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Comparing []3 sets of the Baire space
by means of general recursive operators

by

Andrea Sorbi (Siena)

Abstract. By applying a notion of reducibility suggested in [DPH] to the domains of
a recursion category introduced in [MS], we get many-one reducibility between []9 sets of the
arithmetical hierarchy of sets of functions by means of general recursive operators. We give
a characterization of the complete domains in this reducibility. We also introduce an upper
semilattice B to which this reducibility gives rise in a standard way. Several facts about B are
proved: we characterize the finite ideals of B; the first order theory of 8 is shown to be
undecidable.

1. Introduction. Our basic references for recursion theory and recursion-theoretic
hierarchies are [RO] and [HI], to which the reader is referred for any unexplained
notation and terminology, used in the paper. Although a natural way to read this paper
is to frame it in the context of recursion categories, no substantial knowledge of the
theory of recursion categories (developed in [DPH]) is needed throughout the paper:
despite same occasional use of terminology from [DPH], the exposition is, in this
regard, completely self-contained.

Let 2 be the set of partial functions from  into w, where @ denotes the set of
natural numbers. For every ¢ € 2, let S, = {{ e #: ¢ = }; the family {S,: domain(¢) is
finite} is easily seen to be a basis for a topology on £; the Baire space is the subspace w®
of 2, with the relative topology. A partial mapping ¥: w®— w® is a partial continuous
operator (see [MS]) if there exists a continuous mapping F: #—2 such that
domain(¥) = w® nF~*(w®), and, for every f e domain(¥), ¥ (f) = F(f); we say in this
case that ¥ is defined through F. It turns out ((MS]) that a subset of the Baire space is
G, in the Borel hierarchy of the Baire space if and only if it is the domain of some partial
continuous operator. Amongst the continuous mappings from 2 into £ stand out the
recursive operators: let Ax, y-{x, y> be a fixed recursive encoding of > onto w and let
D, denote the finite set with canonical index u; a mapping Q: #~Z is a recursive
operator if there exists a recursively enumerable set W which determines Q, ie., for
every pe®, Q) = {(x, ): QW[ {x, >, ud e W& D, = graph(¢)]}, where graph(¢)
= {¢x, y>: (x, y)ed}. If Q is a recursive operator and the recursively enumerable set
W determines ©, then every recursive approximation of finite sets {W": tew} to Wgives
an approximation {': t € } to Q, where, for every t, W* determines £'. Following [MS],
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partial continuous operators defined through recursive operators will be called partial
recursive B-operators. It is shown in [MS] that the domains of the partial recursive
B-operators are exactly the []3 sets of functions of the arithmetical hierarchy. A partial
recursive B-operator having domain w® is called a total recursive B-operator: we recall
([RQ]) that a general recursive operator is a recursive operator F such that F(w®) € 0®;
it follows that ¥ is a total recursive B-operator if and only if ¥ is the restriction to the
Baire space of some general recursive operator. Since the set of partial continuous
operators and the set of partial recursive B-operators are both closed under com-
position, we are led to the following definition (sec [MS]):

DeriviTION 1.1. Let Bo be the monoid given by the partial continuous operators with
the operation of composition, and let B be the submonoid of Bo consisting of the partial
recursive B-operators.

It turns out that B and Bo, regarded as categories of partial morphisms, are in fact
recursion categories and have been investigated in [MS] in the context of recursion
categories. If we identify the domains (in the technical sense of [DPH, Definition 3.1]) of
these categories with their set-theoretic domains, then, as we have already remarked, the
domains of Bo are exactly the G; sets of the Baire space and the domains of B are
exactly the []3 sets of the Baire space. Once we are given a recursion category, it seems
worthwhile to investigate the notion of reducibility between domains, which can be
worked out from [DPH, Definition 3.6]. In the classical recursion category of partial
recursive functions, this notion of reducibility is exemplified by many-one reducibility
between recursively enumerable sets. The interpretation in Bo of this reducibility
corresponds to the restriction to the G; sets of the Baire space of the so-called Wadge
reducibility <,, on subsets of the Baire space (see [WAJ, [VW], [LO]), defined by
4 <,, % if there exists a continuous mapping F from the Baire space into itself such that
o = F~1(2). The ordering of the Wadge degrees (i.e. equivalence classes of the
equivalence relation o =, % if o/ <,, % and & <, o) is studied for instance in [VW],
[LO]: from Theorem 3.1 of [VW], we get a complete picture of the partial order of the
equivalence classes of the domains of Bo.

