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all codes k of those pairs (¢, I) for which |I| = m. We put m(k) = |I| and m(k) = 0 for
k¢{ K, (Of course m (k) = 0 also if }I] = 0.) So there is a natural bijection between §,
and the set B defined prior to Theorem 3 with 2 = 2. Let us identify S, with B via this
bijection. So we can write My = (B, Ry, Ry, ...

Now we have to show that all the relations R, have the form prescribed prior to
Theorem 3. Let <(k(i,j, 1, ..., ki, ], n(i))):j =0,1,...>) be an enumeration of all
n(i)-tuples of integers. Let

Ry =R, ({k(, j, D} x AnESID G0 {k(i, j, n(i)} x 4405n00),

Then, if we look again at the meaning of the codes ke | JK,, and we usc the fact that 9,
satisfies the axioms (x), by Lemma (i) it is clear that Ry is of the form required prior to
Theorem 3, with a formula ¢y in the language of %, with Y #%; m(k(i, j, r)) variables.

This concludes our proof that M, is an W,-model of T The inequality K, # &
follows from the fact that K, must contain a code of the pair (x,,{1}).

Now let 2 be an arbitrary dense linear order without endpoints. The same
functions k(i, j, r), m(k) and formulas ¢;; which we found for M, yield a certain
A-model N with K, 5 @. It remains to check that N satisfies T. But it is clear that every
finite part of M is isomorphic to some finite part of M,,. Since M, k= T* and the axioms
of T* are universal, M= T*, Since T*}- T, the proof is complete.

Note added in July 1989. After this paper was written the authors learned that the problem of
existence of Borel models was independently posed and solved by H. Friedman, see

[a] C.1. Steinhorn, Borel structures for first order and extended logics, in: Harvey Friedman
Research in the Foundations of Mathematics, L. A. Harrington et al. (eds.), Elsevier Science
Publishers B. V. (North-Holland), 1985, 161--178.

[b] — Borel structures and measure and category logics, in: Model-Theoretic Logics, 1.
Barwise and S. Feferman (eds.), Springer, New York 1985, 579-596.

The proofs of the existence of Borel models presented in those papers are closely related to
ours, but we decided to keep Theorem 2 and its proof because it gives a sharper estimate of the
Borel classes of the relations and because the concrete structure of the model described in Theorem
3 may be of independent interest. The papers [a] and [b] discuss additional aspects and extensions
of Theorem 2 but its proofs given there are not as detailed as ours.
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The shrinking property of products of cardinals
by

Nobuyuki Kemoto (Oita)

Abstract. It is known that for cardinals ¥ > @ and A > 1, x* is normal if and only if « is
regular and 4 < . We show that normality can be replaced by the shrinking property in this result.

Ordinals and cardinals are considered as sets of smaller ordinals. In particular,
n=1{0,1,...,n—1} for each new. Let {x,: €4} be a collection of spaces. [lecaX.
denotes the usual Tikhonov product space of X,’s. Each element f of [T, X, is
considered as a function whose domain is 4 and f () is in X, for each xe 2. Whenever
X, is a single space X for each wel, [lec2X, is denoted by X*.

Let X be a space and let k be a cardinal. Assume % is an open cover of X. A cover
¥ = {V(U): Ue} is said to be a shrinking of % if dlV (U) = U for each-Ue%. In
particular, ¥ is said to be an open (closed) shrinking of % if each member of ¥~ is open
(closed, respectively). X is said to have the r-shrinking property if every open cover of
size < has an open shrinking. A space has the shrinking property if it has the
x-shrinking property for every infinite cardinal x. Note that 2-shrinking property is
normality and that w-shrinking property is countable paracompactness plus normality.
It is easy to show that a normal space which has the property that every open cover of
size <k has a closed shrinking has the x-shrinking property. Note that paracompact
spaces, in particular compact Hausdorfl spaces and regular Lindeldf spaces, have the
shrinking property. On the other hand, w; with the order topology has the shrinking
property but is not paracompact. In general, ordered spaces have the shrinking
property, see [Ke]. But the product space w; X (@;+1) does not have the shrinking
property, in fact it is not normal, see [Pr, 22]. But note that it is countably
paracompact since it is a perfect preimage of the countably paracompact space ;. Note
that x-shrinking property implies normality if « > 2. It is strangely difficult to find an
example of a normal space without the x-shrinking property for x > w. For each k = o,
we know of essentially one real such example, namely the x-Dowker space, see [Rul],
[Ru2].
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It was known that ordered spaces are normal (and countably paracompact), see
[En]. But now it is known that they have the shrinking property, see [Ke]. Similarly it
was known that Z-products of metric spaces are normal, see [Pr, 7.4] or [Gu]. But now
it is known that they also have the shrinking property, see [Ru3]. It is known that for

cardinals k> w and A > 1, it is normal if and only if « is regular and A < x, see [Pr, '

6.7). In this paper, we shall show that normality can be replaced by the shrinking
property in this result. Our main theorem is the following;

TuroREM. Let x be a regular infinite cardinal. Then k" has the shrinking property for
every nEw. '

Proof, If k = o, then x" is a melric (paracompact) space. Thus assume « 2 w,.
Since Ji”] < K, it suffices to show that & has the w-shrinking property (cf. [Pr, 6.87). We
shall show this by induction on ne @, For n = 0, &" clearly has the r-shrinking property.
Assume k"~ ' has the r-shrinking property. First we shall show;

Facr 1. For every Sex and jen, Yy = ! x [0, 81"/ has the w-shrinking property.

