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such that g; > 0 and «; # 0 for all g, +1 < i< q;+q;. Putting together (1)-(9), we
conclude

P (i—u—uz) =0

for all 1 <i< q;+4g,. Furthermore, ;;¢{1,, ..., 1,,} for every ie{g,+1, ..., g +q,};

for otherwise we would have p,(4—uy) = p,,(y4—us —us) = 0, thus P, (uz) = 0. This

contradicts (10). We conclude p, (y3) # 0 for all 1<i<g;+q,. Hence g, +g, <n.
After finitely many steps we must arrive at »;q, > n. A contradiction.

CorOLLARY. Let w <y < x be regular, X a ladder space of dimension x. If I'(X) > 0,
then (X,0,) has no continuous basis.

Proof. By Theorem 1, 2.1, a continuous basis (x,),e of (X, g,) is an algebraic basis.
Because o, is coarser than g, the coordinate functions p, are continuous on (X,0,); and
hence, (x,),e; would be a continuous basis of (X,s,). This contradicts the Theorem.
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Relative consistency results via strong compactness
by
Arthur W. Apte‘r* (New York, N.Y.) and James M. Henle* (Northampton, Mass.)

Abstract, We show in this paper that certain relative consistency proofs which had originally
been done using supercompactness can be recast, using Henle’s notion of modified Prikry forcing,
in terms of strong compactness.

The notion of strongly compact cardinal is perhaps the most peculiar in the entire
litany of large cardinal axioms. The well known results of Magidor [M] and Kimchi
and Magidor [KM] show that strongly compact cardinals suffer from a severe identity
crisis: The least strongly compact cardinal can be either the least measurable cardinal or
the least supercompact cardinal, and the class of strongly compact cardinals can
coincide precisely with the class of measurable cardinals or with the cl_ass of
supercompact cardinals (except at limit points). It is further the case that the cons%stency
strength of strongly compact cardinals is still unknown. Guesses on their consistency
strength range from equiconsistent with supercompacts to a consistency strength far
below that of supercompactness. :

One of the most frustrating aspects of working with strongly compact cardinals is
their intractability in forcing constructions due to a lack of the normality anfl closure
properties associated with supercompactness. Very few forcing proofs fgr th_Js reason
have been done using strongly compact cardinals. A motable exception is Gmk’s
construction of [G1] in which, starting from a class of strongly compact cardinals,
a model in which all uncountable cardinals are singular is constructed.

In [H], a notion of modified Prikry forcing in which normal measures are not used
was developed. We adapt this forcing construction to shov»f that certain theorems
originally proven using supercompactness can be reproven using strong compactness.
Specifically, we establish the following results.

Taeorem 1. Con (ZFC + There exist cardinals % <A so that % Is 1 stronqu
compact and A is measurable) = Con(ZF + x is a strong limit c‘ardinal _of cofinality
@ carrying a Rowbottom filter + »* is a measurable cardinal which carries a normal
measure). .

TreoREM 2. Con (ZFC + There exist cardinals % <4 s0 t}_mt * Is A strongly
compact and . is measurable) = Con(ZF + N, is a strong lfmlt cardinal carrying
a Rowbottom filter + N,y is a measurable cardinal which carries a normal mea;ure).

* The research of the authors was partially supported by NSF. Grants DMS-8616774 and
INT-8513211.
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THEOREM 3. Con (ZFC + There exists a regular limit of strongly compact
cardinalsy = Con(ZF + For every successor ordinal a, 2%* is a countable union of sets
of cardinality X,).

Theorem 3 says that the Specker property holds at every successor. ¥ and was first
established in [AG] using a regular limit of supercompact cardinals. Theorems 1 and
2 were established in [A17 and [A2] using cardinals % < A so that x is 2* supercompact
and A is measurable and technical hypotheses which follow from the existence of
cardinals % < A so that x is A supercompact and A is measurable.

Section 1 of this paper is devoted to a discussion of the modified Prikry forcing of
[H] in the context of strongly compact cardinals. Section 2 will contain the proofs of
Theorems 1 and 2, except for Rowbottomness, which will be addressed in Section 3.
Theorem 3 will be proved in the last section.

Basically, our notation is fairly standard. For ordinals « < B, [a, 81, («, 81, [« f),
and (a, f) are as in the usual interval notation, and R{x) denotes the universe through
stage a. For » < A cardinals, P,(4) = {x € A |x| < »}, and for & < % an ordinal (usually
finite or ), [P,(A)]* is the collection of « sequences from P,(4) and [P,(4)]<* is the
collection of < « sequences from P,(4). AC,, is well ordered choice of length w. DC, is
dependent choice of length ».

When forcing, if p and g are conditions, g |l p will mean that g contains more
information than p, and for ¢ a formula in the appropriate forcing language, Pl will
mean that p decides the statement ¢. For a set s in the generic extension, § will be a term
denoting s.

An ultrafilter % on P, (%) is said to be fine if for all a < 4, {pe P,(1): ae prEU. xis
A strongly compact if P,(J) carries a x-additive fine ultrafilter % (sometimes referred to as
a strongly compact measure), and x is strongly compact if x is 2 strongly compact for all
cardinals A > ». The reader desiring more information on the notions of measurability,
strong compactness, or supercompactness should consult either [A1], [G1], or [M].

For % <4 regular cardinals, the Lévy collapse of A to x*, Col(x,J)= {r:
%X A->A: f isa function so that |domain(f)| < » and f(Ka, B3) < B}, ordered by q |- p
iff p = q. The trivial condition is the empty set @. If f, & (%, A) is a regular cardinal and
peCol(x,2), plBo = {<<a B>, 7> ep: B < Bo}. p!fo is then a condition in Col(x, o),
and for G generic over Col(x,4), G|fo = {p}fo: peG} = {peG: peCol(x, o)} is
generic over Col(x, fo).

A cardinal % is Rowbottom if for all 7 < x and all functions F from [»]*“ to y, there
is a set X = «, of cardinality », such that the range of F on [X]< is countable. X is
called homogeneous for F. x carries a Rowbottom filter if there is a filter G on % so that
a homogeneous set may always be found in G,

§ 1. Modified Prikry forcing. This section will be devoted to a discussion of the
modified Prikry forcing of [H] in the context of strongly compact cardinals. In this
context, modified Prikry forcing has been used by others; in particular, Gitik employs
this technique in [G1] and [G2]. If Vi= “x is A strongly compact and % is a fine
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ultrafilter on P,(4)", then let # = {f: f is a function from [P,(})]<® to %}. Modified
Prikry forcing @y is defined as: .

{<I70, cevy Pis f> <P0= cery Pn)e[Px(/l)]«u, nnK # pinx for 0 i <] <n, and fe-g}.

