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Scorza Dragoni type theorems
. N

Anna Kucia (Katowice)

Abstract. We give a new proof of the Scorza Dragoni type theorem for functions as well as for
set-valued functions. Our method of proof also gives the Baire version of the Scorza Dragoni type
theorem.

1. Introduction. Scorza Dragoni [15] proved that if f: [a, b x[c, d]—R is
Lebesgue measurable in the first variable and continuous in the second one, then for
each & > 0 there exists a compact set K = [a, b] such that the Lebesgue measure of
[a, bP]\K is less than ¢ and the restriction f|xxiq Is 8 continuous function.

There are many generalizations of this theorem. Usually their proofs are
based on Lusin type theorems for functions or set-valued functions (cf. [10]).
Our method of proof is similar to the proof of the Baire version of the Lusin theorem
(cf. [12; §32.11]).

2. Definitions and some elementary properties. Let X be a topological space. We
denote by %(X) the o-algebra of all subsets of X which have the Baire property, and by
#(X) the o-algebra of Borel sets.

Let (T, ) be a measurable space. We denote the vertical t-section of B = T'x X by
B,={xeX: (t, x)eB}, teT, and the horizontal x-section by B*= {teT: (1, x)eB},
xeX. Let p denote the projection from Tx X onto T, and M@ (X) the product
c-algebra on Tx X. We say that (T, M; X) has the projection property if for each
AeM® B(X) its projection p(A) belongs to M. In the case of a separable space X and
a set with open vertical sections no projection property is needed. More precisely, for
cach A = Tx X such that A, is open for all te T and A¥e 9 for x in some countable
dense set D < X, the projection p(d) belongs to M, because p(d) = Usep 4%

By a set-valued function from a set Z to Y we mean a function F defined on Z
whose values are subsets (possibly empty) of Y. For 4 < Y we put F Y A) = {zeZ:
F(z)nA # @). By the domain of F we mean the set domF = {zeZ: F(z) # 9}
= F~4(Y), and F is called a multifunction if dom F = Z. The graph of F is defined as
GrF = {(z, y)eZx Y: yeF(z)}. A set-valued function F from X to a topological space
Y is called lower-semicontinuous (upper-semicontimious), abbreviated ls.c. (wsc), if
F~Y(4) = X is open (closed) whenever 4 = Y is open (closed). Observe that dom F is
open whenever F is Ls.c.
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A set-valued function F from (T, M) to Y is called M-measurable, or simply
measurable, if F~*(4) belongs to M for each open 4 < Y. Note that if F is measurable
then dom F e IR. We say that a function or a set-valued function from X to Y has the
Baire property if it is %(X)-measurable.

We say that a function or a set-valued function F defined on S<'T is
IM-measurable or simply measurable, if it is measurable with respect to the trace
o-algebra M|s. In the case of S M this means that F~'(4)e M for each open A. In the
same way we mean the M ® #(X)-measurability of F defined on Bc Tx X.

The following lemma is a slight generalization of known results (cf. [12; Th.

31.v.21, [31, [13], [9D).

LEMMA. Let (T, M) be a measurable space, X a second-countable topological space
and Y perfectly normal. Suppose B = T'x X has open vertical sections and B* e for x in
some countable dense set D = X. If a function f: B—Y is continuous in the second
variable and f(-, x) is measurable for xeD, then [ is M@ B(X)-measurable.

Proof. Let {U,: neN} be a base in X and let F < Y be closed. Take a sequence of
closed subsets F, <Y such that F = (\,nF, and F cintF, for each neN. Put
Muy={teT: U,nB, < f(t, )"* (F,)}. The set (Tx U,)n B\ f~!(F,) has open vertical
sections and its horizontal x-sections belong to M for xeD. Hence M, belongs to N,
because T\M,. = p((Tx U,) A B\f~}(F,)) belongs to 9. It is easy to check that
f_l(F) =Bn nkeN UHENMﬂkx U"-

Let F be a set-valued function with values in a separable metric space (¥; d). It is
known that some measurability and continuity properties of F follow from or are
equivalent to suitable properties of the distance functions d(y, F(-)), ye Y; here we put
d(y, @) = co. In these relationships it suffices to regard only a countable family of such
functions, namely {d(y, F(")): yeD}, where D < Y is countable dense. A set-valued

function F is called d-continuous if d »F (")} is continuous for each ye ¥ or equivalently,
for each yeD.