Proof of Fact 1. Here [0, §] denotes the usul closed interval with end points
0, 5. Similarly (@, B), (&, f1, .... denote the open interval, half open interval, .. with end
points « and fi. We shail show Fact 1 by induction on jen. Since Yy, is homeomorphic
to the compact space [0, 51% Yos has the we-shrinking property. Next assume that jen
and that for every j' €] and S ek, Ypy has the -shrinking property. To show that ¥, has
the x-shrinking property for every & & k, assume that % = {U,: ye«} is an open cover of
Yis; it suffices to find its closed shrinking since " is normal,

For each aek, define dex’ by d() = o for cach iej. Since (&, g)eY),, fix
a y(x, g)ex such that <&, gd>e U,y for cach aer and ge [0, 81"/, Moreover,
by the openness of U, g, fix a fla, g)ea and ha, g)e[0, )" “) with hia, g)<g
such that

(B e, g), ] x ‘ﬂj(h (@ ¢, 0] & Uy
“ne

for each aex and ge[0, 81"/ Here h < g means h(i) < g(i) for cach i &n~—j whenever
H, ge[0, 81"~/ For a fixed ge[0, 81"/, since f{x, g)ea for cach aex, by the pressing
down lemma, we can find a stationary set S”(g) e and a fi{g)ex such that
B, 9) = B(g) for each ae §” (g). Furthermore, since {ha[0, 81" i h < g}| < «, there is
an h(g) < ¢ and a stationary set §' (g) e 8 (¢) such that h(a, g) = h(g) for each ae S (g).
This means

) By ol x ] (@@, gi)]  Uygn

tein~ f
for each 0§’ (). Note that for each g &[0, 81" 4, ¥V, @ | [0 (0 (g) (D, g()] is & clopen
set of [0, 61"~/ and geV,. Since {V,: g&[0, 81" J} is an open cover of the compact set
[0, 81", there is a finite subset G <= [0, 81" such that {V,: ye G} covers [0, 81" I, Put
B =max {B(g): geG}. Then S{y) = § (g)-~ [0, ] is stationary for each yeG. Then
by (+),

(B, o]’ x Ve Uy for cach aaS(y) with geG.
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- For o and of € S (g) with ge G, define o ~ o by y(«, g) = y (¢, g). Then clearly =~ is an

equivalence relation on S(g). Let S(g)/~ be the quotient of S(g) by ~ . And for each
EeS(g)/ =, define y (E) = y (e, g) for some (in fact every) ae E. Then clearly y(E) # y (E')
whenever E and E'eS(g)/~ with E # E. Then (| Jser(B, @1) x V, = U, holds and
{Uaer(B, «1': E€S(g)/=} is an open cover of (B, k)’ for each geG. Note that (8, )
has the x-shrinking property, since (8, k) is a clopen subspace of ¥/ and x/ has the
k-shrinking property by the inductive assumption and j < n— 1. Thus there is a closed cover
{Fm: EcS(g)/=} of (B, ) such that Fjg < Jser(8, &} for each EeS(g)/~. Define
F,m = Fyw % V, for each EeS(g)/~. Then for each geG, F, = {F,@: EeS(g)/~}isa
collection of closed sets in Yj; such that F, g = U, for each E€S(g)/~. Note that #,
covers (B,1) x V, for each geG. For each yex, define

F,= U(;{FvumiEeS(g)/d and y(E) =7}
ge

Then each F, is closed in Yj; and contained in U,. Furthermore, since each &, covers
(8, 1Y x V,, {F,: yex} covers | Jyea(B, k) x ¥, = (B, k)’ x [0, 81"/, Next put
Z; =K' x [0, B] x &I~ % [0, 61"/
Then Yj;— (8, )’ x [0, 61"/ = {Jie; Z;. Since Z; is homeomorphic to K~ x [0, £]
x [0, 61"/, by putting & = max {#, 6}, Z, is homeomorphic to a closed subspace of
Y}-—Ly = Kj—l x [O, 5']"—0—1).
Since Yjy,5 has the x-shrinking property by the inductive assumption, Z, also has the
k-shrinking property for each iej.
Thus there is a closed cover {H,;: yek} of Z, such that Hy = U, for each yex.

Then {(UiE JHy) O F,: yex} is a closed shrinking of #. Thus the proof of Fact 1 is
complete.

for each iej.

