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Nonintegral boundary-slopes exist
by

Xingra Zhang (Vancouver, B.C)

Abstract. The existence of nonintegral boundary-slopes for knots in §2 is proved, which gives
a negative answer to a question asked by Hatcher and Thurston.

1. Introduction. Let X in S§° be a nontrivial knot, let N (K) be a tubular
neighborhood of K in §* and let M = $°—int N(K) with a preferred meridian-longitude
framing pair on OM. If (F, 0F) = (M, dM) is an orientable, incompressible and
boundary-incompressible surface (with OF nonempty), then the components of JF all
have the same slope on &M and such a slope is called a boundary-slope. Consider
@(K) = Q u {1/0}, the set of boundary-slopes of K. Questions about ¢(K) are closely
related to understanding the structure of 3-manifolds obtained by Dehn surgery on K.
In [9] Hatcher and Thurston completely described o(K) for 2-bridge knots. In
particular they found that ¢(K) < Zu {1/0} for every 2-bridge knot. The following
natural question was thus raised in [9].

Quustion. Is it true that ¢(K) = Z U {1/0} for every knot K in S3?

In this paper we give the question a negative answer as stated in the title (*). In fact
we give the example that for the (—2, 3, 7) pretzel knot there exists a nomintegral
boundary-slope. The argument consists of the following two sections. In the next section
we prove

TuroreM 1. If' K is hyperbolic and non-sufficiently large (i.e. K is a non-torus knot
and there is no closed incompressible non-peripheral surface in M, the complement of K)
and if' K admits two nontrivial cyclic surgeries, then there exists at least one nonintegral
boundary-slope for K,

The set of knots satisfying the conditions given in Theorem 1 is not empty. In
Section 3 we explain

EXAMPLE. 1. The (-2, 3, 7) pretzel knot is a hyperbolic and non-sufficiently large knot
Which admits 18- and 19-cyclic Dehn surgeries.

(') After this work was done we learned that a negative answer has also been given by
Hatcher and Oertel, and by Takahashi (to appear).
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The paper is closed in Section 4 where a quick view over recent research results on
@(K) is given, companioned with some remarks and open questions.

We refer to [10] and [15] for standard terminology and we work in the smooth
category.

Before leaving this section, we give a remark below. The proof of the remark is easy
and is thus omitted. Recall that an orientable surface (F, F) = (M, OM) is essential if
each component of F is incompressible and not parallel to a subsurface of IM (the
definition is from [3]).

Remark. An orientable surface (F, F) < (M, dM) is essential iff F is incompres-
sible and boundary-incompressible. Therefore the definition of boundary-slope defined
in the first paragraph (from [9]) agrees with that defined in [3].

2. Proof of Theorem 1. The proof is based on an application of the main results of
[3]. Let K(r) denote the manifold obtained by surgery along K with slope ».

By [3] Corollary 1, the two nontrivial cyclic surgery slopes that K admits are
successive integers, say, m and m+1.

CLAM. Neither m nor m+1 is a boundary-slope.

Proof of Claim. Suppose that one of the two slopes, say m, is a boundary-slope.
Let (F, 0F) = (M, M) be an orientable essential surface such that F is a nonempty set
of boundary curves in M of slope m and such that the number of components of OF is
minimal subject to these conditions. Note that in any knot complement all orientable
essential surfaces except those with 0 boundary-slope are separable surfaces. Now
applying [3] Proposition 2.2.1 if F is nonplanar or applying [3] Proposition 2.3.1 if F is
planar, we get a contradiction either with the condition that 7, (K (m)) is eyclic or with
the condition that K is non-sufficiently large in both cases. m

Since K is a hyperbolic knot, the interior of M has a complete hyperbolic metric of
finite volume. We can now apply the main results in [3] Chapter 1. It follows that there
exists a norm |-| on the 2-dimensional real vector space H,(0M, R) such that

(1) II |l is positive integer valued for each (m, )e H,(aM, Z)—{(0, 0)} = H,(0M, R).
Note that every slope r = m/le Q U {1/0} corresponds to the pair of primitive elements
(£m, £1)eH, (oM, Z).

(2) Define n = min{||(m, D||; (m, ))e H, (@M, Z)—(0, 0)} and consider the ball B of
radius n in H,(0M, R). Then B is a compact, convex, finite sided polygon which is
symmetric about the origin (ie. —B = B). Note that intBH 1(0E, Z) = (0, 0).