Given two conditions p = (pg, ..., sy /> and q = {qo, ..., qm 9> q |- p iff the fol-
lowing conditions hold:

1) nsm,
2) <Po, very pu) = <q0a ey 51,.>» ‘
3) g & f, ie, for ro, .o, n @ LRI, g((ro, o, ) S [Kros -0, ),

4) for n+-1Ki<m i€ ({Pos - o> PusGutts ovvs dim1))-

Let G be V-generic over #,,. A routine density argument shows that for any regular
Seu, ), rs={{pond, ..., pun8): AfeF [{po,..., pn, [Y€G]} (sometimes written
as r}d) codes a cofinal w sequence through d. The following analog of the basic lerama
of Prikry forcing shows that ¥ and V[G] contain the same bounded subsets of »x.

Lemma 1.1 (Lemma 4.1 of [H]). Given any formula ¢ in the forcing language with
respect to Py and any condition {po, ..., pn, > there is some g < f, geF so that
(Po, vies Py g> ” .

Proofl. Let s be the sequence {po, ..., Pap, and for t = {qo, ..., dmy € [PL(AT %,
0gigm, let i‘ri = {go, -+ +» G1-1p, With £[0 the empty sequence. For any such t, call
t sufficient if for some g &, {s"t, g> || @, where st is just the sequence composed of the
elements of s followed by the elements of . For ¢ sufficient, let g, be a witness. If the
empty sequence is sufficient, then we are done. If not, then for any appr.opriate t
= {lg, ..., Lny, sufficient or mnot, either X,= {geP,(}):.t"q is sufficient} or
Y, = {geP,4(4): t"q is not sufficient} is in %, since {g: for 0 < i< m, gnx +# qinxy U
by the fineness and x-additivity of %. For A4, that set, define f* by

JO=ron

i<length ()

gin(NA,.

Now let t&[Py(1)]<? be sufficient and of minimal length m-+1, and let t' be the
sequence t without its last element gy, It follows that A, must be X, so for every
qef'(t, g is sufficient. Thus, one of the sets X = {g: {s"t'0q, g,'?q> I ¢} or
Y= {q: ("t'"q, gpogy I 1@} ds in 4. For Z that set, form g frorrlx f by letting
g(t) = f()nZ and g(x) = ['(x) otherwise. It is now the case t'hat (st ,,g>|l(p. ’}”o see
this, suppose that Z is Y, and suppose further that some extension of (st g) forces ¢.
Such a condition must add to ™ since ¢’ is not sufficient. The next element add@ to
s7t', g, must come [rom Y, giving a condition {s"t'"¢"u, g9 for(?ing ¢. By cc.m'structxon,
however, <s"t'"qu, ¢ |- "E0q, I I (577, gy, and this last condition forces

, adiction. - ‘
j(p’\:fec?l?:::fc})l:: (1)1;.\/0 {s™t, g> . This, however, contradicts the minimality of the
length of ¢ for sufficiency. This contradiction. proves Lemma 11w

By the fact that % is x-additive, the same proof as in ordinary Prikry forcing [P}

- shows that ¥ and V[G] contain the same bounded subsets of x.
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The Mathias criterion [Ma] for Prikry genericity states that an cw-sequence
{a,: 1 < ) is Prikry generic with respect to Prikry forcing defined using the measure
w iff if Aep, then .there is some m < w so that {a,;: m<n<w) < 4, ie, iff every
4 measure-one set contains a “tail” of the w-sequence. There is an analogous property
for modified Prikry forcing. If r ={p,: n < w)€e[P,(1)]°, then using the notation
rin={po, ... Pu-1), We can define the set H, = {{rn, />: feF isso thatif n < kand
ie(n,k] then pyef(rli)}. The Mathias-like property is then stated as follows.

Lemma 1.2 (Lemma 4.3 of [H]). For all re [P, (A)]“, H, is V-generic over P, iff for all
feF there is an n < w with {rln, fYeH,.

Proof If H,is V-generic over 2,, then given fe F, let @ = {{t, g>: g = f}. Since
9 is dense open, ZnH,# d. Thus, for some n, {rin, g)>eH,, so since g< f
<rin,fHeH,.

Now suppose for all fe# there is an n < o with {r|n, f>eH,, and suppose
9 = Py is dense open. For te [P, ()], n < w, we will say that t is n-capturable iff for
some f and for all ue[P,(1)]", {t"u, [ |F <t, > implies {t"u, > 2. We consider two
cases:

Case 1: rk is n-capturable for some k and some ». If this is true, then let f be the
witness. By assumption, there is some m so that {rim, f> e H,. Let m' > max(k+n,m).
We will still have {rlm',f>eH,, and since {r|m',f>e2@ (by the fact & is open),
Hn9 #+ 9.

Case 2: For no k and n is r[k n-capturable. In this case, for each appropriate
te[P.A]1=°, let A,eP be either B, = {g: t"q is not k-capturable for all k} or
Bi = {¢: t"qis k-capturable}, whichever has measure 1, and define /: [P, (1)]<®— % by
S@® = Usitengney Aepi if t=to, ..., t,> has the property that for 0gi<j<gp,
tinx # tinx and f(t) = P,(4) otherwise. By assumption, there is an m so that
{rim,f>€eH,. As 9 is dense, there is an extension {(r}m)"u, > in 9. This u is then
O-capturable. Choose now a te[P,(4)]<“ of minimal length so that (rlm)"t is
k-capturable for some k. Since we are not in case 1, length(f) = n+1 > 0. Let ¢’ = tInbe
the first n elements of . We must have ge f((r tm)"t), 50 € dgtmype, and this means
Agpmype = BET™ 1t follows that f witnesses that (r[m)™t' is (k+1)-capturable. This
contradicts our choice of ¢, and so case 2 cannot occur.

Since H, is compatible and closed under weakening of conditions, H, is V-generic
over #,. This proves Lemma 1.2, m

We note that as with ordinary Prikry forcing, the generic sequence r completely
determines the generic object G, and G = H,. This is easily seen. By the genericity of G,
if {s,f> = <{rin,f)€G, then <{s,f>eH,. Thus, G < H,, so H, intersects every dense
open subset of 2, in V. Hence, by the remarks concluding the proof of Lemma 1.2, H, is
V-generic over &, meaning that G = H,. This observation will be key in the proofs of
Theorems 1, 2 and 3.

For é&[x, 4), 4 an inaccessible cardinal, we discuss a notion of restricted genericity
through 8. If x = P, (4), let x!6 = {Zné: Zex), and let %5 = {x16: xeu}. Since % is
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a strongly compact measure on P,(4), %4 is a strongly compact measure on P,(5). We
can thus define a modified Prikry forcing %45 Our goal is to show that r4 is V-generic
over Pu)s and to define the appropriate notion of restriction of condition,

Towards this end, given p* = {po, ..., p, f> = {p,f>ePy, we wish to define
p* 10 e Pays. First, let p[d = {pynd, ..., p,n8). The second coordinate, which we will
call /174, depends on p as well as . We define it inductively. To begin, if there is no
n < o so that x is of the form (p[8)"r* for r*e[P,(A)]" we let (f178)(x) = P,(5). For all
r*&[PL(0)]", n < w, we define inductively and simultaneously (f178)((p F6)°r*) e | and
a set Sp & [Pe(A)]" as follows:

If r* =@, then S, =@, and (f178)(pl6) = f(p)}6.

