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F,-ideals and o, w}-gaps in the Boolean algebras P(w)/I
by

Krzysztof Mazur (Warszawa)

Abstract. We show an example of an F-ideal not contained in any summable ideal (see
Definition 1.6). Next we give an apparently weak condition on an ideal I for the algebra P(w)/I to
have w,w¥-gaps. Finally, the problem of w,w¥-gaps is solved for meager ideals under the
assumption 29 < 2°%,

§ 0. Summary of results and notation. In 1936 Hausdorff showed that there exists an
o, wi-gap in the Boolean algebra P(w)/#in. One can ask if for an arbitrary meager
ideal I there exists an @, w¥-gap in the Boolean algebra P(w)/I (shortly an I-gap). As far
as I know this question remains open.

In this paper I give a partial solution of this problem, based on a generalization of
the Hausdorff symbol y (see [Ha]). This has led me to the notion of pseudosolid ideal
(see Definition 3.1). All coanalytic ideals known to me are pseudosolid. It is an
interesting question if every coanalytic ideal is pseudosolid.

There is, however, a special situation when we can prove the existence of I-gaps for
every meager ideal I. Namely, if we assume 2° < 2! then we can use a cardinality
argument in order to show that I-gaps (in fact they are also Fin-gaps) do exist (Theorem
3.9). It is not known, however, if this assumption may be dropped.

Theorem 1.9 is a solution of a special case of the following general problem: Assume
that we have two classes of ideals K and L and we know that K < Land K # L. Can we
find an ideal I€L—K such that I is not contained in any ideal of the class K? For
K = F, and L = F,; Samy Zalrany has got the positive solution of this problem (see [Z]
or [M]). For higher Borel classes and for K = 4} (Borel sets) and L = IT{ (coanalytic
sets) it is still unsolved.

The main results of this paper were obtained in my master thesis written at the
Warsaw University under the supervision of Professor Winfried Just.

Set-theoretical notions used here are standard and can be found in {Je] or [Ku]. By
® we denote the set of natural numbers. By 2<® (resp. 2<*) we denote the set of all
finite (resp. countable) sequences of 0’s and 1’s.

Fix an infinite set X. Recall that [X]*¢ is the set of all finite subsets of X. We say
that I = P(X) is an ideal if I is closed under taking subsets and finite unions, X ¢ and
[X]<° < I. By *2 we denote the set of all functions from X to 2 = {0, 1}. On the set 2
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we have the product topology. Thus identifying the sets P(w) and 2 we can transfer this
topology to the set P(w). A base for this topology is the family {B,: s€2°“} where
B, = {x c o: x~dom(s) = s7*({1})}. Hence we can talk about F,, F,;, Borel, meager
ideals on the set .

§1. F-ideals. We say that a set Z < P(w) is hereditary if it is closed under taking
subsets. By Fin we denote the ideal of finite subsets of w. Notice that the functions U, r:
P(w)x P(w)— P(w) defined by u(x, y) =xuy and Q(x, y) = xny are continuous.

LY. PROPOSITION. For any hereditary F-set H there exists a family {F,: new} of
hereditary closed sets such that H = Unew F,and F,c F,,, for new.

Proof. Let H = ( J,e, D, where D, is closed for ne w. It is easy to see that {F,:new}
with F, = 0(k<a D X P(w)) satisfies the conclusion. m

1.2. LemMA. The following conditions are equivalent:
(@) I is an F -ideal.
(ii) I ={JnewF, where the family {F,: new} is as in Proposition 1 and

(*) VnewVx,yeF, (xuyeF,.4).
(iil) There exists a function f: Fin—R, {0} such that:

@ acb=f(a) < f(b),
(b) flavb) < fla)+/ (),
(©) Lim,q f(n) = + 00,
and I ={x € o: lim,..,, f(xnn) < +o0}.

Proof. (i) = (ii). By Proposition 1 we can assume that I = Unw F, where each F,
is hereditary closed and F,cF,,; for each n. Now define inductively
Fo=Fo,..., Fpry = U(F,xF)UF;4y,... It is casy to see that () is satisfied too.

()= (i) Let {F,:new} be as in (i) For every ae%Fin put
f(@=min{n+1: aeF,}.