(3) For any vertex of B, there is a primitive element (m, e H(0M, Z) such that
(m, ) lies on the semi-line starting at (0, 0) and passing through‘the vertex and moreover
r=mjfl is a boundary-slope.

4) If r =m/l is not a boundary-slope and K (r) has cyclic fundamental group, then
(£m, £DedB (of course they are not vertices of B by (3)).

(5) Assume the area of a parallelogram spanned by any pair of generators of
H,(0M, Z) is 1. Then AreaB < 4.
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Now to get Theorem 1 it suffices to show that there exists a vertex of B which
provides a nonintegral boundary-slope in the way described in (3). By the Claim and (4)
above, the points (+m, +1) and (+m+1, + 1) are all on the boundary of B and none of
them are vertices of B. Let E be the closed edge segment of 8B on which (m+1, 1) lies (as
an interior point) and let v, = (s,, s,) and vy = (ty, t,) be the two vertices of E. Let L be
the line in H,(AM, R) passing through the points {(m, 1); meZ}.

Case 1. E is not parallel to L. Then one of the vertices of E, say vy = (8y. §,) must
lic above the line L in the sense that s, > 1. Such a vertex certainly yields a nonintegral
boundary-slope in the way described in (3).

Case 2. E is parallel to L. Then meE (as an interior point) and v, = (s, 1),
vy = (t;. 1). We may assume that s, <m<m+1 <t;. We must have m—1<s,
<t; <m+2 since otherwise the area of B would be larger than 4, violating (5). Now
both v; and v, contribute nonintegral boundary-slopes as we required. m

3. Proof of Example 1. Throughout this section let K denote the (=2, 3, 7) pretzel
knot. We understand that Fintushel and Stern have shown (unpublished) the following

Lemma 2.1. 18 and 19 Dehn surgeries on K yield lens spaces.

For the sake of the completeness of the paper we give the following verification of
their result.

Proof. The idea is to show that 18 and 19 surgeries on K yield manifolds that
double branched cover S with branched set in S a 2-bridge link and a 2-bridge knot
respectively. The manifolds are therefore lens spaces. Actually we will see that they are
L(18, 5) and L(19, 8). We provide below an explicit pictorial illustration.

Note that K is a strongly invertible knot (Fig. 1). The quotient under the involution
shown in Fig. 1 is S* and hence S* double branched covers S® with branch set
downstairs the unknot as shown in Fig. 4 (the process is shown through Figs. 1-4).

Note that the strong inversion on K can be extended to an involution on each of
the manifolds K(r) and the quotient under the corresponding involution is S°.
Moreover, the branched set in S* of the corresponding double covering can be obtained
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by removing the trivial 1/0-tangle (ball B shown in Fig. 4) from the unknot and
replacing it by the rational r-tangle (bewear that the sign of a rational r-tangle given
here is opposite to that given in [2]). In particular, the branch sets in S* corresponding
to 18 and 19 surgeries are shown in Fig. 5 and Fig. 6 respectively. They turn out to be
(by isotopy) the 18/5 2-bridge link and the 19/8 2-bridge knot, Therefore the manifolds
upstairs are lens spaces L(18, 5) and L(19, 8). m
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References for the argument above are [1], [2], [12], [15].
Lemma 2.2. K is hyperbolic and non-sufficiently large.

Proof Note that K is the K(—1/2, 1/3, 1/7) star knot (notation as in [147]) and
hence by [14] Corollary 4(a), K is non-sufficiently large. K can not be a torus knot
either for, according to Moser’s formula [13], there is no nontrivial torus knot which
could admit 18 and 19 cyclic surgeries. m

Example 1 follows from Lemmas 2.1 and 2.2. m
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4. Facts, remarks and questions on ¢(K). In this section we list several results that
are known about the general properties of ¢(K) for arbitrary knot X = S%, make some
remarks and raise some open questions.

THEOREM 4.1 ([4]). l@(K)| =2 for any nontrivial knot K in S°.

Theorem 4.1 is sharp as a torus knot T(p, g) has exactly two boundary-slopes,
namely ¢(T(p, 9)) = {0, pg}.

QuesTION. Is it true that for a nontorus knot K in §3, |p(K)| > 27
TuroreM 4.2 ([8]). ¢(K) is a finite set for any knot in S°.