Via the aforementioned indentification of the domains of B with the 9 sets of the
Baire space, and since the total morphisms of B are the total recursive B—loperators, in
B the reducibility of [DPH, Definition 3.6] becomes the relation < given by the
following

DEFINITION 1.2. For all domains o7, # of B let of < 4 if there exists a total recursive
B-operator F such that & = F~!(2).

According to [DPH, Definition 3.8], # is a complete domain of B il # is a domain of
B, and, for every domain o of B, & < 4. Let = be the equivalence relation generated
by <: dividing < by = we get a partial ordering (for simplicity still denoted by <) on
the set of equivalence classes; the partial order thus obtained will be denoted by Byg. If
 is a domain of B (ie. o e[ ]9), let [#] denote the equivalence class of s under
Elements of Py will be called degrees and denoted by the symbols 4, B, C,...

The purpose of this note is to make some remarks on the relation < and the partial
order Py: for instance we characterize the complete domains of B (a characterization of
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a different type, showing that in B creative domains (see [DPH, Definition 8.1]) and
complete domains coincide, is given in [MS]). We also study in some detail
a substructure of Py, called B. Several facts about B are established: we show that B is
a distributive upper semilattice; we characterize the finite ideals of B, so that we derive
as a corollary that the first order theory of 8B is undecidable and we show that B is not
a lattice. Of course, the reducibility studied in this paper can be extended to the class of
all subsets of the Baire space or, if one just wishes, to hierarchy-theoretic levels different
from H‘z’. There are at least two reasons why, for the moment, we confine ourselves to

9 sets. One reason is that some of the most interesting results about %y (for instance,
Theorem 2.14 and Corollary 2.16) immediately extend, by the same proofs, to more
general situations, for example when we consider all subsets of the Baire space. A more
important reason is that the [[3 sets of functions constitute the domains of a recursion
category and, as such, allow for a use of the machinery developed in [DPH] (for
instance, the recusion theorem — see [DPH], § 4.5 — has been used in an essential way
in [MS] to show that in B (and in Be) every creative domain is complete). Full use of
this machinery may constitute the basis for subsequent work, for instance structure
inside degrees, 1-degrees etc.

Fact 1.3. (1) All complete domains of B are equivalent under =;

(2) All recursive subsets € = ® such that € + @ and € # @ are equivalent under = .

Proof. Immediate. m

Fact 1.3 suggests that we introduce the following notation: let 1 = {¥ c w”: € is
a complete domain of B}, and let 0 = {¢ < w®: ¥ recursive and ¢ # @, % + 0®}.

For any partial order P = (P, <) and aeP, let P(< a) = {beP: b< a}; in this
fashion are also defined P(<a), P(=a), V(> a). Also, for every & < w® let
A= w—A.

Facr 1.4, Pp(> [B])—Pp(> 0) # G and Bg(> [0”])— Py(=0) # 0.

Proof. The following are almost immediate: for every MEH’Z’,

[]ePBy(> [D]) if and only if & # @ and #° contains at least a recursive function;

[L]ePy(> [0”]) if and only if o/°# & and &/ contains at least a recursive
function;

[T1ePp(=0) if and only if both & and ¢ contain a recursive function.
For instance, to show that [«/]e Pp(> [D]) if and only if & # @ and &7° contains
a recursive function, let .27 [ [8 be given such that @ < &/; then clearly o/ # @ and
there exists a total recursive B-operator F such that F(w®) = &¢; but, clearly, F(f) is
recursive for every recursive f. On the other hand, if fe ¢ and f is recursive, then the
constant mapping F(g) = f, for every ge w®, is a total recursive B-operator such that
@ = F~ ().

