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On nonparadoxical sets
by

Marcin Penconek (Warszawa)

Abstract. Subscts 4, B of R" are countably equidecomposable il there is a partition
{A,: mew} of A and isometries g,, of R* such that {g,, 4,: mew) is a partition of B. A set A is
paradoxical if A contains two disjoint subsets each countably equidecomposable with 4. We show
the existence of nonparadoxical sets of full Lebesgue measure. We also prove that every set of
positive measure contains an uncountable paradoxical subset of full measure. A subset A of R” is
hereditarily nonparadoxical if A has no uncountable paradoxical subsets. It is shown that the family
of hereditarily nonparadoxical sets is a proper ideal and that, under "ICH, the union of countably
many hereditarily nonparadoxical sets has inner measure zero. This generalizes a result by Erd&s
and Kuncn, We answer related questions concerning sets without repeated distances.

(. Introduction. We shall investigate the notion of countable equidecomposability in
R" (with the Euclidean metric denoted by d,).

We use the standard set-theoretical notation. Ordinals are identified with sets of
their predecessors and cardinals with initial ordinals, In particular,  denotes the set of
natural numbers and the first infinite cardinal, and w, is the first ucountable cardinal.

If X is a sel and x is a cardinal, then [XJ* is the family of subsets of X of cardinality ».

For a set X, |X| denotes the cardinality of X. By 2° we denote [R|. The set of
rational numbers and the set of integers are denoted by Q and Z, respectively.

By an ideal we mean a family of subsets of R" closed under finite unions and taking
subsets. An ideal is called a o-ideal if it is closed under countable unions.

Durnrerion 0.1, Let 4 and B be subsets of R, let G be a subgroup of the group of
isometries of R" and let % be a cardinal such that o < » < 2% We say that

(i) A is u-G-equidecomposable with B (4 % B) il there exist A <x, a partition
{Ag teld} of 4, and a set of isometries {g,: e} & G such that {g,A,: Eed} is
a parlition of B;

(i) A is countably G-equidecomposable with B (A g B) if 4 is w,-G-equidecom-
posable with B;

(iti) A is G-paradoxical if there are two disjoint subsets 4, and A4, of A such that

[4 G
Ay A and A, > 4;

[24)
(iv) A is G-nomparadoxical if A is not G-paradoxical.
We write 4 <% B if there is a subset B, of B such that 4 ;“:f B,. If no group is indicated,

)

we consider the group of all isometries of R"
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The notion of countable equidecomposability was introduced by Banach and
Tarski in their famous paper [1]. Our notation concerning countable cquidecom-
posability is similar to the one used by Wagon in [10]; however, the word “countably”
is omitted in Definition 0.1(iii),(iv) (compare with [10], p. 7; this will not cause
a disagreement with Wagon’s definition 1.1, p. 4).

Recall the following facts and theorems:

e % is an equivalence relation.

o If 4 g B and A is paradoxical, then so is B. .

® 5« preserves every G-invariant g-ideal J of subsets of R” (i.c. A {'« Band 4¢3 implies
that Be3, see [1]). '

o The Banach-Schréder-Bernstein Theorem: if 4 <5 B and B <5 4, then 4 £ B (see
[10], p. 136).

e For every n, R" is paradoxical.

e Every set with nonempty interior contained in R" is countably equidecomposable
with R" (see [1] or [10], p. 137).

The Banach-Schrdder-Bernstein Theorem implies that <, is a partial order on
{[A].: A< R"}. Itisalso known that being paradoxical is the property of [A].. . In the
first section we prove that above every set which is not countably equidecomposable
with R" there exist nonparadoxical sets and below every set which is “large” in the sense
of measure or category there exist paradoxical sets which are still “large”. The first
property may be used to show the existence of nonparadoxical sets of full Lebesgue
measure and nonparadoxical comeager sets. The second property is not true for
arbitrary uncountable sets. '

This gives rise to the notion of hereditarily nonparadoxical sets (i.c., sets without
uncountable paradoxical subsets), which is introduced in the second section. An obvious
example of such a set is a set without repeated distances, i.e. a set 4 contained in R” such
that d, is 1-1 on [4]* We prove that the family of hereditarily nonparadoxical sets
forms a proper ideal which is not contained in the ideal generated by sets without
repeated distances.

