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ulxAa) <3, ulxai 14> > ). So 2[X] < [X] in the semi i i
, : . X < group of equidecomposabili-
ty types (see [W, §8]), ie. X is F-paradoxical. ’ -
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Ideals of the second category
by

Szymon Plewik (Katowice)

Abstract. We show that the intersection of less than h ideals of the second category is an ideal
of the second category and there exists a family of d ideals of the second category which has an
empty intersection.

Introduction. A family of infinite subsets of the set N = {0, 1, ...} of all natural
numbers is an ideal if it is closed under forming finite unions, taking infinite subsets and
adding finite sets of natural numbers; we assume that the set of all natural numbers does
not belong to an ideal.

If A and B are sets, then let (4, B) be the family of all infinite subsets of B
containing A.

An ideal is of the second category if it is of the second category with respect to the
topology on the set of all infinite sets of natural numbers generated by the sets
{x, N\y), where x and y are finite sets of natural numbers. This topology is called the
natural topology.

The Ellentuck topology on the set of all infinite sets of natural numbers is generated
by the sets {x, V>, where x is a finite set of natural numbers and V is an infinite set of
natural numbers. Let h denote the least cardinality among the cardinalities of families
consisting of open and demse sets in the Ellentuck topology which have empty
intersections. This definition of h is equivalent to that of Balcar and Simon [1], as
shown in [4].

We prove that the intersection of less than % ideals of the second category is an ideal
of the second category. This strengthens a result of Talagrand [6]. In Fremlin [3], p. 55,
is was noticed that, in fact, Talagrand proved that the intersection of less than p ideals of
the second category is an ideal of the second category, where p is a cardinal about which
it is known that it is not greater than / (cf. Balcar and Simon [17). There exists a model
of ZFC in which p is less than h (see Dordal [2]).

It is known (see [5]) that the intersection of less than continuum many maximal
ideals (they are always of the second category) is an ideal of the second category. We
prove that without the assumption of maximality such a result cannot be proved in
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ZFC. Namely, we prove that there exists a family of d ideals of the second category
which has an empty intersection, where d is a cardinal about which it is known that
there exists a model of ZFC in which d is less than continuum (cf. Balcar and Simon

(1.

1. A theorem concerning h. We begin with the following characterization of ideals of
the second category, which is a reformulation of Theorem 21 from Talagrand [6].

Lemma 1. An ideal I is of the second category iff for any sequence of non-empty,
pairwise disjoint and finite sets of natural numbers some infinite union of them belongs
tol w

The next two lemmas have been known to many mathematicians. Lemma 2 is an
easy corollary of Lemma 1, so we omit its proof.

LeEMMA 2. A maximal ideal is of the second category. m

LeMMA 3. An ideal of the second category is open and dense in the Ellentuck topology.

Proof. If a set W belongs to an ideal I, then the family <@, W) is contained in I.
Therefore any ideal is open in the Ellentuck topology.

Suppose that I is not dense in the Ellentuck topology. Take a non-empty base set
{x, V) disjoint from I. Infinite subsets of ¥ do not belong to I. Therefore the ideal I is
contained in the union of the sets (@, (N\V)uy), where y runs through finite sets of
natural numbers. Sets of the form <@, N\W), where W is infinite, are nowhere dense in
the natural topology. Thus I is contained in a countable union of nowhere dense sets. So
it cannot be of the second category. m

Let ay, a,, ... be a sequence of non-empty, pairwise disjoint and finite sets of natural
numbers. For an ideal I such that a,ua, U ... does not belong to I we define I* as the
family of all sets 4 of natural numbers such that { ) {a,: ne 4} belongs to I. Clearly, if
I is an ideal, then I° is either empty or is an ideal.

LemMa 4. If I is an ideal of the second category, then so is I°.

Proof. Suppdse by, by, ... is a sequence of non-empty, pairwise disjoint and finite
sets of natural numbers. For each natural number n we set ¢, = | J {a,: keb,}. The
sequence ¢, ¢y, ... consists of non-empty, pairwise disjoint and finite sets of natural
numbers. By Lemma 1, there exists an infinite set 4 such that | J {¢,: ne 4} belongs to I.
This means that () {b,: ned} belongs to I So, by Lemma 1, I° is of the second
category. m

" THEOREM 1. The intersection of less than h ideals of the second category is an ideal of
the second category.

Proof. Suppose that a family U has cardinality less than k and consists of ideals of
the second category. Let a,, a,, ... be a sequence of non-empty, pairwise disjoint and
finite sets of natural numbers. For any ideal I from U the ideal I° is of the second
category, by Lemma 4, and is open and dense in the Ellentuck topology, by Lemma 3.
Thus [} {I°: I U} is non-empty as the intersection of less than h open and dense sets in
the Ellentuck topology. This means that for any set 4 which belongs to this intersection
\J{a,: ne 4} belongs to each ideal I from U. Therefore (\ U is non-empty and, by

o

iom®
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Lemma 1, is an ideal of the second category since the sequence ag, a,, ... was taken
arbitrarily. =

THEOREM 2. If U is a family of ideals of the second category and its intersection is not
of the second category, then there exists a family of ideals of the second category which has
cardinality not greater than the cardinality of U and which has an empty intersection.