Thus, to show that Pg(> [D])—Pa(=0) # G it suffices to find a non-empty
27 €[] such that 7 does not contain any recursive function; Corollary IIL.4.5 of [HI]
shows that in fact there exists .« € H‘} of the form & = {f} such that f is not recursive.

Example 2.2 (1) below provides an instance of a set &/ e[[} such that [#]e
Pu(> [0"])—Pa(z0) # . m

From the point of view of classical recursion theory and hierarchy theory, each of
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Pa(> [DF]), Be(> [w”]) and Py(= 0) is interesting, since each of them is related to
basis questions: note for instance that by [HI], Lemma II1.4.12, every equivalence class
of a dense [[3 set, different from w®, lies in Py(> [0®]).

It seems appropriate to give special attention to Pg(> 0): indeed, 0 becomes the
least element of the structure and this corresponds, in a sense, to our intuition of the
recursive subsets of w®, as being the “least difficult” domains of B.

DEFINITION 1.5. Let B = B4(> 0).

Notice (see proof of Fact 1.4) that a degree 4 belongs to B if and only if A contains
an element & such that both .« and-/* contain some recursive function. The elements
of B will be called degrees of B.

2. The structure of B. We begin this section with some remarks on the complete
domains of B.

Facr 2.1. If o is a complete domain of B then o is strictly [3 (ie. & e[[3-Y9)

Proof Immediate, since if F is a total recursive B-operator and «/€3Y§ then
FY)eY3. m

Contrary to what happens for Bo (where every domain .« which is strictly G;, i.c.
o €G;—F,,is complete: [WA]), it is not true that every strictly [J$ domain is complete,
as is shown by the following example.

Let ¢, denote the partial recursive function with index x, in some standard
enumeration of the partial recursive functions (see e.g. [ROJ).

ExampLE 2.2. (1) ([HID, p. 111) Let o7, = { £ (Ym < n+a+1)[p,(m}] = [ (m)]} and
let o = (), s Ao Clearly o €[]3, ie. o is a domain of B, It is easy to see that
</ and &/ are dense, thus, by [KU, § 12.V.(i)], o/ € G;— F,. Therefore ., being strictly
G;, is a fortiori strictly []9. On the other hand, & cannot be a complete domain of
B since /° does not contain any recursive function and, thus, for no # such that
0 < [#] can we have # < «.

(2 If A = and AeJ]9~33 in the arithmetical hierarchy of sets of integers, then
o e]3~39 (see [RO, Theorem 15.XXIV]) in the arithmetical hierarchy of sets of
functions, where o/, = {f: f(0)eA4}. Nevertheless o, cannot be complete in B, since
< 4 is clopen in the Baire topology: thus for no &/ which is not clopen (for instance, the
set &7 in part (1) of this example), can we have o < of @

Now, for every subset o/ of the Baire space, let . denote the closure of .. The
above mentioned result quoted in [KU, § 12.V.(i)] stating that for every .« < w®,
& ¢G;NF, if and only if there exists a closed set # s @ such that

&)

gives a topological characterization of the complete domains of Bo (furnishing
a topological characterization of the property of being G; but not F,).

Example 2.2 (1) shows that there exist domains A e[]9 satisfying («) but not
complete in B.

We are able, however, to show that validity of an effective version of (*) is equivalent
to completeness in B.

F=Fnsd =Fnd
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We need two preliminary lemmas:

Lemma 23. 2 = {few®: (Vx)@y > x)[f(y) # 01} is a complete domain of B.

Proof See for instance [MS]. m

Let 2° be the subspace of the Baire space consisting of all 0-1 valued functions, and
let Fis be the set of finite initial segments, where a finite initial segment is a partial
function from w into @ whose domain is a finite initial segment of w; if feFis, then
1h(f) is defined to be the least number not in the domain of f We suppose that we have
fixed also a one-one recursive encoding of Fis onto w. Given any function g and xew,
let g-. denote the restriction of g to {yew: y<x}. We have:

LEMMA 2.4. Suppose that ¥ is a partial recursive B-operator such that 2* < domain(¥).
Then {f: (Age2®)[¥(g) = f1} is a [} set in the arithmetical hierarchy.