(ii)=@). If f Fin->R,u{0} is as in (i) then for every n define
F, = {x cw: Yk [f(xnk) < n]}. For fixed k the set {xcw: fxnk) < n} is a finite
sum of basic clopen sets, hence F, is closed and I = (Unew F,- Condition (a) of (i)
guarantees that I is hereditary, condition (b) gives that I is closed under finite unions
and (c) implies that w¢l. m

Notation. By Iy, we will denote the ideal satisfying (iii) for f: Fin—R, u{0}.
Examples of F -ideals: .
1.3. Zin.

1.4. This idéal will be defined on 2<° instead of w. On 2<° we have a partial order
defined as s < t<>s > t. By a branch we mean any maximal linearly ordered subset of

2<%, By an antichain we mean any subset of 2<® consisting of pairwise incomparable
elements.
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Define an ideal on 2 generated by the branches: xeIb<>x is contained in a finite
number of branches in the tree 2% <3n (each antichain in x has cardinality less than n).

Defining f: [2%°]°“—R, U{0} by f(a) = maximal cardinality of an antichain
contained in a, we see that Ib =I;,.

1.5. Summable ideals. Let g: w—R, satisfy Z,,Emg(n) = +c0. Define an ideal I, by

xel, < Y gn) < + 0.

nex
1.6. DEFINITION. An ideal I is summable if it is of the form I o forafunctiong: w— R,
satisfying Y pe, g(n) = +oo.
Obviously I, = Iy, where f(a) =Y, g(i) for aeFin.
1.7. PROPOSITION. Ib is not-summable.

Proof. Suppose Ib = I, for some g: w— R, . Since every branch belongs to Ib we
have Ve >0 [{se2°%: g(s) < ¢} is dense in (2°°, <)]. By induction it is easy to
construct an antichain A = {s,: new} such that g(s,) < 1/2". Of course Ael ,—Ib. =

Nevertheless, it is true that the ideal Ib is contained in a summable ideal I - To see
this define g: 2> R, by g(s) = 1/2". Then every branch (and hence the ideal Ib) is
contained in I,.

Our aim is to construct an example of an F,-ideal which is not contained in any
summable ideal. First we prove:

1.8. LEMMA. For every new~—{0} and ceR.. there exist a finite set K, and a family
R, < P(K,) such that:

(@) Vo, ..., 0,€R, v N...Nv, # D).

(b) If P is a probability distribution on K, then there is a ve A, such that P(v) <.

Proof (}). Let m be a natural number. For iem define { = {f e"m: ieRg(f)}. The
family # = {f: iem} satisfies condition (a). Let P be a probability distribution on "m.
We have

m—1
Y P =3 P{fHxIRe() <n.
i=0 Jfe'm
Hence there exists an iyem such that P(iy) < n/m. If m > n/e then the pair K, = "m and
A, = {i: iem} satisfies our requirement. w
1.9. THEOREM. There exists an F,-ideal which is not contained in any summable ideal.

Proof For every new and for ¢ =1/2 let K, and £, satisfy the conditions of
Lemma 18. Let #F = {K,—v: ved#,}. The family £} satisfies the following:

@) Vwg, ..., w,eZf (K, #w,u...uw,).
(t) If P is a probability distribution on K, then there exists a we ZF such that
P(w) = 0.5.

(1) This proof, simplifying the author’s original one, is due to J. Cichof.
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Assume now that {K,: new} is a partition of ® into intervals. Define
F={xcow: Vn (xnK,eZh}, Fo=o[FxPw)],

Is=|JF,.

mew

N L_J[FmXFm]’

s

From the construction it follows that I, is a hereditary F,-set closed under taking finite
unjons.
We now check that:

(i) All singletons belong to F,.
(i) ¢l
(111) Vo "’R+ [(Znsm fn=

(i) Let jew. Take n such that jeK,. Consider the probability distribution g;
concentrated on {j}. By (b') there is a we #¥ such that §, (w) > 0.5. Hence jeweF,.

(i) Assume that @ = x; U...ux, and x;eF for i =1, ..., n. Then w; = x, K, #*
and K, = (Ji=; w;, which contradicts (a').