It r* =u{a}, then Sw={s"{t}: s€S, and tef(p"s) is so that A& =a}, and
U178)(10)r) = [Usas S (079118 i Sy 7 @. T S, = @, then (7178)((p 19)"r") = Po(&).

Note that s&S. implies s{é = r*. We define p*[6 as (p|d, f|*5D.

LemMA 1.3. For any {p, f> &Py, and any {(p|8)"r*, g> € Purs extending {p, > 16 in
Pays there is a function he F and an s€ 8, so that {p"s,h) € Py extends {p, [ in Py,
and h|d6 < g. Further, s|é = r*.

+ Proof. To construct h, we first define k(u) = {xuy: xeP,(A\5) and yeg(u)} e if
ueP,(d) and k(u)= P, 1) otherwise. Next, we let h=knf, ie, for xedomain(k)
ndomain(f), h(x) = k(x)n f(x). Clearly, h1é < g. Since it is equally clear that h < f, it
remains only to find an appropriate s. This is done by induction on the length of r*.

For r* =, this is trivial. Now let r* = (r¥,...,7¥> and suppose we have
established the lemma for all shorter sequences. Since {(p8)"r*, gD |- <p|6, f178) we
have

rre(f o) ((pt O+ 1) = [ KSJ S0 1e;
VESpp
this is true since by applying the induction hypothesis to {(p|8)"(**}4), gD, we have
Spp # @. Thus, there is a veSuy and a te f(p™v) so that tnd =r¥. We then have
v"{t} €S, and we will show that s = v"{t} satisfies the conditions of the lemma.

It is immediately true that s[é = r*. Now suppose that 0 < j<i. As sP(j+1)
€Suiy+1y, 5,6 S (p"(s] /). This is enough to show <p"s,h) |- {p, f>, proving Lemma
13w

Lemma 14, If (p"q,hd |- <p, />, then <p"q, B> 16 |- <{p, /) 4.

Proof It is easy to see inductively that S, as defined for the first condition is
contained in the corresponding S, for the second condition. It then follows that
A6 < f1P6. 1t remains only to show that for all i in the domain of ¢, ;NS =
(1) 1) ((q19) 1)). For this, we need that §;€ sesiqs,/ (P79), and for this, it suffices
to show that qf‘ieS(qr,s)“ since we know that g;e f(p”(g1)). This last fact follows easily
by induction. This proves Lemma 1.4, m

Now, for G V-generic over ‘%,,, let GIé = {p*|5: p*eG}.
LemMa 1.5, G6 is V-generic over Py
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Proof We note first that Lemma 1.4 shows that G is compatible. In addition,
the prior definitions ensure that G145 is closed under weakening of conditions.

Suppose now that @ is a dense open subset of Py which fails to meet G4, Let

= {(p, f>ePy: <p,)15€D}. We will show that 9" is dense open in #,,, which
W111 automatically suffice since there will then be a {p, /> & 9" NG, which immediately
yields that <{p, />0 ZnG[é.

Let <p, f be any condition. Since & is dense, there is a (p[8)"r*, > € P extending
<p6,f176>. Let h and s be as in Lemma 1.3. Then <p”s,h) |-<p,f> and
{pns,hye @, since {p"s,hy |4 |- {(p1d)"r¥*, g> € % and D is open. This proves Lemma
15 =

By the definition of G|, it is now clear that rs is the generi sequence generated by
G|6. As noted earlier, r; completely determines G[4.

§ 2. Making the successor of a singular cardinal measurable. The proofs of Theorems
1 and 2 are quite similar to the proofs given in [A1] and [A2]. For Theorem 1, let » < 1
. be so that V = “x is 4 strongly compact and 4 is'measurable”, and let % e Vand ve V be,
respectively, a strongly compact measure on P,(4) and a normal measure on 4. Let 2,
be as before, and for G V-generic over 2y, d € [%, 4) an inaccessible cardinal, let r; be as
defined in Section 1. The model N witnessing the conclusions of Theorem 1 will be the
least model of ZF extending Vand containing r;, for each inaccessible § & [x, 4) (but not
the A-sequence of the r's), More formally, let &% be the forcing language associated with
2, and let & < .& be the ramified subtcmgmgc of & containing symbols 4 for each
ve V, a unary predicate symbol V (interpreted as V(d)c:vne V), and symbols 7 for each
de[x,A)an 1nacces31ble cardinal. N is then defined inductively inside V{G] as follows:

NI,O = g:
Nis=|J Ni, for § a limit. ordinal,
«<d

Nigti={xS Ny er[G] and x can be defined over {Ny,,&,¢>¢eN,,

) using a forcing term re.%; of rank <a},

N1 = U Nl,a'

acOrdinals¥
Standard arguments shows that Ny k= ZF, Also, as usual, each ¢ for ve V may be

chosen so as to be invariant under any automorphism of #,, and terms T mentioning
only 75 may be chosen so as to be invariant under any automorphism of 2, which
preserves the meaning of rs.

Lemma 2.1. Let xe N, be a set of ordinals. Then for some §¢[x,4), & inaccessible,
xeV[rsl.

Proof Let v be a term for x and let # be an ordinal so that for some
. P=APos s P S D, P |- “1 S 1", Since xe Ny, we can assume without loss of generality
that = mentions only finitely many terms of the form #s. By the usual coding tricks, « can
be assumed to mention only one term of the form #;, We show that xeV([rsd.
Assume that pe G. Let o be the term defined by g |- “deo” iff ¢ |- p, ¢ 16 € G14, and
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g F“det”. Clearly, ¢ denotes a set in Vrsl. We show that p |-“e = ™. First, if geG,
gl-p, and ¢ - “det”, then ¢foeGld, Thus, g | “ded™ so pl "t o

Let now ¢ = {gp. -+, ¢1 4 || p be so that ¢[de G| and ¢ |- “4e™ By the genericity
of G, there is some ¢ == (q,,, oo s ¢ € G S0 that ¢ | “det”. Without loss of generality,
we can assume that [ < m. If ¢ |- “de”, then we are done, so assume that ¢’ |- “d ¢ 1.
Since ¢’ 1d€ G 19, ¢[de GId, and | < m, we know that for 0 i </, ¢;nd = ¢ind, and also
that there is some {god, .y i, 1y gy o 1 ¢"> € G116 extending ¢ 18 with rf = gind
for [+1 < i< m. Thus, by Lemma 1.3, there is Some g7 = {qoy vovs iy Sp410 o ver Sy 1
extending ¢ so that for [4-1 €< m, §;nd =} = ¢ind. Since q” I-q, 4" IF “&er

Consider now the pcrmumtmn ¥ oof P,(A) given by Y(q;) = ¢; and ¥(q}) = ¢; for
0<ig !, V(s = ¢rand Y(g) = s lor [4+1 i € m, and ¥ is the identity otherwise. For
any condition {to, ..., b, ') G2, consider the function ;. #, — #,, given by =({to, ...