Proof Let ¥ be a partial recursive B-operator such that 2% < domain(¥) and let
Q be a recursive operator such that ¥ is defined through Q. Let # € wx w® be the
relation defined by

R(x, f) < @geFis)[F is 0-1 valued &Ih(g) = x&Q(g) < 1.

Clearly #e]12.
Let now & = {f: (3g€2°)[¥(g) = f]}; we want to show that, for every f.

feF = (V)A(x, f).

Clearly, if f €4 then (Vx)Z2(x, f). Suppose that [ is a function such that (Vx)Z(x, N
and, for any given xew, let T, = {ge2®: Q(gr) © f}. Since (Vx)&(x, f), each T, is
non-empty, and, since 2% is compact in the Baire topology and Q(h) is total for every
he2@, it follows that (), T, # @. Let ge(\. T.; then Y(g) = Q(g) = f, ie. feF as
desired. ®

THEOREM 2.5. A domain &/ of B is complete if and only if there exist a non-empty
18 set & and partial recursive functions ¢ and y such that, letting € = & Nt and
€ = F s, the following holds:

(VfeFis)[S;nF # @ =o(f), x(f) are defined & dyp) is total & dy7eSynE

& yp is total & ¢ypyeSFNE]

(via the encoding of Fis, o and x are viewed as partial functions from Fis into w). Notice
that the existence of such ¢ and y implies of course that F = F nol = F Nl

Proof. (<) Let &, €, 4’ be as in the statement of the theorem; then & e[I3.
%Y. Let € ={f (VX)@))R(x, y, f)}, where Z< w?x w® is recursive; let %,
={f R(x, y, f)}, so that € = (), {J, %z,

Let Seq = | J(w™ new}, ie. the set of all finite sequences of natural numbers. If
sew”, then n is the length of s, denoted by Ih(s); if s = (xp, ..., %,) and i <n, then
(s); = x;; the empty sequence is denoted by ( ); if 5, teSeq then s*t is the concatenation
of s and ¢t; for every icw, the symbol (i) denotes the image of the number i under the
obvious embedding o — Seq. Assume also that s+>cd(s) is a 1-1 recursive encoding of
Seq onto w. Seq is ordered by the lexicographical ordering. We define a family
{hg, k;: seSeq} of functions from o into Fis as follows.
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Definition of k(). Let
k(y() = (Paenrier-

Since, clearly, S$NF # @, thus ¢, is a total function in ¢ and thus |,k ()&%

Definition of h, starting from k: assume that | J; k(i) %', thus S, ;,%" # @ for every
iew (hence y(k () is defined) and let icw be given. Search for a finite initial segment
7 such that

T2k & F'S byuain &Sy € {Uy Cuy: x < cd(s)}

Notice that, starting from k(i) one can always find such an 7= ky(i): we are using, of
course, the basic property of ¢, %' and the fact that 2(x, y, f) is recursive. Let hy(i) be
the first such f to appear in our search.

Definition of ke, starting from hg: Let ie w be given and assume that S, ,N% # &
(hence o(h,(9)} is defined). Again by the property of % and %' above, ¢,y is total and
Doiraty €Sy N €' For every jew define

ks () = (Pomuonr i + j+1-
Thus |J;kep{)€® and, a fortiori, | J;keq()e o2
The family {h,, k: seSeq} satisfies the following conditions:

) k() = k+1);
@ k(i) = hy(i);
3 hy()) & ko (0);
) U k(i) e s
% Shan € NV {U 2yt x < cd(9)};
y
(6) h, k, are recursive (via the encoding of Fis);
(7)  there exist recursive functions u, v such that, for every xew, k, = ¢, = h, = ¢y,

and hy = ¢, = kup = Do

We are now ready to show that .« is complete. Let 2 be as in Lemma 2.3; thus it
suffices to show that there exists a total recursive B-operator F such that & = F~! (/).
We shall define F in the following way: for every fe w®, in order to compute F(f) we
define by induction a sequence of finite initial segments {;: new} such that, eventually,
F(f)= ), /.. The definition of the sequence is as follows:

Step 0. If £(0) # 0 then f, = h,(0); if f(0)=0 then fp= k¢ 4(0).