(iii) Let f: w—R, satisfy 3 e, f() = +o0. For every new define a probability
distribution P} on K, by PH({i}) = )/ jex. f( j) Applying (b) to P% we see that for
each n there exists a w,€ %} such that Y e, /() >3 jex, f() X W= {Jnew W, then
wel,—I,. m

+oo)=:- "[(I,,,,,CI,)].

The following is a refinement of Theorem 1.9:

1.10. THEOREM. Assume that A > w is a cardinal and any union of A meager sets does
not cover the real line. Then the ideal I, from Theorem 1.9 is not contained in any union
of A summable ideals.

Proof. We keep the notation of the proof of Theorem 1.9. We use an equivalent
form of our assumption, namely: for every countable poset P and every family
{D,: a < 2} of dense subsets of P there exists G c P which is {D, %< l} generic (see
[Jel, [Ku]).

Let {I,: & < 1} be a family of summable ideals. Define a countable poset P =
UmewP where P, = Hl 1 ¥, P is ordered by reverse inclusion. Let

Y T o=k

iedom(p) jep(i)

D, ={peP: } fora<i, kew.

It is easy to see that each D, is dense. Let G = P be {Dop: @ < 1, k< w) generic and
let x5 =|JG. Then

xgeF— ) I, cly— ]I,
<2 a<
§2. Solid ideals.

2.1. DEFINITION. An ideal I is solid if there is a hereditary F.-set H such that ] ¢ H
and U(H x H) is meager.
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The following problem is open: Are there F,;-ideals which are not solid?
The following ideals are solid:

2.2. Intersection of any number of F,-ideals.
2.3. The ideals of f-density:

2.4. DeFINITION. We say that f: w— R,
Znsmf(n) = +o0 and

is an EU-function (EU =Erdés—Ulam) iff

Lim fn)/ 3, (k)

k<n

For every EU-function f we define an ideal I/ as follows:

>z f®
xell < lim®==0or -9

== WIC)

k<n

Putting

2 Sk

1
B’ = {x c w: limsup*=0" }
{ ENICE

k<n
one can easily~ check that H’ satisfies Definition 2.1.

2.5. The ideal dual to the filter of open dense subsets of (2<°, <). For te2<* define
t< = {ue2=*: u < t}. Recall that x =2 is open dense <> Vse2<°3t < s (t< = x).
Hence the dual ideal I,; is defined by: xel <> Vsit <s (t5nx=).

Define the set H,; o I by

(*) x€H, < In[Ate?” tSnx=0) AVse2'Ir <5 rSnx=0O)].

We will show that U(H,yx H,y) © Hyy = {x c w: 3t tSnx =@)}.

Take x, ye H,q and let x, y satisfy (+) with n = n,, n = n, respectively. W.Lo.g. we
can assume that n, <n, Take te2" such that tSnx =@ and extend it to se2®.
Finally, find r < s such that rSny =@. It is obvious that rSn(xuy) =@ and that
H,, is meager.

2.6. PrROPOSITION. Let H = Fin be a hereditary F-set and let H = v(H x H) be
meager. Then there exist two families {H,: new} and {H,: new} of hereditary closed sets
and an increasing sequence (I, ), of natural numbers such that H = | Jueo Hu, H' = JneoH
and

(*) Vn [H,, © Hyyy, WH,xH)=H, 41, {1, ln+1)¢H;t]-

Proof By Proposition 1.1 we must only construct the sequence (I,).es. First put
lo = 0. If for any n there is no I, > I, satisfying (x) we obtain VI> [, [[1,, e H;]
Now using the fact that HY, is closed and hereditary we obtain P(w—I,) = H, < H'. But

- 'this implies that H’ is not meager, a contradiction. m
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§ 3. w, w}-gaps in the Boolean algebras P(w)/I. For every ideal I we denote by <, the
transitive antisymmetric relation on P(w) defined by: x <;y <« [x—yel A y—x¢I].
We say that the pair {(@g<w;» (Bply<w,> Of sequences is an I-gap if

Vén(E<n<wy=a<a,<;b,<;by and AV <y (4, < ¢ <, by,
Thu§ usual @, w}-gaps are Fin-gaps in this terminology.