b HY = (), . (), P (H)), where the action of W on B, W(K), is given as
follows. If W(utgy ooes u‘,)) = Ade, then ¥ ug, ..., up) = K[ o), ..., P(u)y) has
value {¥(u): ue A} which, since ¥ permutes only finitely many elements, is a‘J/l measure
1 set. It can be verified that = is an automorphism of #,, and by construction,
TE(Z[”) = <‘[/((10]5 (RS V’(‘Il)a lI}(SH‘ l)v [EXE] q’(ﬂ,,,), lIl(h» = <¢1'0- LRXE ‘];m ‘P(h» is compatible
with ¢ Since {qun, ..., @G, §.100, .., 8uNI) =<goNd, ..., g,nd), P is the iden-
tity except possihly 00 S = {(gs eer Qs Stk taoees Sms Goroos Gu)s and any {go, ...

o iy ST Lo -+ o0 Sus St 10 +--5 85 17> extending ¢ must be so that s;¢Sform+1<i<j
(by the fact ;% for m-1 < i € jcannot equal unsx for any ue$), = does not affect the
meaning  of rs. Therefore, the properties of v ensure that m(g") i} “det”. Since
¢ |- “d¢t”, this is a contradiction. Hence, p |l-“o 1", so p|-“t = ¢”. This proves
Lemma 2.1. m

LemMmA 2.2. V and Ny contain the same bounded subsets of .

Proof By Lemma 2.1, for any x& N, x a bounded subset of x, xe V[r;] for some
de[x,4), & inaccessible, Since GId is V-generic over s, Lemma 1.1 shows that
VLG 6] (or V[rs]) contains the same bounded subsets of x that ¥ does. Thus, xe V. m

LEMMA 2.3. Ny k=% is a strong limit cardinal of confinality o”.

Proof. Since V= “x is a strong limit cardinal”, it immediately follows from
Lemma 2.2 that Ny k= “x is a strong limit cardinal”. Since r,e N |, Ny = “cof(x) = ™. »

Limma 24, Ny k=A< %'

© Proof Lemma 24 is proven by showing that no, ordinal de(x,4) which is
a cardinal in ¥ remains a cardinal in N, To show this, we let & (0, 4) be an inaccessible
cardinal in ¥, We then show that in V[rs], & is no longer a cardinal. As V[ry] < Ny, the
collapsing function for § will be present in N, showing that Nk “d is not
a cardinal”,

Proceeding with the proof, we show that there arc no cardinals in the interval (3¢, f]
in V[ry]. To do this, let & be the least cardinal in ¥ which remains a cardinal in ¥V [rg],
and consider two cases:

Case 1: o is a regular cardinal in V. Since r,€ V[rsl, V[ry] = “cof(e) = o”, so by

5 — Tundamenta 1392
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the leastness of o, V[rJk=“a=x" and cof(x')=w”. As VIrgle= ZFC, this is
impossible.

Case 2: « is a singular cardinal in V. In this case, again VIrgl =" a=x*" so
Vlrgl = “ZFC + x* is singular”, an impossibility.

Thus, no de(x,4) is a cardinal in N,. This proves Lemma 2.4, m

LeMMA 2.5 Ny b= v = {x < A: x contains a v measure 1 set} is a normal measure on 37,

Proof If x = Ais a set in Ny, then by Lemma 2.1 fet § ¢ %, ) be so that xe Vrgl.,
Since |Pa,| < 4, by the Lévy-Solovay results [LS], V[rs] & N 1 satisfies “Bither x or
A\x contains a v measure 1 set”, If N, = “Oiat @<y < A s o sequence of v measure
1 sets”, then since {x,: & <9y < AY can be coded by a set of ordinals, there is some
0elx,4) so that (x: a<yp<AdeW[rs. Since the results of [LS] imply that
VlislE“vf={x< 1 x contains a v measure 1 set} is 4 pormal measure on i
VIl = “acyXa €V, e, VIrslE “Na<y X, contains a v measure 1 set”. Thus,
Ny = “(Na<y X €V, Finally, if N, k=« f: A=A is a regressive function”, then since f'can be
coded by a set of ordinals, let § be so that f' e V[rs). By our eatlier remarks, Virsl=“fis
constant on a v measure 1 set”, i.e, both V[r;] and N, satisfy “f is constant on a v measure
1 set”, 5o Ny =“f is constant on a v* ‘measure | set”. This proves Lemma 2.5. m

Lemmas 2.1-2.5 complete the proof of Theorem 1, except for Rowhottomness.

Since the proof of Theorem 2 from Theorem 1 is exactly the same as in [A1] and
[AZ2], we only sketch it here and refer the reader to these papers for further details. As
Vand N, contain the same bounded subsets of %, any cardinal & < x which is (strongly)
inaccessible in V' remains (strongly) inaccessible in N,. Since in V the inaccessible
cardinals below x are unbounded in % and N 1= “cof (¥) = w”, we can first choose in
N asequence {a,: n < > cofinal in x and then use this sequence to define canonically
in Ny a sequence (x,: n < w) of (strongly) inaccessible cardinals cofinal in s, Using
%' m'< @), we construct our model N 2 for Theorem 2 as follows. Working in Ny, let
Qo = Col(w, ,%,), and for i > 0 let Q1 = Col (3., %,). Define § = [Ti<0 Qi and take as
the forcing conditions Q the set {peQ: the ith coordinate of P Pis is non-empty only
finitely often}, ordered by g |- p iff Vilg: | pil.

For any n < o, view Q as 0, x 0" where Qn=]TienQ and Q" = {pe]i=u Qi the
kth coordinate: of p, p,, is non-empty ouly finitely often}, with both partial orders
ordered componentwise. Let H be N 1-generic over Q. It follows by the above remarks
that H, = H[Q, (the projection of I onto @,) is Ny-generic over Q,.

The model N, which witnesses Theorem 2 is the least model of ZF extending
N, containing each H, (But not the w-sequence of the H,’s). As in Theorem 1, we can
talk about N, using a ramified sublanguage %, & % of the forcing language with
respect to Q, where %, contains symbols § for each ne N 1> & unary predicate symbol
Ny (interpreted as N,(5) iff ve N 1), and symbols H, for each n < . N 2 is then defined
inductively inside N 1[H] as follows:

‘ NZ,(I = Q’

Nas= () Ny for & a limit ordinal,
a<d .

icm°®
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Nagi1={xS Ny, xeN,[H] and x can be defined over (N2,0s €5 Cheena s
using a forcing term re.%; of rank <a},
N2 o

)
aeOrdinalsM1

N

The exact same arguments as in [A1] and [A2] then show that N, witnesses the
conclusions of Theorem 2. Further, as in [A1] and [A2], the definition of N, ensures
that AC,, fails in N,.