To show «" has the x-shrinking property, assume % = {U,: yex} be an open cover
of x". As above, for each xex, define dex” by @ (i) = « for each ien. For each aex, fix
a y(®)ex such that de U, and fix a f(0) e such that (B (00), a]” < U,(». Then by the
pressing down lemma, we can find a stationary set § = x and a fe such that () = §
for each e S. Define §, = {x€S: y (@) = y} for each yex. Then § = UrexS,. We shall
show the next fact.

FACT 2. There is a collection {H,: yex} of closed sets such that H, = U, Jor each
yew and (Jyex H, = (B, )"

Proof of Fact 2. There are two cases.

Case 1. There is a yex such that S, is unbounded in .

In this case, (8, k)" < U,. To show this, let g be in (B, x)". Since §, is unbounded,

_take an aeS, with max {g(i): ien}e«. Then ge(f, «]" < U,. Thus (8, k) < U,. Put

H,=(B, )" and H, =0 if y'ex with y' # . Then clearly {H,: yei} is the desired
collection of closed sets.

Case 2. 8, is bounded in i for each yeK.

In this case first we shall construct two strictly increasing sequences {y (6): fex}
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and {§(0): fex} in « such that 6(0)€S,q for each Oer, by induction on Oex. First
define 7(0) = min {yex: §, # 0}, and fix 5(0)€ S, (. Next assume that y(0') and §(¢)
have already been defined for every 6 € 0. Put y, = sup {y(©@): & 0} + 1. Since each S, is
bounded in «, sup(lJ{S,: yeyo})ex. Thus there is a y(@)ex such that S,
sup(\J {8,: y€vo}) # 0. Note that y(@)ey(0) for every 0'ef, since y, < y(f). Fix
a 8(6)e Sy —sup (| {S,: ye ¥, }). Then clearly also §(0") e d (0) for each @ €. Thus we
have constructed the desired sequences. For each Oex, put Hyq = (8, 6(0)]". Then
since §(A)eS,q (thus (6 (é))) =9(0) we have Hygp < Uygen = Uy For each
yex— {y(6): fex}, put H, = 0. Since {3(0): Oer} is unbounded in x,

UH,=U Hyp= U @, 8] = B, xr.

YEK Oex Nex
Thus {H,: yex} is the desired collection of closed sets. This completes the proof of Fact
2.

Finally, for each jen, define Z; =/ x [0, ] x "~ Ut 4, Then each Z; is clopen in
k" and 1"— (B, k)" = \jen Z,- Moreover, since each Z; is homeomorphic to ¥,-q,; =
x"~* x [0, B], each Z; has the r-shrinking property by Fact 1. Therefore for each jen,
there is a collection {F,;: y&} of closed sets in x" such that Fy; < U, for each yex and
Usex Fyy = Z;. Then it is easy to show that {H, U (| )jen F'y): € 1} is a closed shrinking
of %. This completes the proof of the theorem.

Remark. By putting Uyu U, =" and U, =0 for 2 < yex, the above proof
shows the mormality of x". But in this case, Case 2 of Fact 2 cannot happen.

LemMa ([Be, 3.47). 4 normal product [ Jues X, has the (1c-) shrinking property if and
only if [Tues X, has the (i-) shrinking property for every finite S < A

Using this lemma, we can show:

COROLLARY. For cardinals x> @ and A > 1, the following are equivalent:

(i) x* has the (x-) shrinking property,

(il) x is regular and ) < x.

Proof. (i) = (ii). If x* has the x-shrinking property, then r* is normal. Thus this
follows from [Pr, 6.7].

(iiy = (). Assume that x is regular and 1 < . Then by [Pr, 6.7], k* is normal.
Furthermore, applying the above theorem and lemma, we can show that «* has the
shrinking property. The proof is complete.

The shrinking version of [Pr, 6.9] is also valid.

COROLLARY. Let k be an arbitrary infinite cardinal. The space k* hus the (i)
shrinking property if and only if x is regular.

To end this paper, we note that we can remove the condition “A < k™ from 6.8 of
[Pr].

PROPOSITION. Let k, A and © be cardinals with o < x and t < cf k. Every cover of ¢
by 7 open sets has a finite subcover. In particular, k* is t-paracompact for every v < cfr.

Proof Here cfx denotes the cofinality of x. Let © be the first cardinal for
which this proposition fails and let % = {U,: yet} be an open cover of x* which
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does not have a finite subcover. Put V, = Uv'ev U, for each yet. Then {K yet} is an
increasing open cover, and by the definition of 7, K — V, is non-empty. So fix f, e wh— v
for each yet. Define for each ael, d, = sup {f,(@): yer}ex. Then Z = [[,e[0, 4,] is
compact, thus there is a yet such that Z < V. But this yields a contradiction, since
f,eZ-V,.

COROLLARY. Let x, A and t© be cardinals with w < and 1 < cfx. Then every
increasing open cover {U,:yet} of x* has an increasing open shrinking.

Proof For such a cover {U,: yet}, there is a y’ e v such that «* = U,, by the above
proposition. Put ¥, = 0 for yey’ and ¥, =x* for y 2 y'. Then {¥,: yer} is the desired
shrinking.
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