In spite of Theorem 4.2, there is no upper bound restriction on distance among
boundary-slopes in ¢(K) when K varies over all knot types (the distance between two
slopes ry = my/l; and r, = m,/l, is defined to be |m, I, ~m,1,]). This is easily seen to be
true when K varies in the set of cabled knots of a fixed knot, namely the distance
between the boundary-slopes 0 (0 ¢(K) for all knots K < $*) and pq (the slope of the
cabling annulus) can be arbitrarily large. This is also true when K varies over the set of
hyperbolic knots. In fact, Fintushel and Stern have shown [5] that for any even integer
2n, [n| > 1, there is a hyperbolic knot K, in S® such that 18n surgery on K, produces
the lens space L(18n, 6n+1). Then the similar argument to that of Theorem 1 will give
a boundary-slope m/l of K,, with |m| > |18n.

Take the notations as in the proof of Theorem 1. One of properties of the
fundamental domain B is that each vertex of B corresponds to a boundary-slope. Let
m/l # 0 be a boundary-slope of a hyperbolic knot K in §® and let L= H, (6M, R) be the
semi-line which starts from (0, 0) and passes (m, I).

QUESTION. Does L intersect B at a vertex of B?

If the answer is yes, then some interesting information about cyclic Surgery and
boundary-slopes can be drawn. In particular, Theorem 4.2 follows for hyperbolic knots.

QUESTION. Is Theorem 1 still true if in Theorem 1 the condition “K admits two
nontrivial cyclic surgeries” is reduced to “K admits one nontrivial cyclic surgery”?

If the answer is yes, then all K,, (jn| > 1) have nonintegral boundary-slopes.
Let po(K) be the set of boundary-slopes of essential planar surfaces in §* —
int N (K).

TraeoREM 4.3 ([6]). |(K)| <6 for any knot K.
THEOREM 4.4 ([7]). po(K) = Z v {1/0} for any knot K.

For a torus knot K = T(p, q) or cabled knot K = C(p, g), pge pp(K). It is also
known that for certain prime knots, e.g., those which have prime tangle decompositions
[11], and even for certain hyperbolic knots, e.g. those which have simple tangle
decompositions [16], 1/0e gp(K) (the proof is not too hard and is omitted).


Artur


224 X. Zhang

QUESTION. Is it true that p¢(K)—{1/0} = @ for any nontorus noncabled knot K ?

Note that the positive answer to this question implies that to the cabling
conjecture, which states: if K(r) is a reducible manifold then K is a torus knot or
a cabled knot.
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Normal k'-spaces are consistently collectionwise normal
by

Peg Daniels (Auburn, Ala.)

Abstract. Z. Balogh completed F. Tall's “Toronto project” by proving consistently that every
normal, locally compact space is collectionwise normal. The natural generalization is to replace
“locally compact” with the classical “k-space property”. We prove that in any model obtained by
adding supercompact many Cohen or random reals, discrete collections of closed sets in such
spaces have a “first-stage” separation; if the space also satisfies the stronger k'-space property, then
we can obtain an open separation, so the space is collectionwise normal.

1. Introduction. F. Tall’s “Toronto project”, to prove consistently that every normal,
locally compact space is collectionwise normal, was completed by Z. Balogh who
proved that this is so in any model obtained by adding supercompact many Cohen or
random reals [B]. A history of the project is contained in his paper. It would be nice to
improve this result by replacing “locally compact” by “k-space”, where a k-space is one
in which a set is closed if, and only if, its intersection with every compact set is closed,
since the k-space property is a classical topological property and k-spaces have some
nice properties; they are precisely the quotient images of locally compact spaces, and
hence are closed under quotient maps. In this paper we prove that in any rmodel
obtained by adding supercompact many Cohen or random reals, discrete collections of
closed sets in such spaces have what we call a “first-stage” separation, and show that if
a space additionally satisfies a stronger property, the k'-property, then the first-stage
separation enables us to get an open separation of the sets, and hence the space is
collectionwise normal. We also show that if the first-stage separation could be made to
be discrete, then the process could be continued and we could get the collectionwise
normality of the k-spaces.

We also treat the “countably paracompact™ analogue of these results, and obtain,
as one familiar with the history of the Toronto project would expect, the results that in
such spaces locally finite collections of closed sets have a “first-stage expansion” and
that if a space is additionally k', this enables us to get an expansion by locally finite
open sets.

The large cardinal assumption is used to obtain a reflection principle: if there is
a counterexample, it is forced to be a small one. Once we had the new ideas necessary to
show that there could be no small counterexample, we first modelled our consistency
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