§ 3. Rowbottomness. Some additional notation: if fmaps 4 to B, and % is a filter on
4, then f,(%) is the filter on B defined by: for X < B, Xef,(® iff {7 (X)e%.

Our measure % on P,(4) may not be normal, but we may assume it has some
degree of normality. Let k map P, (1) to % by k(p) = prx. Let %, be k(). We may at
least assume that %, is normal, since we can change %, to make it normal as follows: let
r: P,(4)— % be the least incompressible function, that is, the least (in the ultrapower of
P,(2)) such that r is not constant on a set in %, but r(p) < k(p) on a setin # (r is the
least counterexample to the failure of %,,’s normality). Next, let [ map P,(4) to P, (%) by
setting I(p) = (p\»)u (pr(p)). It is routine to show that I, (%) is a fine measure on P.(A),
and that k,(l,(%)) is a normal measure on x.

We will thus assume that %, is normal on . It also follows that % has a limited
normality property: if s: P,(1)—x is regressive, i.e, s(p)ep on a set in %, then s is
constant on a set in %. Equivalently, % has a weak diagonalization property, namely
that if {X,}e< S %, then

AX, = {p: aeprx=>peX,}

is in %. These properties are easy to verify.
We begin by proving the following:

LeMMA 3.1. If G is V-generic over Py, then V[G] = “x is a Rowbottom cardinal”.

Proof. Let the sequence defined by G be po,py, ... Suppose that
{pos -+, Pr, w) €G forces that F; [P, ()] -y <xisa counterexample to the Rowbot-
tomness of x, :

Let #F, = {f: f: [P(A]°°~%,}. For any fe#, and any H V-generic over P,
we can define a subset Xy . of % as follows:

X = LS @) pors)IUf o) p:s\pon)]]
U[f(l’o,Pl)ﬁ[Qhﬂ")\(Pxﬁ%)]]U---
Cram. Uy = {Xy, 1} rew, is a uniform filter on x.

Proof. It is clearly a filter, since X ., Xy p contains Xy . Uniformity follows
from a density argument. Let @ = {<r, g>: Vqo, ..., gk P€G(os ---» 4) =11 (qo, - ..
s @INLPAR\(G2)]) = qerx. It is not hard to show that @ is dense, and since
G intersects 9, |Xp, /| = x, because » = | J|pyrn]. ‘

Let J be the collection of all finite sequences of Os and 1's. For ned, ge %,

he#,, o={s,.... 0[P, ()]°° with each s;~x a cardinal, 7= Loy .o
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s by €[]7°, we will say that (o, ) is appropriate for n, g, h il
1) sonx < s10% < ...,
2) o <t1<...,
3) ti 5 s;nx, for all i, j, and
4) when the {t;}i<,, {s;n%} <x are arranged in order, we have a sequence, g, with
(@) len(g) = len(n),
(b) if m(i) =0, then g(i) = t; for some j, and g()ch(tg, ..., boh
() ifn(i) = 1, then g()¢ 7, and g(D) € (1o, ..., L)), where t;is the greatest member
of ¢ below g(i).
Cramv. For all me.d", and for all o&[P,(A)]™® extending {py, ..., p,>, there are
geF, he &, w <u such that for all {a', 7> appropriute for =, s h,

o', g | “F(z) = o™,

This claim will enable us to complete the proof of Lemma 3.1 as follows: take o to
be {po, ..., p.), and for each ne 7, choose gy, h,, o,. Take ¢ to be the intersection
(Ng=)fs ki to be Nh,, and Z = {ta}nes. Let H be generic, <o, g>e H. Now for an’
1€ [X g ], we can find ¢', a section of the generic sequence of H z.xbovc g, and an suc}}xl
thit {d’, ) is appropriate for g,, h,, 7, so then om0, g |l “F (1) == oc,,”: 80 {o"d’, g)
F“F(x)eZ”, and <o, g |- “F"[Xy,]1%° & 27, which contradicts the assumption ‘l’ﬂat
<o, f> forces that F is a counterexample to Rowbottomness, as |Z] < o,

The pIOOf of the Claiﬂl iS b .lldl. Ct.()]l R e
. Y1 1Ct1 on th(‘) lﬁn th n Of 7 P we .V.
: g or ], (4 dl ide

Case 1:n(0) = 1, i.e,, we have a sec >

,ie, sequence of length 1 from P,(A). The claim is th

vacuously true. If {¢’, ) is appropriate, © is empty. 0 e

. fase;—: n(0) = 0. Sul?pose 0 = {80, -++, $w). For cach f§ > s, there is an oy <7y

- gﬁ; Asuch that <a’, gs> I “F(B) = as” (by the Prikry Lemma, Lerama 1.1). For

Cal?; ﬁ.e (A), let g(o) = (A,(g,,(g))m /(o) and take any k so that for BB eh(o), op = ap.

el 1: hcommon value o, Then g, h, o satisfy the claim, since if (¢, v is appropriate for
, g, b, :.n 7 must,be of the form <@, {#}> with a; = o, and <o, gp) |- “F(B) = ay”, s0

0,9 | “F(B) = 0", and s0 <o"¢", g} |- “F(f) = L7

o g;:;;up—]:tl)si wte have established the claim for all 7 of length n, and we are given

n+l, / 3 ¢ obtai ing i
"o et @' be the sequence obtained from 7 by dropping its first element,

Case 1: n(0) = 1. For ever ' ‘ im i |
. ty pe f (o), apply the ¢ luctive " ', 10 g
o by 0 o Dol f(a), apply the claim inductively to o {p} ', to get
) i =), them glo)= 0" (p) )
U x = o, then let ¢(x) be a member of % suc L p, 1 ;
3) otherwise, g(x) = P,(A). e
Define h by:
1) if x = o"{p}"g’, then h(x) = h,(e"{p} o’
3 - g ;
2) otherwise, let h(x) = x, Aol
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Let o be the common value of &, for peg(c). Once again, these definitions suffice, since
if (¢’,T) is appropriate for =, g, h, then ¢’ = {p}"¢” for some p, ¢”, and (", 1) is
appropriate for @, g, and h, so {¢"{p}"d",g,> | “F(z) =«”, and therefore
{o"a',g> |F"F () = o

Case 2: n(0) = 0. For each > s,nx, apply the lemma inductively to 7, o, and Fy,
where Fp is defined by Fy(x) =F({f}"7). We obtain gy, hs, o«; as before. Let
g(g) = A,,g,,(g) and h(g) = A,,hﬂ(g), with the added restriction that f§, f’ e h(o) = g = ctr.
Let o be this common value. As before, this is sufficient. If (¢, t) is appropriate for =, g,
and h, then © = {8}°7, for some B, 7/, and so {¢', 7> is appropriate for g, hp and 7', hence
(6", gp) |F “Fp(v) = «5”, and thus {o"d’, g) |F “F(z) ="

This completes the proof of Lemma 3.1. m

We have actually proved:

LeMMA 3.2. V[G] = “x carries a Rowbottom filter”,
The filter %¢ is the required filter. m
LemMa 3.3. N, = “x is a Rowbottom cardinal”.

