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Abstract. In this paper, we study expansiveness of shift homeomorphisms of inverse limits of
graphs.

1. Introduction. All spaces under consideration are assumed to be metric. By
a continuum we mean a compact connected nondegenerate space. Let X be a compact
metric space with metric d. A homeomorphism h: X =X of X is called expansive if
there exists a positive number ¢ (called an expunsive constant for k) such that if x and
y are different points of X, there is an integer neZ such that

d{p (x), B () > c.

Expansiveness does not depend on the choice of the metric d of X. This notion is
important in topological dynamics and ergodic theory (sec [7, 8 and 26])

In [18], R. Mafié proved that.if h: X =X is an expansive homeomorphism of
a compact metric space X, then dimX < oo and every minimal set is 0-dimensional.
This result shows that there are restrictions on spaces which admit expansive
homeomorphisms. We are interested in the following problem (see [8, (7), p- 3497): What
kinds of continua admil expansive homeomorphisms? In general, for a given homeo-
morphism A, it is difficult to determine whether h is expamsive or not. In [27],
R. F. Williams showed that the shift homeomorphism of the dyadic solenoid is expansive.
From continua theory in topology, we know that inverse limit spaces yield powerful
technicues for construeting complicated spaces and maps from simple ones. Naturally
the following problem will be interesting: What kinds of shift homeomotphisms are
expansive? It is well known that the shift homeomorphisms of positively expansive
maps are always expansive (see the prool of [27]). In [10], Jacobson and Utz stated that
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the shift homeomorphism of the inverse limit of every surjective map of an arc is not
expansive (see [6] for the complete proof).

In this paper, we study expansiveness of shift homeomorphisms of inverse limits of
graphs. In Section 2, we introduce a new notion of positively pseudo-expansive map. By
definitions, every positively expansive map is positively pseudo-expansive.

In Section 3, we prove that if f: G—~G is any map of a trec G, then the shift
homeomorphism f'of f is not expansive whenever (G, f) is nondegenerate. Moreover, if
fi X—X is a null-homotopic map of a compact connected 1-dimensiondl ANR X,
then the shift homeomorphism f'of f is not expansive whenever (X, f) is nondegenerate.

In Section 4, we investigate the relations between positively pseudo-expansive maps
and expansiveness of shift homeomorphisms of inverse limits of graphs.

In Section 5, we give some remarks which imply that the notion of positively
pseudo-expansive map is useful and important for constructing various types of
expansive homeomorphisms. :

2. Definitions and preliminaries. Let X be a compact metric space with metric d. For
amap f: X—X let
X, ) ={x)eol x€X, f(xis1) =x;, i 20}
Define a metric 4 for (X, f) by

d(® 9= Y d(x, y)/2', where £=(x)0, J = (y)%0e(X, /).
i=0

Then the space (X, f) is called the inverse limit of the map f: X - X. Note that (X, f) is
a compact metric space. Also, define a map f: (X, f)—(X,f) by

f((xi)i"i 0) = (f(xi))fl o (={-1fLo).

The map fisa homeomorphism and it is called the shift homeomorphism of f. Let
Pt (X, f)=X, =X be the projection defined by p, ((x)i o) = x,.

Let X be a compact metric space with metric d and let 4 be a closed subset of X.
Amapf: X— X is called positively expansive on A if there is a positive number ¢ > 0
such that if x, yeA and x # y, then there is a natural number n 3> 0 such that

a(f"(), f"(y) > c.
Such a positive number ¢ is called a positively expansive constant for J1A L[ X—X
is a positively expansive map on X, then f is called positively expansive.

Obviously, this notion is independent of the choice of the metric d of X. An onto

map f: X —X is called a local expansion if for each point xe X, there is an open set
U containing x and a real number M > 1 so that if v, ze U, then

A(f(.f @) = Md(y, 2).

The notion of local expansion depends on the metric 4 of X. But the following
is known:
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(2.1) (W. Reddy [25, Theorem 17). Let f2 X — X be an onto map. Then f is positively
expansive if and only if ' is a local expansion with respect to some metric of X.