3. Scorza Dragoni type theorems. First we prove the general theorem under
assumption of the projection property.

THEOREM 1. Let T be a topological (Hausdorff) space, M a g-algebra on T, and
m a measure on M such that for each M e M and & > 0 there exists a closed (compact) set
KeM such that K = M and m(M\K) < s. Assume that X and Y are second-countable
topological spaces, (T, M; X) has the projection property and BeM® A(X). Let f be
a function or a multifunction from B to Y which is M® B(X)-measurable. Assume that all
- f(&-), te T, satisfy one of the following continuity conditions:
(2) the function f(t,-) is continuous,
(b) Y=R and the real—valued Sunction f(t, ") is lower-semicontinuous,

() Y=R and the real-valued function S(t, ) is upper-semicontinuous,
(d) the multifunction f(t,-) is lsc,

(®) (Y, d) is a metric space and the multifunction f(t, ) is d-continuous.
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Then for each ¢ > 0 there exists a closed (compact) set K < T such that m(T\K) < &, and
the restriction flxxxn~p has the same continuity property as f(t,-).

Proof In the case of B = Tx X the idea of the proof is simple enough. Namely,
any set Ae M@ B(X) with open vertical sections is equal to | Juen M,(4) x U,, where
M,(4)eM and {U,: neN} is a base in X. Having a countable family .# of such sets
A one can take a closed (compact) set K < T such that m(T\K) <¢ and M,(4) nK is
open in K for each neN and des. If o = {f~'(V,): neN}, where {V,: neN} is
a base in Y, then all sets f~!(V)n(K xX) are open in KxX.

Now we prove the theorem in detail, Assume that a set A = B belonging to
M@ AB(X) is such that A4, is open in B, for each teT If U< X is open, then

(A)={teT: B,AU = 4,} belongs to M. In fact,

T\M(4) = {te T: B,n U\A4, # @} = p((Tx U)~ B\4).

Of course, (M(4)x UynB < A Let {U, neN} be a base in X. Put M,(4)
={teT: B,nU, < A}. We obtain B |,y M,(4)x U, = A. The converse inclusion
is also true, because A, is open in B, and {U,n B,: ne N} is a base in B,, te T Hence
A=BnenM,(A)xTU,.

Let o7 be a countable family of sets A as above. Enumerate {M,(4): Aes/, neN}
in a single sequence {M,: ne N}. Observe that for each M e and-¢ > 0 there exists
a closed (compact) set F e M such that m(T\F) < & and M n F is open in F. Indeed, let
F,cM and F,c T\M be closed (compact) and such that m(M\F,) <e&/2 and
m((T\M\F,) < ¢2. Put F=F,UF,. The sets F, and F, are closed (T being
Hausdorff) and disjoint, so they are open in F. Hence, M n F = F is open in F. Now let
K, eI be closed (compact) such that m(T\K,) < &/2" and M, n K, is open in K, ne N.
Put K = ﬂ,,eNK,,. Of course M, N K is open in K for each ne N. Hence, 4N (K x X)
=B A Jnen (M (4) nK)x U, is open in B (K xX) for each Aest.

In case (a) or (d) we take o = {f~*(V,): ne N}, where {V,: neN}is a base in ¥.
Then |k x)np is a continuous function under assumption (a), and a Ls.c. multifunction
under assumption (d). .

In case (b) or (c) we take, respectively, &/ =
o = {f " {(—o0, q)): geR is rational}.

In case (¢) we take o = {f,"(V): k, ne N}, where {V: ke N} is a base in [0, co),
{y,: neN} is dense in Y and f,(t, x) = d(y,. S (¢, %))-

THEOREM 1’ (the Baire version of the Scorza Dragoni theorem). Assume that X and
Y are second-countable topological spaces, T is a topological space, (T, €(T); X) has the
projection property, and Be €(T)@ B (X). Let f be a function or a multifunction from
B to Y which is 4(T)® %(X)-measurable and such that all f(t,") satisfy one of the
continuity conditions from Theorem 1. Then there exists a comeager set K = T such that
flixxxmns has the same continuity property as f(t, )

{f~*((g. )): geR is rational} or

Proof. The proof differs from the previous one only in choosing a set K for the
family {M,: ne N} of sets from M = @(T). Each set M,, is equal to (W, P, \R,, where
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W, is open and P,, R, are meager sets in T. Put P = { Juen P, U | uen R, and K = T\P.
Since M,nK = W,nK, the set M, K is open in K, neN. The rest of the proof
remains without change.

In the case of continuous functions or d-continuous multifunctions and a metri-
zable space ¥, the assumption of the projection property is superfluous. Namely, we
have the following theorem (cf. [3; Th. L.1.1]).