Proof If F: [P.(A)]"® =y < % is a partition in Ny, then F is in V[r,] for some
5 < ) by Lemma 2.1. By the proof above, there is a homogeneous set in (#{d).,. m

To prove that x carries a Rowbottom filter in Ny, one merely notes that the
definition of Xy ; depends only on Hx, and so % is in V[r,] = N:. This completes
the proof of Theorem 1. m

As indicated earlier, the fact that ¥, carries a Rowbottom filter in N, follows in the
same manner as in [A1] and [A2]. The proof of Theorem 2 is complete. m

We remark here that the conclusions of Theorem 2 are slightly beyond the known
consequences of the Axiom of Determinacy (AD). It is a theorem of Kleinberg [K] that
N, is Rowbottom in any model of AD, but it is still open under these circumstances
whether or not a Rowbottom filter exists on ¥,,. In addition, N, satisfies DC,. This is
essentially shown, in a somewhat different context, by Kofkoulos in his thesis [Ko].

§4. Specker’s Problem. Before beginning the proof of Theorem 3, we need to
introduce some new notions, For a condition 7 = {po, ..., P», /> in a modified Prikry
partial order we will call <{po, ..., p.y the p-part of 7. Also, for any (well-ordered)
cardinal N, the Specker property SP(R) will mean that 2% is a countable union of sets of
cardinality . '

We turn now to the proof of Theorem 3.

Proof of Theorem 3. The proof is quite similar to the one given in [AG]. Let
V = “ZFC + There exists a regular limit of strongly compact cardinals”, and let « be
the least such limit, with {x,: o< ao) the sequence of strongly compact cardinals
whose limit is oto. Let {%,: o < ao) be a sequence of strongly compact ultrafilters with
%, defined over P, (x,+1). As before, Pa, will be modified Prikry forcing defined

using .
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Define now a sequence of partial orders {(#,: « < aod as follows:
Py = Col(w, %),
Por1 = Pa,, |
2y =Col(({J %)*, %) for 4 a limit ordinal.

a<d

Note that since a is the least regular limit of strongly compact cardinals, the definition

of #; makes sense.

We are now in a position to define the partial order 2 used in the proof of
Theorem 3. 2 consists of all elements p = <{p,: o < %o) Of | Juae s 50 that the support
of p is some ordinal § < ay, ie., so that 38 < «, Yy 2 B [py is the trivial condition]. The
ordering is the componentwise one.

Let G be V-generic over . The model N, < V[G] which witnesses the conclusions
of 'ljheorcm 3 can intuitively be thought of in the following manner. We wish to define
N3 in a fashion so that the »,’s and the (Us<2%)"’s are the successor cardinals and S0
that each of these.cardinals satisfies the Specker property. Thus, we will place in N5 just
enough information to be able to collapse each of the above cardinals, preserve the fact
that they indeed remain cardinals in N3, and define the sequence which witnesses the
fact that they satisfy the Specker property. For any cardinal & which becomes
a successor cardinal in N3, we will place in N for each n < w, roughly speaking, the
partial collapse map to 5* restricted to the nth element of a generic, cofinal (u-sequ,ence
through the least x, > §, together with the partial collapse map to y* restricted to the
nth elez?lent of a generic, cofinal w-sequence through the least %, > y for every y in
a certain set of cardinals below J.

Getting specific, let, for each « < oo, G, be the projection of G onto 2,. Let ro be
the collapse map of %, to w, generated by Go. For 4, a limit ordinal, let r; be the
collapse map of ; to ({ )< %"+ generated by G,. For f=a+1,a succ,:essor ordinal
let rf = (rf,: n < @) be the generic w-sequence generated by G, which codes a coﬁnai
-sequence through each regular cardinal in the interval [%as %y 1]. By a routine
density argument which uses the fact that %, is a x,-complete fine measure over
P, (%y41), we can let rp=<ry n < ) be a generic subsequence of r} so that for each
n <, rznx%, is an inaccessible cardinal in V, for n <m < w, rimx, < rax,, and
the sequence r; codes a cofinal w-sequence through each regular cardinal in :};e in-
terval [y, %411 We can now define, for each 7 < o and each f <oy, sf
= (r, r.(r';mx,,): %< B> Ny will then be defined ag R(g) of the least model M of’ ZI;
exter}dmg V which contains, for every n <o and every B <o, the set s/, More
prcmsle]y, let "?1 be a ramified sublanguage of the forcing languagej £ with n:spect to
2 which contains symbols § for every ve ¥, a unary predicate symbol V (interpreted as
W#)<+ve V), and all symbols of the form 0 for n < w and § < a. As before, we can
assume that each # is invariant under any automorphism of 2. We can also asst’lmc that
each 7€, which mentions only & is invariant under any automorphism
= (75,: % <o) of  so that x, does not change the meaning of r, [ (rirx,) for o < B if
there is enough information to determine all such ordinals, e )
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Working in V[G], we define an inner model M as follows:

M, =0,
M,=1{)M, if 1is a limit ordinal,
asi

M, ={x =M, xeV[G] and x is definable over {M,,€, ¢Yeep, DY
a term te.%; of rank <o},
M= U M.
agOrdinalsV
As in [AG], it will be the case that for N; = R(xp)¥, N3k= ZF (including the
Axioms of Power Set and Replacement). We refer the reader to Lemma 1.5 of [AG] for
further details.

LemmMa 4.1. Assume that xeM is a set of ordinals. Then:

(a) xeV[s] for some n<w and & < oy
®) If x < w, xeV[sl] for some n< w.

© If o <ap and x S x,, ;ceV[sﬁ] for some n<w and 8§ =a+1.

(d) If A < a is a limit ordinal and x < ((Ju<s%s)*, x€V[si] for some n < o and
8 =2

Proof. The proof is a modification of the proof of Lemma 1.1 of [AG] in the
context of modified Prikry forcing. Specifically, we first prove (a) and show how (b), (c)
and (d) all follow from (a). Let te ¥, and pe 2 be so that T denotes x and p | “r < $o”
for some ordinal y,. As before, using the standard coding tricks, we can assume that
7 mentions only one term of the form . We show that p |- “xe V[s5]".

Let p = {(p,: o <oy where y < g is so that p, is trivial for o > y. First, since
& < ap, we can assume without loss of generality that y > § and for every o < J, rj is
determined. (Simply extend p, for « < 6+ 1 so that the p-part of p,.; determines rj).
Next, define a function f: o — g by f(B) = rjrug for <6, f(A) = (Uscana)* for
A > & a limit ordinal, and for f =«+1 > §, a successor ordinal, f(f) = »,. Our first
claim is that if g={q. a <o), s= {5 «<ao), qlp, s|kp are so that
Vo < oo [gaff(®) = s.[f()], then for any B¢ < yo, if g |- “Boe”, then s |- “Poex”.