A map [ X~ X is called positively pseudo-expansive if there exists a finite closed
covering o = {A,,.... A} of X such that

(P,) [ is positively expansive on 4 for each Aes#, and

(Py) if Ay, Ajef and A;nA; # &, one of the following two conditions holds:

(«) f is positively expansive on 4,0 4,

(%) IfJ is not positively expansive on A, A4;, then there is a natural number n such
that for any A', A" e/ with 4'rvA4” # @,

SHA VA A (A~ A) =8 or frA VAN (A;-A4)=0.

By the delinitions, we can easily see that cach positively expansive map is positively
pseudo-expansive.

By a graph we mean a space which is homeoniorphic to a finite 1-dimensional
connected polyhedron. Let peG. Then p is of order less than or equal to n, in writing
ord, G < n, if for any &> 0, there is an open neighborhood U of p in G such that
diam U < ¢ and the boundary Cl(U)—U consists of at most n points. Also, p is of order
n, in writing ord, G = n, if ord, G < n but p is not of order less than or equal ton—1.
Let ord G = max {ord, G| peG}. If peG and ord, G =1, p is called an end point of G.

(2.2) (1. J. Charatonik and S. Miklos [S, Theorem 1 and Theorem 2]). Let G be
a graph. Then G admits o positively expansive map of G onto itself if and only if there is
a point ¢ce G of maximal order in G (i.e., ord, G = ord G) such that for every component of
G — {c} its closure contuins a simple closed curve.

(2.3) BxampLi. Let G = {(x, )eR?*| ¥*+y* =1} u{(x, 0)] 1<x <2} wlllere R'is
the.set of real numbers. Then G admits no positively expansive maps, but it admits
positively pseudo-expansive maps (see (4.3)).

3. Shift homeomorphisms of tree-like continua are not expansive. A tree is a graph
containing no simple closed curves. By an ANR (resp. AR) we mean an absolut.e
neighborhood retract (resp. absolute retract). Every 1-dimensional compact ;.\R is
a locally conneeted continuum containing no simple closed curves, and every 1-dimen-
sional compact ANR is locally connected and contains no infinite simple closed curves.
Let ¥ be o continuum. A continuum X is Y-lfike if for any ¢ > 0 there is an onto map
f: X - Ysuch that diams ! (y) < ¢ for cach ye Y. A continuum X is tree-like if for any

\ RS
"g>0 there is an onto map f: X - T such that T is a tree and diamf~'(f) <¢

for any teT.

(3.1) Remark. Let X be a 1-dimensional compact connected ANR‘ andletf: X =X
be a map. Then (X, /) is tree-like if and only if f* is null-homotopic for some n =1
(see [4]).

Let h: X -» X be an cxpansive homeomorphism of a continuum X and let ¢ >0 be
an expansive constant for b Fix 0 <e < ¢/2. Let
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Wix)={yeX| d(h"(x), ""(y)) <e for all n>0},
Wix)={yeX| d(h"(x), h""(y)) <& for all n>0}.
Then we need the following
(3:2) Lemma ([18, p. 315, Lemma I]). For all y > 0, there exists a natural number
N >0 such that
B (W3 (x) = W3 (k" (x))
for all xeX and n > N.

(3.3) Lemma ([18, p. 315, Lemma III]). There is a nondegenerate subcontinuum A of
X such that for some ac A,

and BT (WE(x) © Wh(h™"(x))

AcWila) or Ac Wia).

(3.4) Lemma ([13, (2.2)]). There is § > 0 such that Jor each nondegenerate subconti-
nuum B of X, there is a natural number ny, such that one of the Jollowing conditions holds:

) diam " (B) > &
(%)

Then we have the following

Sor all n = n,.

diamh™(B)= 6 for all n > n,.

(3.5) THEOREM. Let T be a tree and let f: T— T be any map. Suppose that (T, f) is
nondegenerate. Then the shift homeomorphism 7 L) =T, f) of ['is not expansive.
Proof. Suppose, on the contrary, that [ is expansive. Let ¢ > 0 be an expansive

constant for £ Fix 0 <& < ¢/2. According to (3.3), there is a nondegenerate subconti-
nuum A of (T, f) such that '

AcWi@ or Ac W%a) for some acA.