Step n+1. If f(n+1) #0 then we distinguish two cases:

Case 1. If f(m)#0 and, say, f,=hy(), then f,., = hy»(0): notice that hy(i)
< ka(0) S by (0);
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Case 2. If f(n)=0 and, say, 7, = k,(i), then Joss = hy(i).

If f(n+1)=0 then we still distinguish two cases:

Case 1. If f(n)#0 and f, =hy() then f,e1 = kugp(0);

Case 2. If f(n) =0 and f, = k(i) then f+, = k(i+1).

It is clear that F is a total recursive B-operator.

To show that & = F~1(«), we distinguish two cases:

1) If £ €D then we observe that the set § = {seSeq: (3) (An) [/, = h,()]} is infinite
and in fact contains sequences of arbitrarily large length: to see this, notice that, for
every n, if f(n) # 0 then there exist seSeq and a number i such that f, = h(j); on the
other hand, if f(n) #0 and f, = h (i) (thus seS) and r is the least number such that
r>nand f(r) # 0, then, for some jew, f, = w(j), hence s*(i)eS. Therefore, by (5), for
infinitely many s, F(f)e () {{J, #xy: x <cd(9)}, ie. F(f)ed.

2) If f¢ 9P then, for some seSeq, we have F(f) = | J;k,(i) and thus F(f)es/

Proof of =. Throughout the remainder of this proof, 0 and 1 denote the functions
Ax+0 and Ax-1, respectively; also, given f e Fis and a function g, let f¥g be the function

P if x < In(}),
9k) = h(x—1h(f))  otherwise.

Now, let & denote again the domain of Lemma 2.3 and let &7 be a complete domain of
B; then there exists a total morphism F of B such that 2 = F~*(&). Let also
F ={f (3ge2®)[F(g) = f1}; by Lemma 24, #e[[}. We want to show that,
associated with &, we can define suitable partial recursive functions ¢ and y, so that the
theorem is true.

To this end, let € = # Nn.of and ' = F N *. Since F is a recursive B-operator, let
us fix a recursive operator Q through which F is defined. Let {Q":tew} be an
approximation to Q. Let now e Fis be given; in order to define o(f) and x(f) search
for tew and a 0-1 valued §e Fis such that f = Q'(§); if no such t, § exist then o(f) and
7(f) are both undefined; otherwise, let ¢, § be the first to appear in our search and define
o(f) to be an index of Q(§x0) and x(f) to be an index of Q(*1): clearly f = Q(§+0),
F<= Q(g*1); moreover, Q(§*0)= F(j*0)e% since §*0eP°n2° and Q(Fx1) =
F(G*1)e¥, since §*1eDn2°. =

COROLLARY 2.6. For every complete domain sf of B, there exists a complete domain
% of B such that of = & and %° is countable.

Proof Given a complete domain &, let F be a recursive B-operator such that
G = F~1(s#), where @ is again the domain of Lemma 2.3. Let # = (¥')° where %" is as
in the proof of the second part (i.e. proof of =) of the proof of Theorem 2.5. Now,
o < B; moreover, Be[]3, since ¥’ €} 3; also, & is countable (since ¢’ = F(2), and
F(2°) is countable, 9° being so). To show that & is complete, notice that FNB =€
and Fn#& =4%'; thus &, g, x satisfy the property mentioned in the statement of
Theorem 2.5, and so # is complete. m

The proof of Theorem 2.5 actually yields the following corollary which furnishes
a useful sufficient condition for testing whether a []2 set is a complete domain of B.
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COROLLARY 2.7. Let of e[[3. If there exist € < o and €' < «/° such that
#el]%:

(2) there exist partial recursive functions g, y such that, for every JeFis, [Spn%
# @ =>o(f) is defined & Qo is total & ¢y7y€S3NE'] and [S3NE # D= y(f) is
defined & ¢ is total & pypeS;rnE];

then &/ is a complete domain of B.