Assume the claim is false, and let u® = (ul: a < &) be so that u®|-s and
u® | “Bo ¢7”. For each successor o = f+1, o'< ao, let u} € &, be so that u; | g, and so
that for <i%,...,£>, the p-part of ul, and <&, ..., %>, the p-part of uf,
B0f(@) = Bnf(2) for 0 < j < k; that this is possible follows from g,[f (@) = s.| f (@),
Lemma 1.3, and the proof of Lemma 2.1. Form a condition u? = {u2: a <ag) by
u? = u} if o is a successor ordinal and u? = g, if o is a limit ordinal or o = 0. Clearly,
w |l-q and u? |- “Boet”.

We define now an automorphism 7= {(n,: a <oug) of # so that n(u?) is
compatible with #° and n(u?) | “Boet”. If 1 =0 or A is a limit ordinal, then by the
homogeneity of the Lévy collapse, we can let m; be any automorphism of 2, so that
7, (u?) is compatible with 4 and =, is generated by a function which is the identity on-
f(A). If & = B+1 is a successor ordinal, then as in Lemma 2.1, let m, be an automorphism
of P, = Pq, so that n; preserves the meaning of r, [ (rinx,) and 7. (u2) is compatible
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with ud. m={m; a <o) is thus an automorphism of # so that T(u?)
is compatible with 4%, and by the construction of = and the invariance properties of
7, n(u?) |- “Boet”. Since n(u?) is compatible with u® and u® || “fy é ", this is a con-
tradiction. Thus, the claim is established. As in Lemma 2.1, we can therefore define
y={e<yo: 3 Fp [q={q: @ <o), @ f@)eC,If(@) and g |- “ger™]}, a set defi-
nable in V[[[a<s Gl f(@)], and show as in Lemma 2.1 that x=:y. Hence,
%€V [[Tacao Gul @) \
We next show that xe& V[ ,<s Galf («)]. Since each G,|f(0) is recoverable from
o[ (FA3,), this will show that x& V[s8]. To this end, let now ¢ be 4 canonical term for
" x in the forcing language associated with

e=Il2dex I~ Paslflthx I

at+1e[d+ 1,a0) Al6+ o), Anlimit

EAAVAION

Define a term 7 in the forcing language with respect to [[acs@lf(@) by p
={p, o < O - “gen” iff {p;: a<ap) |- “geo”, where for a > 5+ 1, p, is the trivial
condition. Clearly, n will denote a subset of x which is an element of V[[Tags Gl f @)
The proof will be complete if we can show that oo & n.

To this end, let g = {g,: a < ap) force “gec”. It suffices to show that u = {qu:
@< 6) X Uyt o> 8 |- “pea”, where for o > 8, u, is the trivial condition, If this is not
the case, then let s = (s, @ < ofp || u be so that s |- “p ¢ ¢”, and let B (5, a0) be so that
forall y < B, 5, and g, are the trivial condition. Without loss of generality, assume that
for all successor ordinals ye(8, f), the p-parts of 8y and ¢, have the same length,

We construct now an automorphism ¥ = (¥,: ¢ < ooy of Q as follows. For
ordinals ¢ > f, ordinals o < 8, and limit ordinals ae(d, f), let ¥, be the identity. (Note

that for ae(d, f) a limit ordinal, 2, [f(®) is the trivial partial order.) For oe(d, f)

a successor ordinal, as in Lemma 2.1, let ¥, be an automorphism of #,[f(«) so that
¥,(s,) is compatible with g,. By the construction of Voo W =(W,: a<a) is an
automorphism of Q which preserves the meaning of each r, [ (rir,) for o < § and hence
the meaning of o. Since ¥(5) is compatible with g, we have W(s) |-“p¢¢” and
gk “ee0”, a contradiction. This shows that xe V[s?].

To show (b), (), and (d), let ¢ be either w, x,, or (Us<a), and let y be so that
x<o and xeV[s]] If y< 6 for 6 as defined in (®), (c), and (d), then the proof is
complete since V[s7] < V[sf]. Thus, assume that 9> 4. As in part (a), we know that
x€V[[Tasy Gul £ (@)] for fas defined previously. We will show that x & Vs3] by showing
th%lt V[ITasyGul f(@)] and V[ Tacs Gulf (a)] contain the same subsets of ¢ and then
using the canonical identification of ¥[[ s G, @] with Vst

To do this, we need to show that forcing over V[[TacsGelf ()] with

V ael P « | i 11
wlgr]e we1n Pl f (] 2dds n0 new subsets of o. Write [ 1Pl f (o) as @'x Q"

Ql: 9a+1ff(06+1),

at+1e[d+1,y]

Q"= 2l ).

Ae[d+ 1), Anlimit
This factorization generates a factorization of [ Taets + 15 Gl f (&) into G' x G”. Since each
component 2; ['f (A} of Q" is associated with a 4 > 8, ‘the closure properties .of ‘the Lévy
collapse and the definition of Q" ensure that the subsets of o in V[G"] and V are
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the same. Further, by the definition of f and each #,, for « = f+1, a fixed but arbitrary
successor ordinal in [8+1, y], [[T,<p @y 1./ ()] < %p. Also, if A > «is a limit ordinal, then
the closure properties of the Lévy collapse and the definition of £ ensure that each
2,1 f(A) is (at least) 2*“-closed. Thus, since 2, [f(0) is a modified Prikry ordering

defined using a strongly compact measure on P,,(f(@) with |2, [f(@)] <2*"“, an
application of the closure properties of
[T Zify=0"
Aelx,7], Aalimit
followed by an application of the results of [LS] shows that

Y2 *nspPal i) = “gp ) f (o) is a partial order which satisfies the Prikry property and
adds no new bounded subsets to x,”. Thus, Q' can be regarded in V[G"] as a full
support iteration of partial orders each of which satisfies the Prikry property and adds
no new bounded subsets to x;, so since &, is the least regular limit of strongly compact
cardinals, the result of [G2] shows that forcing over V[G"] with Q' adds no new bounded
subsets to s ie, since o < x5 V[G[G]=VIGILG"] = V[[Taets+ 151 Gul ()]
= “The subsets of o are the same as those in V”. Thus, any new subsets of ¢ in
V[[TessGalf(@)] are generated by forcing over V[[[aes+1Gelf(@] with
Hasag’a I f(@), ie., since
VI I1 G/@ILII Gt/ @] =VIIIGIf@I[ [T Gulf@],
asfd+1,y] a<d a<s ag[d+1,7]

forcing over V[[[axs Galf(®)] With [ Lucts+ 1,92l f () adds no new subsets of ¢. Thus,
xeV[sf]. This proves Lemma 4.1. m

LemMa 4.2. For ¢ = %, or 6 = ({Ju<a%a) ", A a limit ordinal, N3k= “o is a cardinal”.