3.1. DEFINITION. An ideal I < P(w) is pseudosolid iff there exist a partition {L,: new)}
of w into nonempty sets and a family {#,: new} of hereditary sets such that

(1) Vn [L,el A #F, < P(L,) AL, ¢ U(F, x F,)].
(2) xeI=>Vy (xnL,e#,).

3.2. PROPOSITION. Every solid ideal is pseudosolid.

Proof Take H = [ as in Definition 2.1 and then find (), and {H,: new} asin
Proposition 2.6. For every n put L, =[l,, L+y) and &, = H,nP([l,, l,41)). u

The following problem is open: Are there coanalytic (or even Borel) ideals which are
not pseudosolid? The examples of meager not pseudosolid ideals can be constructed e.g.
under MA + 1CH.

3.3. TueoreM. If I is a pseudosolid ideal then there exists an I-gap.

Proof. This proof is similar to Hausdorff’s original one. Fix a pseudosolid ideal I.
Let {L,: new}, {#,: new} be as in Definition 3.1 for I. For every n let %'
=y(#,x#,). Let o be an ordinal, let (a,);<, be an <, increasing sequence and let
b < w. We define two notions of nearness for the ideal I:

(@s<a¥bb < Vn[{E <a: Vizn [(a5~b)mLie.9”§]} is finite],
(@s<ayib < Yn[{& < Vizn [(a,—b)nL,eF]} is finite].
Of course 9] is stronger than 4.
34. CLa. If (ae<oyib and VE <o (ag <;c <,;b) then (age<a¥be.

Proof. There exists ny such that Vi > n, [(c—b)nL,e #]. It is enough to prove the
result for n > ny. Using the fact that a;—b < (a;—c)u(c—b) we have for n=n,

{E<a Vizn(g—c)nLieF} c{f<u: Vizn (a;—b)nL,e F/}
and the second set is finite by assumption. m
35. Cramw. If the pair {(a<w,, (byl<aw,> of sequences satisfies
Vin(E<n<ow, = a <,aq, <rby<iby, Vn <o, [@en?ib,]
then it is an I-gap.

Proof. Assume on the contrary that ¢ is such that V&{w, (as <;c <;b,). From
Claim 3.4 we have Va < o, [(@gs<avbc]. Let F: w;—® be defined as follows:

Fo)=min{n: Vizn [(a,~c)nL,e #}.
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Let n, and B <w, be such that fnF~*({ny}) is infinite. But this contradicts
(ae<pybe. =

Hausdorff defined his nearness symbol y for the ideal %in just as we did. He took
Vn (I = {n}, 7" = F*" = {@}). In this case we have y = y&" =9 He built an
o, w}-gap with the properties as in the assumption of Claim 3.5 for I = %in (see [Ha]).
We will call such Zin-gaps Hausdorff' gaps.

Now we define a function ¢, P(w)~ P(w) by ¢,(x) = { Jiex L. Since {L;: icw} I
and xel=V® (xnL,e&,) we can infer that

xc*y < dilx) <, ¢,0),

ie. ¢ determines an embedding of quotient Boolean algebras.

3.6. CLam. If (@g)s<ars (Oly<wyy 18 an w,w} Hausdorff gap (ie. for every new and
a <oy, {&<a Vizn (a,—b)n{i} = B} is finite) then {¢(a)c<wy, br(byy<w is an
I-gap.

Proof. We show that the premises of Claim 3.5 are satisfied. Fix new and 5 < w,.
We have

{¢<n: Vizn [(¢a)—¢,b,)NLieF]}
={¢<n Vizn [¢la-b)nL,= 2]}
={{<n Vizn [(g—b)n{i} =91}
and the last set is finite. m

This finishes the proof of Theorem 3.3. m

To convince the reader that the class of pseudosolid ideals is sufficiently wide let us
introduce the following operation on ideals: Let {4,: new} be a partition of @ into
infinite blocks, let I be an ideal on w and for every n let I, be an ideal on A,. We define
V(I o}, 2 new ideal on o, by

xeVH{(I)hew = {new: xn4,¢I,}el.