THEOREM 2. Let (T, MM, m) be such as in Theorem 1. Let X be a second-countable
topological space and Y separable and metrizable. Assume that B < Tx X has open
vertical sections and B*e M for x in some countable dense D < X. Let f be a function or
multifunction from B to Y such that f(:, x) is measurable for xeD and f(t,) is
a continuous function or a d-continuous multifunction, where d is a metric in Y, te T. Then
there exists a closed (compact) set K = T such that m(T\K) <¢ and fligx XnB IS
a continuous function or, respectively, a d-continuous multifunction.

Proof. The proof is a combination of the previous one and that of the Lemma.
We start with the case when f is a function. Let {U,: neN} be a base in X.
Now for open V<Y we define M, (V)= {teT: B,AU,=f(t )" (d V)}. The set
(TxU,) "B\ f~(cl V) has open vertical sections and measurable x-sections for x&D.
Hence M, (V) belongs to M, because T\M,,(V) = p(Tx U, n B\f ~*(cl V))e M. More-
over, we obtain

f W eBa | M,(V)x U, =f~ (V).

nelN

Let # = {V,: neN} be a countable base in Y. For every open W< Y there exists
a subfamily £ < # such that W= | J% and ol ¥ = W for Ve %. Hence £~ (W) is equal
to BN vea Unew M, (V) x U,. Since {M,(V,): n, me N} is countable, as in the proof of
Theorem 1 we can take for each & > 0 a closed (compact) set K = T such that all sets
M,(V,)n K are open in K. Then f] lex x)np 1S continuous.

In the case of a d-continuous multifunction f. we consider the family {M(V,):
m, n, ke N}, where {¥,: meN} is a base in [0, c0), {y,: ke N} is countable dense in ¥,
and M, (V) is defined as above for the function Jos Sty x) = d(y,. £ (¢, x))

In the similar way one can obtain Theorem 2/, the Baire version of Theorem 2.
Since its formulation and proof are obvious, we omit them. Instead, let us give the
following more interesting corollary to Theorem 2.

CoroLLARY. Let T be a topological space, X a second-countable topological space
and Y separable and metrizable. Let a function S: TxX Y be such that f(t,-) is
continuous for each te T, and f(:, x) has the Baire property for x in some countable dense
set D < X. Then there exists a comeager set K < T such that Sk xx is continuous, and
S, x) has the Baire property for each xeX.

4. Comments and remarks. First we compare the assumptions of the theorems of
the previous section with familiar results (cf. [16]).
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(1) If M is closed under the Suslin operation and X is a weakly Suslin space, i.e.,
a continuous image of a Polish space, then (T, 9; X) has the projection property.

(2) Mis closed under the Suslin operation provided one of the following conditions
is satisfied:

(i) M is complete with respect to a o-finite measure,
(ii) M is the family of all m-measurable sets, where m is an outer measure on T}

(iif) M is the o-algebra of universally measurable sets w.r.t. some o-algebra on T,
(iv) T is a topological space and M = F(T).

(3) The assumption on the approximation of the measure by closed (compact) sets
is satisfied, for instance, if m is a finite regular (Radon) Borel measure on T and
A(T) c M < 4,,(T), where £,,(T) denotes the completion of Z(T) w.r.t. the measure m.
Recall that every finite Borel measure on a metrizable (Polish) space is regular (Radon).
The approximation by closed sets also holds in the case of a locally finite Borel measure
on a separable and metrizable space T

Some assumptions in the Scorza Dragoni type theorems can be relaxed:

(4) It is enough to assume the continuity conditions of f(z, -) only for almost all
teT or all t except some meager set in the Baire version.

(5) If M is closed under the Suslin operation and X is weakly Suslin, hence in most
interesting cases (cf (1)—(3)), instead of the requirement Be M ® #(X) in Theorems
1 and 1’ one can assume that B is obtained from M @ #(X) by the Suslin operation. The
proof is the same.

(6) In the Lemma as well as in Theorems 2 and 2', instead of the assumptions “B
has open vertical sections, B*e M and f (-, x) is measurable for xeD” one can assume
that there exists a countable family of measurable functions p,: T—X such that
{p,(0): neN} = B, cl{p,(t): neN} for each teT, and the function t— f(t, p,({t) is
measurable for each ne N. The proofs are the same (in this case p(T'x U n B\ ~}(F))
= Unenpy * ) " {t: f(t, p,(1))¢F}, for open U and closed F).