Proof For § asin Lemma 4.1, since N3 € M and ¢ < «g, Lemma 4.1 shows that if
x S ¢ and xeN,3, then xe V[s¢] for some n < w. Let f be as in Lemma 4.1. By the
identification of V[sZ] with V[[[.<sGalf@)], view Vs] as V[ Gl S (O[] La<s Gal f (@)]-

If 6 =%,, then 6 = a+1 and 2, [ f(6) is a modified Prikry ordering on P,,(f(3)).
This means that V[G;1f(6)] = “%, is a cardinal and [[ Tp<s 2311 (B) < %", s0 Vsi] = “%,
is a cardinal”. Thus, no subset of x, in Ni can code a collapsing map
of %, i, N3k=“%, is a cardinal”. If o =(Js<1%)", then §=4 and 25]f(0) is
Col({Ja<s %)™, f(A). Therefore, by the definition of 2 and f, V[Galf()] "0 is
a regular cardinal and for each a« < 4, 2, [ f () is x(a)-c.c. for some x(x) < (Jx <2 % which
depends on 2, 1f(s)", so by the definition of 2, 1/(a), V[Gslf(4]= “All antichains in
[Te<s 2.1 f(@) bave size < | Ja<a®” This means that xe V[s7] = “o is a cardinal”. The
exact same reasoning as before shows N3 k= “o is a cardinal”. This proves Lemma 4.2. m

LemMa 4.3. Every successor cardinal in N is either a %, or a (| Ja<a2,)* for some limit
ordinal A < 0. ,

Proof. Since N5 = R(ao)™, it suffices to show that any successor cardinal x* in
M below o, is either %, or (| J.<a%,)* for some limit A < a,. To show this, we argue by
contradiction. Asume »* is the least successor cardinal in M below a, which does not
satisfy this property, and consider two cases:

Case 1: x = (§*)™ for some cardinal § < «;. By the leastness of %, % is either a x,
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or a ({Jo<an,)* for some limit 1 < ag. If 3 = %, for some & < oy, then by the definition
of M, for each n < @, V[Fury [(Fh+e1 0 %ar1)] & M. As in Lemma 2.4, by the fact that
t.+1 is generated by a modified Prikry forcing using a strongly compact measure on
P, (#z+1), VIreril(isinx)]=“There are no cardinals in the interval
(0, (ri 1 OV 205 1)]7. Since (s y N 24 1): 1< @) is cofinal in %4, M = “There are no
cardinals in the interval (x,, #,+,)". By Lemma 4.2, M= “%,.; is a cardinal”, so
M= “Upyy =277 I % = ({Ja<s,) " for some limit A < o, then again by the definition
of M, for each n < w, V[r, i n ;)] € M. Since r; is generic for Col (({ Ja<a,)*, %)
and <r} N x,;: n < w) is cofinal in x,, V'[r, [ (i N %;)] = “There are no cardinals in the
interval (Ja<s%,)", (i n%,))” and M = “There are no cardinals in the interval
(Ux<ax)®, inmp). By Lemma 42, ME“x, is a cardinal”, so
M %y = ((Ua<a) )" Thus, if »=(8")™ for some cardinal & <a,, then
("M = 5, for some o < ay.

Case 2: x < a, is a limit cardinal in M. There must be unboundedly many %,'S
below %, for if o < x is a bound on the ,’s, then the cardinal (in V or M) (¢* ") is
below % and is neither a %, nor a ({ J.<a%,)" , contradicting the leastness of %*. We can
thus write, in V, % = Ja<;%, for some 1 < a,. By Lemma 4.2, (Ua<as,)’ remains
a cardinal in M. Since Ve M, M = “(Ja<an,)™ = %", Thus, if » is a limit cardinal in
M and % < o, M 1= “There is a limit ordinal A < e so that 5™ = ({ Jo<4%,)*"”. This
fact, together with Case 1, proves Lemma 4.3. m

LemMA 44. N3 = “SP(w), for every o <oy, SP(x,), and for every limit ordinal
l < aOy SP ((Ua<l%a)+)”'

Proof. Let us first consider the cardinal x,. Working in N, let X, = {x = ux,: xis
definable using §;*}. By Lemma 4.1 and the fact that N, = R(xo)¥, X L€V [s%*1], and
the cardinality of X, in V[s;**] is some ordinal & < (1%} A e ) < 44 1. Since in
V[s:i1 € M, & is collapsed to x, (this is shown by the same argument as in Lemma
24), %, is a cardinal in V[s;31], and X, e V[s231] (this follows from V[s¢*1] < [s%11]),
V[sitil = “IX,| = »,” Finally, as Lemma 4.1 and the fact that N 3 = R(xy) show that
any x < x, so that xeN, is in X, for some n, N; = SP(x,).

Turning now. to the cardinal &, =(|u<a%%,)*, we can again define, in N 3
X, ={x = 6;: x is definable using $}}. As before, Lemma 4.1 implies that X LEVsH,
and |X,| in V[s}] is some & < (it rx,) < %;. Again, since in Vst ] M, §is
collapsed to 6, by the Lévy collapse map generated by r, [ (52 A xy), V[t 1] b= “6 4 is
a cardinal”, and V' [s;] € V[si+1], V[st+,] and M all satisfy X | =68,”. Lemma 4.1
and the fact that R(u)"™*!! < R(ap)" = N, then again yield that Ny k= SP(5,).

The proof of Lemma 4.4 is completed by noting that the argument for SP(x,) works
for w by letting -, = . =

Since we have already stated that the proof that N, = ZF can be found in [AG],
Lemmas 4.1-4.4 complete the proof of Theorem 3. w

We observe that AC, fails in N,, since the presence of even one cardinal » such
that SP(x) holds ensures the failure of AC,. ‘

In conclusion, we remark that Theorems 1 and 2 provide upper bounds in
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consistency strength for the theories “ZF + x is a Rowbottom, strong limit cardinal of
cofinality @ + %" is a measurable cardinal which carries a normal measure” and
“ZF + ¥, is a Rowbottom, strong limit cardinal -+ N, is a measurable cardinal
which carries a normal measure”, namely, the existence of cardinals » < A such that x is
A strongly compact and A is measurable. Theorem 3 provides an upper bound in
consistency strength for the theory “ZF + For every successor ordinal &, SP(X,)”,
namely, a regular limit of strongly compact cardinals.

It is particularly interesting to note that since “x is a singular Rowbottom cardinal
of cofinality @ + »* is a measurable cardinal which carries, a normal measure” and
“Nep+1 1s a measurable cardinal which carries a normal measure” are both consequences
of AD, the results of Martin, Steel, and Woodin provide another upper bound in
consistency strength for these theories, namely, w-many Woodin cardinals. Which of
these provides the weaker upper bound is currently unknown.
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Added in proof (September 1991). Dehornoy has pointed out to the second author that Section
4 of [H] is éssentially covered in Dehornoy’s paper Iterated ultrapowers and Prikry forcing, Ann,
Math. Logic 15 (1978), . 109-160. The second author is embarrasssed at not having credited
"Dehornoy in his earlier paper [H], specifically with the prior development of modified Prikry
forcing. .
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