6] %, ¢ # O,

Proof. See the proof of the <= part of Theorem 2.5. m

ExaMPLE 2.8 (of how Theorem 2.5 or Corollary 2.7 can be applied).

(1) If X is a recursive subset of w, X # @ and X # o, then o = {f: (Vx)(@y > x)
[f()eX]} is a complete domain of B: apply Corollary 2.7 by taking % = ./ and
& ={f: @x)(Vy > x)[f () = a]}, where a¢X is fixed.

Notice that if w—X has more than one element, then & and /¢ are uncountable.

(2 If X is an infinite recursively enumerable set and X # w, then & = {J:
range(f) = X} is a complete domain of B: indeed, . is [ |3, as is easily seen; moreover,
Corollary 2.7 can be applied to &, taking ¥ = and ¢ = {/: @x)[(Vy=x)
[fO)=al&(Vy <x)[f(y)eX]]}, where aeX is fixed.

The following notation is employed in Lemma 2.9 below: for every few® and x e w,
let xx f denote the function such that xx f(0) = x, and x*f(y) = f(y—1), for every
y>0. For every xew and & S 0, let also x#o/ = {x+f: fesl}.

LemMma 29. 8B is a bottomed and topped upper semilattice.

Proof Clearly 8 is bottomed. As to the rest of the proof, notice that one can easily
show that, in fact, By is a topped upper semilattice. Indeed, by the very definition of
complete domain, it immediately follows that 1 is the greatest element of Py.

Moreover, if A = [#/] and B = [#] are degrees then the least upper bound 4 v B of
A and B exists and

Av B =[{) {x«sf: xevenju|) {x*%: xodd}].
Moreover, if A4, Be® then A v BeB. The proof is complete. m
An upper semilattice P = (P, <, v is distributive if
(Va, b, ceP)[a<bvc=@bo)@co)[bo < by < c&by vy = a]].

THEOREM 2.10. B is distributive.

Proof Let 4, B, C be degrees of B such that 4 < B v C and let A ed, #eB, beC,;
thus, for some total recursive B-operator F,

- (VAOlfed <F(fel ) {x«B: xeven}u | {xx%: xodd}].

Let #o=F~}({J{x*#: x even} and ¥, =F~*( {x+%: x odd}). Clearly #,, %,
€] ]5. Moreover, #, < # and %, < %; let us show for instance that By < %. To this
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end, notice that both # and %° contain a recursive function, since [4] is a degree in B;
in particular, let he #° be recursive, and let

6(f) = {2x-F(f)(x+1)

Then G is a total recursive B-operator such that %, = G~ (#).

We claim that, letting B, = [48,] and C, = [%,], we have 4 = B, v C,. Indeed,
A <\ J{xxBy: x even}ul) {x*%,: x odd} via H where H(f) = (F(f)(Q))* f. Con-
versely, one has to show that %, < & and %, < «; for instance, to show that £, < «,
let gesZ®, g recursive, and define K: w® — w® by

fif F(f)(0) is even,
Bif F()(0) is odd.

if F(f)(0) is even,
if F(f)(0) is odd.

K(f)={

" Clearly K is a total recursive B-operator that does the required job. Since clearly By,

C,eB, this concludes the proof. m

THEOREM 2.11. For any degrees A and B,A v B=1if and onlyif A=1o0r B=1,ie.
1 is join irreducible.