3.7. PROPOSITION, (a) If [ = U,,E“, J, where for every n, J, is an ideal, J, < Jy41 and
Joe1—J, # D, then I is pseudosolid. :
(b) If 1 is pseudosolid then so is V' {(I)heo)-

Proof In case (a) pick inductively a digjoint family {L,: new} such that
Lyyi1€l41—1, and put &, =& =L,;nl,. In case (b) let Ih={Jir,4; and
Fr={xc i {i: xnA¢}eF)}. m

Notice that a necessary condition for the existence of I-gaps is the infiniteness of the
quotient Boolean algebra P(w)/I. But this condition is not sufficient. Let e.g. {4,: new}
be a partition of @ into infinite blocks and for every n let M, be a maximal ideal on A,.
Consider the ideal J = V'@ {(M o }-

We have xeJ<>Vn (xn 4,€M,). We can extend each M, to a maximal ideal M;, on
 if we put, for B € 0, Be M,<>(BnA4,eM,). Then of course we have J = (uew M.
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Hence P(w)/J =~ P(w) so there are no J-gaps. From the theorem of Talagrand [Tal]
stating that no intersection of countably many maximal ideals has the Baire property we
see that J is not meager. Now we restrict our attention to meager ideals.

The proof of the following proposition may be found in [Tal] or [JK].

3.8. PrOPOSITION. Let I be a meager ideal. Then there exists an injection
¢": P(w)— P(w) which induces an embedding of Boolean algebras P(w)/Fin into
P(w)/l. m

Now we are sure that if T is a meager ideal then there are sequences which are
ordered by the relation <; to the order type w,w}. We now show that under an
- additional set-theoretical assumption one of such sequences is an I-gap.

3.9. THEOREM. If 2° < 2°! then for every meager ideal I on w there exists an I-gap.
Proof. Define a partial order <* on 2<°'x {0, 1} by
[s,6] ¥ [§,e] = e=¢=0Ascs)viEe=¢=1A5c5)
ve=0A¢d=1A(sus is a function)].
We construct now a set T = {¢([s, £]): [s, e]€2°°' x {0, 1}} such that T < P(w)
and the following equivalence holds:
(%) [s, el <7 L8, &1 = o([s, €]) =*o([s, &)

The set T will be built by induction on & =1h(s). For « =0 put ([&, 0]) =G,
7([@, 1]) = w. Assume that we have constructed ([t, &]) for f = Ih(t) < « and ¢€ {0, 1}
such that for all such elements ¢([s, £]), (*) holds. We have two cases:

() « limit. If se“2 then take for t([s,0]) any x=w such that VA<«
{z([s1p, 0y =*x =*z([s] B, 1])}, and next take for 7([s, 1]) any y = w such that
VB <a {t(ls, 0) =*y c*<([s 1, 1]}

(i) @ = f+1. For se*2 put t.= s} B. Let a = =([t, 11)—=([¢t, 0]). We can divide the
set a into three infinite subsets a = xyUx, Ux, and then put

t([t" <&, 00) = =([t, 0w,
o(t* e, 1) = o([t, 1= x; -,

Thus the construction of T is finished.

for £e{0, 1}.

Fix a meager ideal I. Let ¢": P(w)— P(w) be as in Proposition 3.8, The proof of the
following fact will give the final result:

3.10. CLamv. If 2% < 2° then there exists a be2® such that
¢ (z([b1E, 0D)e<ars ¢'(5(b M1, 1D)y<wry s an I-gap.

Proof Suppose that we can pick, for every be2%, a y, = w such that V¢ < w,
[¢ (b E, 0D)e<ws <ryp < & (c((b I, 1])]. We show that this choice must be
one-to-one. Let by, b, be distinct branches and let o« < w, be least such that
bo(e) # by (). Let t = by o = by fo and let, e.g., by() = 0, b, (@) = 1. According to the
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construction of t([t" &'}, e]) for &, &' € {0, 1} we have o[, 1) —([t, 0]) = x, UX,UX,
for some infinite disjoint x,, x;, x,. Hence

B < ¢ (xo) <1 ¢ (x([by Lot +1, 01) <1 ¥sos
Yoy < ¢ (2(0by Ta+1, 17) = ¢! (z([z, 1)~ " (x,).

And this implies that y,, #,y,,. But this contradicts the fact that 29 > 29
= {yy: be2}. m
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