Put 4;=p;(4) for i >0 and 4_, =1%(4) for i> 1. Then we have
Pif"(A) = "(4) = Ay, pif "MA) = Ais

Let 6 > 0 be as in (3.4), Then we can choose a sufliciently large natural number n, and
a sufficiently small positive number 1 =1n{ng, 8) such that if E is a subset of T, f) and
diam p,, (E) <7, then diamE < 4.

Now, we consider the following two cases.

Case (I): A = Wi(a). By (3.2) and (3.4), if B is a nondegencrate subcontinuum of A,
there is a natural number n(B) such that

(n=0).

diamf~"(B) » §
for all n > n(B). This implies that

diam B,y = diam p,,(f~"(B)) =7 for all n > n(B).

Now, for any natural number N, we can choose subcontinua B!, B2, ..., BY of A such

that each B' is nondegenerate and B B/ = ¢ (i #j). Next, we choose a natural
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number n(N) such that pyp (B) A pue(B) =@ (i #)). Let n be a natural number
such that :

nz max {n(N), ng+n(B), ..., no+n(BY)}.

Since """ (Bl) = B}y and B, 1\ Bl = @ (i # j), we see that BL A Bi = & (i ).
Note that diam B, 2 n for each i=1,..., N. Then the tree T has a collection of
arbitrarily many mutually disjoint subcontinua of T whose diameters are larger than or
equal to #. This is a contradiction.

Cuse (11): A & Wi (a). First, we shall prove that for some m, n > 0,f"| 4,,: 4,,—T is
not injective. Suppose, on the contrary, that for any m, n 20, f"| 4, is injective. Let
N be an arbitrary natural number. As above, choose nondegenerate subcontinua
BY, ..., BN of 4 such that B' n B! = @ (i # j). Choose a natural number n(N) such that
Poiy (BY) O Py (B) = @ (i # j). By (3.2) and (3.4), we can easily see that for some n.aFuTal
number n, diamf™ (B, = 1 for cach i=1, ..., N. Then T has the mutually disjoint
collection {/"(Bhw)| 1 <i< N}. This is a contradiction. Hence, for some m, n 2.0,
S A A, T is not injective, Choose two points s and ¢ (s #1) of A, with
f(s) = f"(t) (=v). Let P be the arc from s to ¢ in A4,. Consider two cases.

Case (i): f"(P) is a nondegenerate tree. Choose an end pointe (e # v) of f*(P) and
choose a point ¢ of P such that f*(¢) = e. If the component of (f"|P)"!(e) =f""(e) " P
containing ¢ is degenerate, we can casily see that there are two points ¢’ and ¢ of P such
that s < ¢' < ¢, ¢ < ¢ <t and f"(¢) = "(¢") (+# e), because e is an end point of the
tree /" (P) and ¢ # v, Moreover, we may assume that ¢’ and ¢” are sufficiently near,.If the/
component of (f"|P)"!(¢) containing ¢ is nondegenerate, we can choose two points c:l
and ¢” of P such that ¢ # ¢” and f*(¢') = /" (c") = e. Also, we may assume that ¢’ and ¢
are sufficiently near. ‘

Case (ii): f"(P) is degenerate. In this case, we also choose ¢’ and ¢” in P as above.

Next, we shall define two points @ and b of (T, f) as follows. Since f(A;+,) = 4;, we
can choose tWo SCQUEIICES tyy g 15 Aut 25+« ANA Byyi 1, Byt z, ..., Of points of Tsuch that

/(“m I 1) = (,/1 f(“]‘l*l) = aj (] 2 m+ 1):
Sl ) =¢"y [fber)=b, (jzm+1).
Define & and B in (T, f) by
fmieny ili<m,
U")‘)l = C//

a if izmh+l, b,

SNy A m,
(@) = < il 1 = m, il i=m,

ilrizm+l.