(7) Let Y be metrizable and B = T'x X. Instead of the separability of Y, it is enough
to assume that there exists a countable dense subset D = {x,: neN} c X and a sequence
of sets A, M with m(4,) =0 (or meager sets 4, < T in the Baire version) such that
F{(T\A,) x {x,}) are separable. In fact, if 4 = | J,en 4, and f is a function continuous in
x or a multifunction Ls.c. in x, then f((T\4) x X) < ¢l f((T\A4) x D) and, consequently,
F({(T\A)x X) is separable. Hence, for functions continuous in x and for o-finite
measures, it suffices to assume that the weight of Y is less than the first real-valued
measurable cardinal (cf. [7; 2.3.6]). Moreover, if m is a finite Radon measure and f is
a function or a compact-valued multifunction, then Y is allowed to be an arbitrary
metrizable space (cf. [8] for functions and [11] for multifunctions).

(8) Theorems 1 and 1’ for semicontinuous real-valued functions also hold if we
admit the values — oo and + oo. Similarly, our results for multifunctions remain true for
set-valued functions. In fact, we need not admit empty values, because we regard
multifunctions defined on subsets. Moreover, this point of view gives sometimes
stronger results. For example, the assumption “f' is a set-valued function from Tx X
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which is lsc. in x” (cf. [1; Th. 2.17) implies that the sets B, are open in X, where
B =domf.

(9) The assumption of the second-countability of X in the above theorems cannot
be dropped, even if X is normal and a Lusin space (ie., a continuous and one-to-one
image of a Polish space) and (T, M, m) is a complete measure space (cf. (1) and (2i)).
Namely, we have the following example.

EXAMPLE. Let X be the set C(I) of all real-valued continuous functions on the
interval I = [0, 1], endowed with the topology of pointwise convergence, T = I, I the
o-algebra of Lebesgue measurable sets and m the Lebesgue measure on M. Let
f: Tx X —R be the evaluation function, i.e., f(t, x) = x(t). The function f is continuous
in each variable separately. Moreover, f is Borel measurable. This follows for instance
from the Lemma, where as the measurable space we take (X , B(X)). Let F < I be of
positive measure or a comeager set. There exists a decreasing sequence (t,) of points of
F which converges to toeF. Let x,€X be defined by x,(t)=0if t <ty or t =1,
X,(tn+1) = 1 and x, is linear on the intervals {t,, t,+,] and [£,+1, t,]. The sequence (x,)
converges to xo=0 in X. On the other hand, we have lim,. . f(t+1,%,) =1
# f(tg, Xo) = 0. Thus f|p«x is not continuous for each F = I of positive measure or
comeager. Observe that (x,) converges to X, also in the weak topology of C(I). Since the
weak topology of C(I) is stronger than the topology of pointwise convergence, one can
take instead of X the space C(I) with the weak topology. Of course, C(I) with each of
these topologies is normal and a Lusin space. Another example of this sort is given in
[2; Es. 2]. But in that example X is not Suslin (X is the Sorgenfrey line).

(10) Recall for completeness that condition (d) in Theorems 1 and 1’ cannot be
replaced by upper-semicontinuity or by continuity (ie., ls.c. and us.c)), because the
corresponding Lusin type theorem does not hold (cf [14; Ex. 14]).

Some interesting results can be derived from the Scorza Dragoni type theorems.

(11) In our proof we do not use the classical Lusin theorem. It follows from
Theorem 1 by taking one point X. Also the Lusin type theorem for set-valued functions
(cf. [10] and [4]) can be derived from Theorem 2. As an example we give the Baire
version of this result,

COROLLARY. Let T be a topological space and F a set-valued function from T to
a separable and metrizable space X. If F has the Baire property, then there exists
a comeager set K < T such that F|g is d-continuous, where d is u metric on X. In
particular, if F has closed values, then F|y is ls.c. and has a closed graph.

Proof Let f: Tx X —Y=[0, co] be defined by f(t, x) = d(x, F(t)). By The-
orem 2, the restriction f|x«x is continuous for some comeager set K = T. Since f(:, x)
is upper-semicontinuous on K, the restriction F| is Ls.c. Since F has closed values and
flgxx is continuous, Gr(Fly) is closed.

(12) The Scorza Dragoni type theorems for multifunctions enable us to prove some
results on the existence of Carathéodory selections (cf. [5] and [1]). Also one can obtain
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some theorems on the extending of a Carathé
B = Tx X, by reducing this problem to the
for the multifunction F defined by F(t, x)
(t, x)e B (cf. also [6]).

odory function f: B—Y, where
problem of finding a Carathéodory selection
= {/t %)} for (1, x)e B, and F(t, x) =Y for
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