisfied, then also for any η ∈ P(E) the
process (xn, π

(ν),η
n ) has a unique invariant measure.

Below, we are only able to solve the discrete time version of the problem,
assuming additionally that X is a finite state ergodic Markov process and
that the observation process is 1-dimensional of the form

(5) yn = h(xn) + wn
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where h is injective and (wn) forms a sequence of i.i.d. N(0, 1) random vari-
ables.

2. Main theorem. From now on E = {a1, . . . , am} and X is a Markov
process with transition probability matrix pij = P{x1 = aj |x0 = ai}, i, j =
1, . . . ,m. Moreover, the observation process Y is given by (5).

Theorem. Assume that X is aperiodic and there are no transient states,
i.e., for each i, j = 1, . . . ,m there exists k such that pk

ij = P{xk = aj |
x0 = ai} > 0. Then for any η ∈ P(E) the process (xn, π

(ν),η
n ) has a unique

invariant measure.

Let us make some comments on the result just formulated. Clearly, for
a Markov process X satisfying the requirements of the Theorem condition
(3) holds. Thus by virtue of the Proposition there exists a unique invariant
measure for the filtering process (π(ν)

n ). Nevertheless, at least at first glance,
it is not clear how to recover from this fact the uniqueness of invariant mea-
sure for the state + approximate filtering process. The principal significance
of the Theorem lies in that it allows us to apply limit theorems, and in this
way, for example, to identify Cesàro mean square errors of the approximate
filtration (for details see Section 8 of [3]).

3. Proof of Theorem. In our case, for y ∈ R, µ ∈ P(E), µ(ai) = µi,
we have

(6) S(aj , y, µ) =
σ(aj , y, µ)∑m
i=1 σ(ai, y, µ)

with

(7) σ(aj , y, µ) = exp[yh(aj)− 1
2 (h(aj))2]

m∑
k=1

pkjµk .

To simplify notation we consider the measures S(·, y, µ) and µ(·) as m-
dimensional vectors with ith coordinates equal to S(ai, y, µ), µ(ai) respec-
tively. Then

σ(y, µ) = e(y)PT µ

with

e(y) = diag[exp(yh(ai)− 1
2 (h(ai))2)] and P = (pij)i,j=1,...,m .

We first prove that for the approximate filtering process there exists an
invariant set with nonempty interior.

For simplicity, we start with the case where pij > 0 for each i, j =
1, . . . ,m. Let η ∈ P(E) and

(8) fη : Rm 3 (s1, . . . , sm) 7→ e(s1)PT e(s2)PT . . . e(sm)PT η .
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Then
∂fη

∂sj
(s1, . . . , sm)(9)

= e(s1)PT e(s2)PT . . . e(sj−1)PT Be(sj)PT . . . e(sm)PT η

with B = diag[b(ai)].
By the Brouwer fixed point theorem (Thm. II.7.3 of [1]), for each y ∈ R

there exists η(y) ∈ P(E) such that S(y, η(y)) = η(y). Thus the Jacobian of
fη with η(y) substituted for η at y ∈ R is equal to

(10) c|Bη(y)e(y)PT Bη(y) . . . (e(y)PT )m−1Bη(y)| with c > 0 .

Assume h(a1) > h(a2) > . . . > h(am), h(a1) > 0. A direct calculation
of (10) gives

Jacobian fη(y)(y, . . . , y)(11)
= k exp{[(m− 1)h(a1) + (m− 2)h(a1) + h(a2)

+ (m− 3)h(a1) + h(a3) + . . . + h(a1) + h(am−1) + h(am)]y}
+ terms with smaller powers of ey .

Therefore for y sufficiently large, Jacobian fη(y)(y, . . . , y) 6= 0.
In the case h(a1) = 0, clearly h(am) < 0 if m > 1, and then a representa-

tion similar to (11) shows that for y sufficiently small, Jacobian fη(y)(y, . . .
. . . , y) 6= 0.

In both cases from the regular mapping theorem (5.5.1 of [4]) it follows
that the invariant set for the approximate filtering process starting with the
measure η(y) has nonempty interior.

If m = 1 there is nothing to prove, since the initial law is known.
If X is aperiodic and all states are communicative then, since pn

ij → µj >
0 as n →∞, there exists n such that pn

ij > 0, for i, j = 1, . . . ,m. Fix y ∈ R
and define G = PT e(y)PT . . . e(y)PT , where e(y) is repeated n− 1 times.

Let now

fη : Rm 3 (s1, . . . , sm) 7→ e(s1)Ge(s2) . . . e(sm)Gη .

By the Brouwer theorem, for each y ∈ R there exist η(y) ∈ P(E) and a
positive constant k(y) such that

e(y)Gη(y) = k(y)η(y) .

Then by the same argument as in the case pij > 0, i, j, . . . , m,

Jacobianfη(y)(y, . . . , y)
= c|Bη(y)e(y)GBη(y) . . . (e(y)G)m−1Bη(y)| 6= 0

and for the approximate filtering process there is an invariant set with
nonempty interior. But the filtering process and the approximate filtering
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process have the same invariant sets. Thus the filtering process possesses an
invariant set with nonempty interior. Therefore, because of the Proposition
there is only one invariant set. In fact, assume that A is invariant and take
an open set O ⊂ A. Then for f ∈ C(P(E)), 0 6= supp f ⊂ O, f ≥ 0, by
Theorem 3 of [6]

Eν{f(π(ν)
n )} → Φ(f) > 0, for any ν ∈ P(E), as n →∞ ,

where Φ is an invariant measure for the filtering process, and if there is
an invariant set Ã disjoint from A, then for η ∈ Ã, Eη{f(π(η)

n )} → 0, a
contradiction.

In summary, the approximate filtering process has a unique invariant set.
Thus by virtue of Theorem I.21 of [5] we obtain the uniqueness of invariant
measure for the state + approximate filtering process. This completes the
proof of the Theorem.
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