Proof Let AvB=1 and let &/ €4 and #eB. Then, by Lemma 2.9, the domain
& =) {x*o: x even}ul ) {x+&: x odd} is complete and therefore, by Theorem 2.5,
there exist a non-empty set & EH? and partial recursive functions g, y such that, letting
b =FnE and € = F nE°, we have:

(VFeFis)[SynF # @ =o(]), x(J) are defined & ¢y is total & PopESFNE’

& ¢y is total & ¢ 1eSFnE];
First suppose that, for some even xe o, # N (x*) # J; we will show that, in this case,
&f is complete. Thus, let x be an even number such that Fn(x*&f)# O: let
F* ={f xxfeF};clearly F*e[]}. Let y: w — w be a recursive function such that,
for every zew, y(z) is an index of Ax-¢,(x+1). Associated with #* let us define two
partial recursive functions o*, y* by

Q+(f)={y(e((x)*f)) if o(()=7)L,

undefined  otherwise,

)= {?(X((x)*f)) it 2((0)= 7)1,

undefined  otherwise.

Now, F*, ¢F, x* satisfy the hypotheses of Theorem 2.5, showing that 7 is complete.

We have shown that if, for some even x ew, F n(x*2f) # @, then o is complete; in
a similar way we conclude that if # nx* % # O, for some odd x'e w, then & is complete.
Since at least one of these two cases has to occur, the conclusion follows. m

For every A € w, let o, = {f* f(0)e A}. In the following, the symbol <, denotes
m-reducibility between subsets of w.

LemMa 2.12. For every A, B = w, A <, B if and only if there exists a total recursive
B-operator F such that of 4 = F~'(of}).

Proof (=) Let 4 <, B via a recursive function f and define F: v® - w® by
F(g) = f(g(0))*g. Thus o7, = F~ ().
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(<) Suppose that o/, = F~*(s/,) where F is a total recursive B-operator; let 2 be
a recursive operator through whith F is defined and let {Q": tew} be an approximation
to Q. As in the proof of Theorem 2.5, let 0 = Ax-0. Define a recursive function f as
follows: for every xew, search for geFis and tew such that §<x*0 and
' ()(0) is defined; for the first § and ¢ to appear in our search let ' (x) = Q(5)(0). Then it
follows that xed<«>x*0e o < F(x*0)e Az« f(x)eB. m

Since o 4 €[ [9 for every [ ] set of numbers 4, the partial order of the m-degrees of
[18 sets of numbers is embeddable in B. In particular, the m-degrees of recursively
enumerable sets are embeddable in B.

LemMa 2.13. Let A be a degree of B that contains an element of the form o ,, for some
recursively enumerable set A, Then, for every degree B, if B < A then B also contains an
element s, for some recursively enumerable set B.

Proof. Let 4 be a given recursively enumersble set and let # = F~ (s ,) where F is
a total recursive B-operator. Let Q be a recursive operator through which F is defined
and let
W= {f Q(f)0) is defined}.

Clearly W is an infinite recursively enumerable set of finite initial segments; let &: W— o
be a 1-1 onto partial recursive function. Finally, let

B={xew: Q& *(x)0)e4}

(notice that, for every x, 2(£7*(x)}(0) is defined, since £~ *(x) is a finite initial segment
that belongs to W). Clearly the set B is recursively enumerable and we claim that
Ap=AB.

Given f'eFis and a function g, let f+g be the function defined as in the second part
of the proof of Theorem 2.5. To show that &y < %, consider the total recursive
B-operator G: w®—w®, G(f)=(E"(f(O))f; cleatly, for every f, if feofy, then
G(f)e#; conversely, if fésofy then f(0)¢B, thus Q(é“l(f(O)))(O)qéA; since
EHf(0) = G(f), we have Q(£~ (£ (0)) = 2(G(f)) = F(G()), hence F(G(f)) ¢, and,
finally, G(f)¢ 2. ,

To show that £ < &, define H: 0®—w® by H(f) = &(f)*f where f is the first
element to appear in a fixed recursively enumerable enumeration of W such that
fcfm

THEOREM 2.14. (1) B is not a lattice;

(2) in B a countable family of degrees need not have a least upper bound.

Proof. Let {a,: new} be an infinite ascending sequence of recursively enumerable
m-degrees with an exact pair a, b such that (see [ER], [LA])

(V recursively enumerable m-degree ¢) [c <,a&e <, b=(n)[c <, a,]].

Let 4,ea,, Aca, Beb; for every new, let A, =[] and let A = [«/,], B = [«,].

