

Z_p -cohomology manifold with no Z_p -resolution

by

W. Jakobsche (Warszawa)

Abstract. We construct a Z_p -Čech-cohomology manifold with no cohomology resolution over Z_p .

Let X be a cohomology manifold over Z_p (see [B]). A map $f\colon M\to X$ is acyclic over Z_p if for every $x\in X$, $\widetilde{H}_i(f^{-1}(x),Z_p)=0$ for i>0. We say that X has a cohomology resolution over Z_p if there exists a closed manifold M and a map $f\colon M\to X$ acyclic over Z_p . In [D] A. Dranishnikov raised the question whether every cohomology Z_p -manifold has a resolution over Z_p . The aim of this note is to give, for every prime p and every odd n, an example of a Z_p -cohomology manifold of dimension n which has no Z_p -resolution. The example X is constructed as an infinite connected sum $X=L_q\#L_q\#L_q\#L_q\#\dots$ where L_q is any n-dimensional lens space with $\pi_1(L_q)=Z_q$ such that $q\neq p$ and q is an odd prime. More precisely, we remove a countable family B_1 , B_2 , B_3 , \dots of bicollared n-cells from an n-sphere S^n such that diam $(B_i)\to 0$ and such that the cells B_i converge to a fixed point $x\in S^n$, that is, dist $(B_i,x)\to 0$. Then we take

$$X = (S^n \setminus \bigcup_{i \in N} \mathring{B}_i) \cup \bigcup_{i \in N} L_q^i$$

where every L_q^i is a copy of $L_q \setminus \mathring{D}^n$ and $D^n \subset L_q$ is a bicollared *n*-cell. We assume moreover that ∂L_q^i is identified with ∂B_i and that diam $(L_q^i) \to 0$. It is easy to see that for any neighbourhoods $U \supset V \ni x$ the natural homomorphism

$$j_{UV}: H^i(X, X \backslash V; \mathbf{Z}_p) \to H^i(X, X \backslash U; \mathbf{Z}_p)$$

is an isomorphism and that both groups are 0 for $i \neq 0$, n and Z_p for i = 0, n so the local Betti numbers at x are $p^1(x, Z_p) = p^n(x, Z_p) = 1$ and $p^i(x, Z_p) = 0$ for $i \neq 0$, n (see [B], pp. 7-9) and X is Z_p -orientable so that X is a Z_p -cohomology manifold.

Theorem. X has no cohomology resolution over Z_p .

Proof. Suppose that $f\colon M\to X$ is a cohomology Z_p -resolution over X and so f is Z_p -acyclic and $\dim M=n$. Then by the Vietoris-Begle theorem ([S]), $H^n(M,Z_p)\approx Z_p$ so M is Z_p -orientable. Now, we construct a Z_p -acyclic map

$$p: X \to \underbrace{L_q \# L_q \# \dots \# L_q}_{m \text{ summands}} = L^m$$

158

W. Jakobsche

which shrinks to a point a neighbourhood of X containing all but a finite number m of the sets L_q^i and which is a homeomorphism elsewhere.

It is easy to deduce from the Vietoris–Begle theorem that the map F=pf is \mathbf{Z}_{p} -acyclic.

Let $G = F_{\#}(\pi_1(M))$. Then G is finitely generated; let m_G be the minimal number of generators of G.

Let \widetilde{L}_G^m be the covering of L^m corresponding to the subgroup $G \subset \pi_1(L^m)$. Obviously F is covered by some map \widetilde{F} :

We can choose a number m of summands in L^m as large as we wish and it is enough to show that \tilde{L}_G^m is not compact if m is large enough. Actually, if \tilde{L}_G^m is not compact then $\check{H}^n(\tilde{L}_G^m, \mathbf{Z}_p) = 0$ and consequently $(\pi \tilde{F})^* = 0$ so $(\pi \tilde{F})^* = F^* \colon \check{H}(L^m, \mathbf{Z}_p) \to \check{H}(M, \mathbf{Z}_p)$ is the zero map. This contradicts the Vietoris-Begle theorem ([S]) because both L^m and M are \mathbf{Z}_p -orientable.

We will now prove that \widetilde{L}_G^m is non-compact for $m>m_G$; to do this we prove that the index of G in $\pi_1(L^m)\approx \underbrace{Z_q*Z_q*\dots*Z_q}_{q}$ is infinite.

LEMMA. Let $G \subset \pi_1(L^m)$ be a subgroup of index $1 < k < \infty$. If $m \ge 3$ then $m_G \ge m$.

Proof. Let $P^m = P_1 \vee \ldots \vee P_m$ with $P_{\lambda} = L_q$ for $\lambda = 1, \ldots, m$. Let $\pi \colon P_0^m \to P^m$ be the covering map corresponding to $G \subset \pi_1(L^m) = \pi_1(P^m)$. From the Kurosh Theorem [M-S, Thm. VII.5.2] it follows that

$$G\cong F_t*\underbrace{Z_q*Z_q*\ldots*Z_q}_{s},$$

where F_t is a free group of rank t. From [M-S, Prop. VII.5.3] we know that $t = 1 + k(m-1) - \sum_{\lambda=1}^{m} c_{\lambda}$ where c_{λ} is the number of components in $\pi^{-1}(P_{\lambda})$.

Let a_{λ} denote the number of simply connected components in $\pi^{-1}(P_{\lambda})$. From $q \ge 3$ it follows that $a_{\lambda} \le k/3$. It is also obvious that $s = \sum_{k=1}^{m} (c_{\lambda} - a_{\lambda})$. Hence

$$m_G \ge t + s = 1 + k(m - 1) - \sum_{\lambda} c_{\lambda} + \sum_{\lambda} (c_{\lambda} - a_{\lambda})$$

= $1 + k(m - 1) - \sum_{\lambda} a_{\lambda} \ge 1 + k(m - 1) - km/3$
= $k(2m/3 - 1) + 1 \ge 2(2m/3 - 1) + 1 \ge m$ for $m \ge 3$.

This completes the proof of the lemma and of the theorem.

The author wishes to thank the referee for shortening the proof of the lemma.

Z_n-cohomology manifold

159

References

- [B] A. Borel, Seminar on Transformation Groups, Ann. of Math. Stud. 46, Princeton, New Jersey, 1960.
- [D] A. N. Dranishnikov, Homological theory of dimension (in Russian), Uspekhi Mat. Nauk 43 (4) (262), (1988).
- [M-S] W. S. Massey and J. Stallings, Group Theory and Three-dimensional Manifolds, Yale University Press, New Haven-London 1971.
- [S] E. H. Spanier, Algebraic Topology, McGraw-Hill, New York-San Francisco 1966.

INSTITUTE OF MATHEMATICS WARSAW UNIVERSITY PKIN, IX p. 00-901 Warszawa Poland

> Received 20 March 1989; in revised form 30 November 1989