Then d, b & 4. Since A & Wi (@), d(J (@7 " () < 2 for n > 0. Since we G%n ;1;9052
¢ and ¢ to be near, we may assume that d(7"(@), (b)) < 2 for all n>0. This i
a contradiction, '

(3.6) TrroREM, Let X be a 1~dimensional compact connected ANR anld let f* Xh—+ th;;
a map. Suppose that (X,[) is nondegenerate. If f is null-homotopic, then the shi
homeomorphism [ (X, f)=»(X.[) of f is not expansive.
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Outline of proof. Suppose, on the contrary, that fis expansive and let ¢ > 0 e
an expansive constant for f/ Fix 0 < & < ¢/2. Since X is 2 1-dimensional compact ANR
for any # > 0 we can choose a natural number n = n(n) such that if 41, L are’
subcontinua of X and diam A’ > 7 for each i=1, ..., n, then A'm 4’ # @ for some
iand j (i j). In the same way as in the proof of (3.5), we can choose a nondegenerate
subcontinuum A of (X, ) such that A = W¥(a) for some ae 4. Also, we can choose
m,n>0 such that f"|4,: 4,~X is not injective. Take the universal covering
prX->Xof X. Since f is null-homotopic, there is a lifting g X=X of f, ie, pg=f.
Note that gf"| 4,, is not injective and g (X) is a 1-dimensional compact AR. In the same
way as in the proof of (3.5), we can choose two points ¢’ and ¢ of A, such that
¢'#¢", ¢ and ¢” are sufficiently near and gf"(¢') = ¢f"(c"), which implies fr+1()
=f"*1(c"). The rest of the proof is as for (3.5).

(3-7) CoROLLARY. Let f: X~X be a map of a 1-dimensional compact connected
ANR X. Suppose that (X, f) is nondegenerate and the shift homeomorphism J' of fis
expansive. Then there is a sequence {A}%,, of arcs in X such that

() f is positively expansive on Auy and ["(4y,) contains a simple closed curve
Jor each n > 1,

Q) flAi)=4, (> no) and f|Ay.y is injective, and

() lim, .. , diam 4, = 0.

Outline of proof In the same way as in the prool of (3.6), there is
a nondegenerate subcontinuum A4 of (X,[) such that 4 Wi(a) for some aed.
We may assume that for some n,, Puy(4) is a tree. By the proof of (3.6),
F7m p, (4): p,(d)~ Pno(A) s injective (n = n,). Also, we may assume that A, is an arc

and f"(4,,) contglins a simple closed curve, Clearly, A = Wi(a) implies (3).
(3.8) Remark. Let S be the unit circle, If f: §—8 is a map such that the shift
%mmeomorphism Foff is expansive, then there is an integer p with |p| > 2 such that [ is
isotopic to the x p map g: S— 3§, ie, g(x) = px. Hence (8,/) is homeomorphic to‘the
Ipl-adic solenoid (see (3.7)). )
(39) Remark. In [6], M. Dateyama proved that the shift homeomorphisms of

arc-like continua are not expansive. His proof is different from our proof of (3.5) and
deeply depends on the structure of the interval [0, 1].

4. Expansiveness and positively pseudo-expansive maps. In this section, we investigate

the relgt1011§ .between positively pseudo-expansive maps and expansiveness of shift
homeomorphisms,

. First, we prove the. following

(4.1) TeEOREM. If f * XX is a positively pseudo-expansive map of a compact metric
Space X, then the shift homeomorphism [ of fis expansive,

Pr ° o‘f. Since f is a p(.)sitively pseudo-expansive map, there is .1 closed finite covering
& satisfying the conditions (P,) and (P,). Choose ¢ > 0 such that

0<c<min{d(4, 4)| 4, A4;eof and AN A= ). |
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Also, we may assume that for cach Ae, ¢ is a positively expansive constant for f | 4
and if 4;, 4,6, AN A;+ @ and f is positively expansive on 4;u 4;, then c is also
a positively expansive constant for f| 4,0 Aj. We shall prove that ¢ is an expansive
constant for 7' XN X, ) Let R=(x)i%0, § = (1) 0 €(X, f) and X # §. Choose
m such that x, # y,. Consider the following cases.