Proof. The desired family is {I*: TeU}, where ag, a,,... is a sequence of
non-empty, pairwise disjoint and finite sets of natural numbers such that no infinite
union of them belongs to (U. m

2. A theorem concerning d. Let pg, py, ... and rg, ry, ... be increasing sequences of
natural numbers. The set R = {ro, ry, ...} is sparser than P = {p,, p,, ...} if p, is less
than r, for all but finitely many natural numbers n. A family F of infinite sets of natural
numbers is dominating if for any infinite set A of natural numbers there exists a set
B from F sparser than A. Let d be the least cardinality among the cardinalities of
dominating families.

Let fy, f1, ... be an increasing sequence of natural numbers. For an ideal I we define
I, as the family of all infinite sets of natural numbers which are contained in some union
U{{f fi+1, ..., fur1—1}: ne A} which belongs to I. Clearly, I, is either empty or is
an ideal. :

LemMa 5. If I is an ideal of the second category, then so is I;.

Proof. Suppose ag, 4,, ... is a sequence of non-empty, pairwise disjoint and finite
sets of natural numbers. Let g, be a natural number from the sequence f,, fy, ... which
is greater than sup a,. If natural numbers gq, ¢y, ..., §s—1 have been defined, then let
k be a natural number such that infa, is greater than g,_ . Let g, be a natural number
from the sequence fy,f;,... which is greater than supa, We set p, = {gu-1,
gp-1+1,...,g,~1}. Then a,c<p, and p, is the union of sets of the form
{fs fi+1,..., firr—1}. By Lemma 1, some infinite union of the p, belongs to I.
Therefore some infinite union of the a, belongs to I,. Thus the family I, is non-empty
and Lemma 1 implies that it is of the second category. m

The next lemma was used by many authors. Its proof can be found in Balcar and
Simon [1], p. 355.

LEMMA 6. If gy, 4y, . .- is an increasing sequence of natural numbers, then there exists
a sequence Qy, Q1 ... of natural numbers such that for any set P sparser than {90, 41, .-}
the intersection Pn{Q,, Qu+1, ..., @ur1—1} is non-empty for all but finitely many
natural numbers n. m

TugoREM 3. There exists a family of d ideals of the second category which has an empty
intersection.

Proof Let I be 2 maximal ideal and let F be a dominating family of cardinality d.
We consider the family U consisting of the ideals I, where the sequences Oy, @, ... are
as in Lemma 6 for {gq, gy, ...} from F. The family U has cardinality not greater than
d and, by Lemmas 2 and 5, it consists of ideals of the second category. Suppose, to the
contrary, that there exists a set P which belongs to N U. Let {go, 4y, -.-} from F be
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sparser than P. By Lemma 6, for all but finitely many natural numbers » the intersection
Pn{Q,, Q,+1, ..., Qur1—1} is non-empty. Thus P does not belong to I, since in this
case I has to contain all but finitely many natural numbers, which is impossiblé as I is
an ideal. m
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The space of Lipschitz maps from a compactum to
an absolute neighborhood LIP extensor

by

Katsuro Sakai (Tsukuba)

Abstract. Let X be a non-discrete metric compactum and Y a separable locally compact
absolute neighborhood LIP extensor. The spaces of continuous maps and Lipschitz maps from
X to Y are depoted by C(X, Y) and LIP(X, Y), respectively. Let I, be the Hilbert space and

1§ = {(x)el,} supli-x| < o}.

It is proved that (C(X,Y), LIP(X,Y)) is an (,, 19)-manifold pair if each point of Y has
a neighborhood V admitting a map y: ¥V—LIP(I, Y) such that each y(y) is an embedding with
y(»)(0) = y and the Lipschitz constant of each y(y) does not exceed some k >0, e.g, Euclidean
polyhedra without isolated points and Lipschitz n-manifolds (n > 0) have such a property.

Introduction. Let [, be Hilbert space and 12 the subspace of I, which is the linear span
of the Hilbert cube [[n[—i™!, i7'] < L, that is,

lg = {(x)el,| supi-x| < ©}.

An I,-manifold or an 12-manifold is a separable metrizable space locally homeomorphic
to I, or 2, respectively. An (I, lg)-mamfold pair is a pair (M, N) of an l,-manifold

* M and an [$-manifold N which admits an open cover % of M and open embeddings

0y U—l, Ued, such that @y(NAU) = §ngy(U).
Let X = (X, dy) and Y= (Y, dy) be separable metric spaces. In case there is no
confusion, d stands for both metrics dy and d,. We assume that

X is non-discrete compact and Y has no isolated point.
The spaces of (continuous) maps and Lipschitz maps from X to Y are denoted by

C(X, Y) and LIP(X, Y), respectively. The topology of these spaces is induced by
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