Then, by Lemmas 2.12 and 2.13, the sequence {4,: new} of degrees of B does not have

a least upper bound nor does the pair 4, B have a greatest lower bound. m
THEOREM 2.15. The finite ideals of B are exactly the finite distributive lattices.

icm
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Proof. Since B is a distributive upper semilattice (see Theorem 2.10), every finite
ideal B, being a lattice, is a distributive lattice. The other half of the theorem follows
from Lemma 2.12, Lemma 2.13 and the fact that every finite distributive lattice can be
embedded as an ideal in the upper semilattice of the recursively enumerable m-degrees
(see [ER], [LA]). =

COROLLARY 2.16. The first order theory of B (in the language having signature (<))
is undecidable.

Proof. It is known that if 9B is an upper semilattice in which every finite distributive
lattice is embeddable as an ideal, then the first order theory of %, in the language having
signature (<), is undecidable (see for instance [LE], p. 137). Thus the claim follows
from Theorem 2.15. m

Inspection of the proofs of Theorem 2.14 and Corollary 2.16 shows that these results
hold in fact for the substructures of B containing the degrees of the subsets of the Baire
space of the form «/ , for some recursively enumerable set A. In particular, let D be the
restriction of B to the degrees of decidable domains (in the sense of [DPH, Definition
39]; in B the decidable domains are the A9 sets of the Baire space): one point of
difference between P and the classical theory of the recursively enumerable m-degrees,
in which all decidable sets fall in a unique equivalence class (provided that they are not
empty, with non-empty complement) is the following

COROLLARY 2.17. (1) The finite ideals of D are exactly the finite distributive lattices;

(2) the first order theory of D (in the language with signature {<)) is undecidable.

Proof Immediate since . AEZ?, for every recursively enumerable set A. Thus
every o/, is decidable. m
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The Hahn-Banach theorem implies
the existence of a non-Lebesgne measurable set

by

Matthew Foreman (Columbus, Ohio) and Friedrich Wehrung (Caen)

Abstract. In this paper we show that the Axioms of Zermelo—Fraenkel set theory together with
the Hahn-Banach theorem imply the existence of a nen-Lebesgue measurable set. Qur construc-
tion does not make any use of the Axiom of Choice.

§ 0. Introduction. Few methods are known to construct non-Lebesgune measurable
sets of reals: most standard ones start from a well-ordering of R, or from the existence of
a nontrivial ultrafilter over w, and thus need the axiom of choice AC or at least the
Boolean Prime Ideal theorem (BPI, see [5]). In this paper we present a new way for
proving the existence of nonmeasurable sets using a convenient operation of a discrete
group on the Euclidean sphere. The only choice assumption used in this construction is
the Hahn-Banach theorem, a weaker hypothesis than BPI (see [9]). Our construction
proves that the Hahn-Banach theorem implies the existence of a nonmeasurable set of
reals. This answers questions in [9], [10]. (Since we do not even use the countable
axiom of choice, we cannot assume the countable additivity of Lebesgue measure, e.g.
the real numbers could be a countable union of countable sets.)

In fact we prove (under the Hahn—Banach theorem) that there is no finitely additive,
rotition invariant extension of Lebesgue measure to Z2(R%). Recall that the
Hahn-Banach theorem implies the existence of a finitely additive, isometry invariant
extension of Lebesgue measure to 2(R?) (see [14]).

We use standard set-theoretical notation and terminology. For example, if X is any
set, #(X) is the power set of X. If A = X and f: X — Y is amap, then f[A] is the image
of A under f e is the set of all natural numbers.

We assume ZF throughout this paper; no choice assumption (even countable) is
made.

§ 1. Definitions. First, let us give one of the many equivalent statements of the
Hahn-Banach theorem. We use the version [11]:

THE HAHN—BANACH TuroreM. Let E be a vector space over the reals, let S be
a subspace of E, and f be a linear functional on S. Let p be a mapE—R such that
whenever x, ye E and A > 0, we have p(Ax) = Ap(x) and p(x+y) < p(x)+p(y) and for all
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