Case (I): x,ed'edl, y,eA" el and A/ nA"=@.

Then we have

J(]“"‘(i):]vam(ﬁ)) = J((xma Xt 15 ): (ymv Ym+ 15 ‘))
; d(xm: ym) >,

Case (I1): x,,, y,€ Ao/, Since [ is positively expansive on 4, there is n > 0 such
that d(f"(x,), /" (y,) > ¢. Then

;J(fn—m(ﬂ’fn‘-m(j})) = J((]’n(xm, xm+11 "')s]’"(yma YVm+1s '))
2 d(f" (6, f" () > €.

Case (UI): x,eAesd, y,cAest, x,€4;~A; and y, e 4;,—4;. If f is positively
expansive on A;U A4, the proof is the same as in case (II).

Suppose that f is not positively expansive on 4;UA4; Let n be a natural
number satisfying (P,). Choose A’, 4" e o such that x,,.,eA4’ and y,.,€A4". By (P,),

A’ A" =, which ‘implies that d (X4, Ym+n) > ¢. Hence we have
J(fm(rn~l‘rx) (g),fv(m-kn)(ﬁ)) = J((xmd-na Xmtnt1s )s (ym+m Ym+n+1s - ))
= d(xm+n: ym-hn) >c.

This completes the proof.

(4.2) COROLLARY. If an onto map f: G— G of a graph G is null-homotopic, then it is
not positively pseudo-expansive. In particular, no trees admit positively pseudo-expansive
maps.

By (2.2), a graph containing a simple closed curve does not always admit a positively
expansive map (see (2.3)). But we have :

(4.3) TuzoreM. Every graph G containing a simple closed curve admits positively
pseudo-expansive maps.

Qutline of proof. Consider the follovying condition (# ): For any point x of
a graph ¢’ and for every component of G'— {x}, its closure contains a simple closed

curve. - ,
Let G be a graph containing a simple closed curve. Choose a m?.mmal subgrajph Cf
of G such that G' satisfies (#). By (2.2), there is a positively expansive map f: G'—>G'.
Note that G— G’ = | X, where each X, is a component of G~ G’. . Then (;1 (X,) may be
written as a union of Iy ,, where each Iy, is a maximal interval in X, with one end e
belonging to Zy, = G'U | Je<sle: and the Test disjoint from Zy. .

Wi cin sup;gse that aklj positively pseudo-expansive map f is defined on Zy, and
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J (e # e,. Then define f on Iy, so that the image covers Iy, the interval joining e, to
fle)isin Z, s and f |1, ; is positively expansive. This is done by induction, Then make
the appropriate division. If we do this carefully, we obtain the desired positively
pseudo-expansive map f: G—G.

(4.4) CoroLLARY. For any graph G containing a simple closed curve, there is
a continuum X such that X is G-like and admits expansive homeomorphisms.

(4.5) ProrosiTiON. If f: G— G is a positively expansive map of a graph G, then the
inverse limit (G, f) of [ is not movable (see [2] or [19] for the definition of movable). In
particular, (G, f) cannot be embedded in the plune R

Proof. By (2.2), G contains a simple closed curve. H = &, (G) is a finitely generated
free group whose base is {ay, ..., ,}.

For each element x of H, write x = b{'0...0bf*, where h;e{a,, ..., Aty by by
andweZ Set L(x) =Y 5.y | Since f is a local expansion with respect to some metric,
there is a natural number m such that

L, (f™(x)) = 2L(x) for cach xeH

(consider a locally injective map g: S— G which represents x, and note that fMog is
locally injective). l

Now, suppose, on the contrary, that (G, f) is movable. Then there is n, =2 0 such that
for any n, there is a map h: G- G such that S f™oh (see [19, p. 159 and 183]).

Then L (7, (f™)(x)) = 2" L(n, (k) (x)) for each x. This is a contradiction. By Borsuk’s
theorem [2], every plane continuum is movable. Hence (G, /) cannot be embed-
ded in R

(4‘.6) ProposITION. Let f: G—G be a map of a graph G such that for any are A in G,
the.re is a noftural number n > 0 such that " (A) = G. Then the shift homeomorphism f of
[ is expansive if and only if [ is positively pseudo-expansive.

Pr(.)of. Suppose that f is expansive. We must show that [ is positively pseudo-
expansive. By (3.5), G contains a simple closed curve S. If G = §, by (3.7) we see that /" is
p'osm.vely expansive. Now, assume that G # S and G = |K|, where K is a 1-dimensional
simplicial complex. Put

(1) Z={peG| ord,G >3} (# ©), and

)] I;——- *{b, e, €)| peZ,eand ¢ are edges of K such that ¢ # ¢ and ¢ A ¢ = {p}h
where "4 denotes the cardinal number of a set A.

By (3.7), there is an arcd’ = [«, '] in G as in (3.7). Choose an arc A = [a, b] in
[a, b]—{«, b'}.

By the hypothesis, f™ ({1) = G for some m. Then we can choose a finite sequence
asa <.....§ ay < b of points of 4 such that K* = {y (@ /" Kay, ain 1) 0 < i€ N}
is a subdivision of K. We may assume that if {e;} is any set of edges of K* and Ne, # G,
then for n=1, ...,k there is a vertex v of K such that l/"’(Ue,-) < St(v; K), where
St(v; K) denotes the open star of v in K. Note that l

(3)1 for. any edge e of K*, there is a sequence e = e!, ¢2, ... of arcs in G such that

Sl et el is a homeomorphism and limy ., , diam ¢’ = 0,
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Set o = {e| e is an edge of K*}. Clearly, & satisfies (P,). We shall show that
o/ satislies (P,). Suppose that e,, e,e/ (e, # e,) such that e; ne, # & and f is not
positively expansive on e, Ue,. Let e, ne, = {p}. Clearly, f/|e; Ue, is not locally
injective at p for some j > 0.

Suppose, on the contrary, that there are ¢}, e, €./ (¢} # €3) such that &} ne5 # & and

S v e n(ey—ey) # B # ML uer) n(ep—ey).

)

Since f is expansive, by (3) and (4), we see that f*(p) = p (see the proof of (3.5) and (3.6)),
where &y M ¢y = {p'}. Also, f/(p")e Z and f7| e} U ¢, is locally injective at p' for 0 <j < k.
By (2), we conclude that for any j> 0, f/|e} uey is locally injective at p’. This is
a contradiction. Hence (P,) is true for n = k. This completes the proof.

5. Remarks and problems. In Section 4, we showed that the notion of positively
pseudo-expansive map is very useful and important for constructing various types of
expansive homeomorphisms. Also, it is known that “Plykin’s attractors” are 1-dimen-
sional continua in the plane R? and are examples of Williams® 1-dimensional expanding
attractors, whose homeomorphisms are not only expansive homeomorphisms but even
hyperbolic diffeomorphisms (see [21], [23], [24] and [28]). Note that Plykin’s attractors
can be represented as inverse limits of maps g: K — K of graphs K (see [23], p. 243] and
[24, p. 121]). In fact, we can easily check that the maps g: K—K are positively
pseudo-expansive. Hence we see that for each n 3, there exists a graph G, and
a positively pseudo-expansive map f,: G,— G, such that the inverse limit (G,, f,) of f, is
homeomorphic to a plane continuum X, and R*—X, has n+1 components. We refer
the reader to [23] and [24] for properties of Plykin’s attractors. ‘

The author wishes to thank M. Barge and the referee for informing him on Plykin’s
works.

We close this paper with the following problems.

ProsLEM 1. For each n =0, 1, 2, is it true that there is a plane continuum X, such
that X, admits an expansive homeomorphism and R%2—X, has n+1 components?

ProBLEM 2. Let f: G—G be an onto map of a graph G. Is it true that the shift
homeomorphism f of f is expansive if and only if f is a positively pseudo-expansive
map? (Note that (4.6) gives a partial positive solution to Problem 2.)

Added in proof. Recently, the author proved that Problem 2 has-an affirmative answer.
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