Sets without repeated distances have been studied by many mathematicians. In
particular, P. Exd6s and S. Kakutani proved that the Continuum Hypothesis (CH) is
equivalent to the following statement:

o The real line is the union of countably many sets cach consisting of rationally
independent numbers (i.e.,, numbers which are independent over the field Q, see [4])

R. O. Davis proved that under CH the plane may be partitioned into countably
many sets each without repeated distances (see [2]). K. Kunen showed that the same is
true for each R”" (see [6]). Thus

e (CH) For every n, R" is the union of countably many hereditarily nonparadoxical sets.

On the other hand, P. Erdés showed that under T1CH the real line (hence R" for
every n) is not the union of countably many sets each without repeated distances (see
[3]). Moreover, P. Erdés and K. Kunen proved that under 1CH the countable union
of sets without repeated distances has inner measure Zer0,
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In Section 3 we prove a generalization of the above result by Erdds and Kunen to
hereditarily nonparadoxical sets, Le. we show that, under —JCH, the countable union of
hereditarily nonparadoxical sets has inner measure zero and does not contain
nonmeager subsets with the Baire property.

In Scction 4 we answer related questions concerning sets without repeated
distances. Qur techniques cnable us to prove:

o (T1CH) If 4 is the union of countably many sets each without repeated distances, then
for cvery linear space ¥ over Q of size less than 2% there is a translation t such that
tV A =@,

On the other hand, for the existence of a linear space omitting A the translation ¢ is

superfluous:

e ("ICH) If A is the union of countably many sets each without repeated distances and
il 0¢ A, then there is a lincar space V over Q of size 2% such that Vnd =@.

Whenever we wrile “for every set” we mean “for every subset of (appropriate) R"”.
We denote by D" the group of isometries of R” and by T™ the group of translations. We
consider only subgroups of D" Note that (7", -) is isomorphic to (R*, +).

If G is a subgroup of D", then G acts on R" in the obvious way. We use the
following notation to describe the action of a group G on R If xeR", A < R", G is
a subgroup of D", and ge G, then

Gx = {gx: ge G} is the G-orbit of x, GA ={gx: xeA, geG},
fix(g) = {xeR" gx=x}, Fix(G)={xeR" IgeG\{id} gx = x}.

A selector from G-orbits is any set S such that |Gxn S| =1 for every xeR"

If C < D", then {C) denotes the subgroup of D" generated by isometries in C. If
AS R, then {A) = {{reT": t(0)eA})>. Note that {4} is a subgroup of T™

If f is a function, then f [X7] is the image of X under f and f'~![X] is the inverse
image of X.

If A< R" then Ling(4) is the linear subspace of R” spanned by 4 over Q. If
A, B R", then A--B = {x--y: xed, yeB}.

The following lemmas are due to P. Zakrzewski (see [11], Lemma 2.2). We use
them in almost every proof without indicating it.

LiMMA. Let % be a cardinal such that o < x < 2% Let A and B be subsets of R" and
let G be a subgroup of D", The following are -equivalent:

i 4 <8

(it) there is  subgroup H of G such that |H| < % and [Hx n A| = |[Hx N B| for each
xeR", '

LiMMa. Let A and B be subsets of R" and let G be a subgroup of D". The following are
equivalent:

i) A<GB;

(gi; l:hc:e is a countable subgroup H of G such that [HxnA| < |Hx n B| for each

xeR"
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LEMMA. Let A be a subset of R” and let G be a subgroup of D". The Sollowing are
equivalent:

(i) 4 is G-paradoxical;

(ii) there is a countable subgroup H of G such that |Hx N A| = w for each xeA.

Since not all of Zakrzewski’s lemmas can be found in [11], we give the proof of the
first one as an example.

(i) = (i). Let {4y el be a partition of 4 and let {y,: £e2} <@ G be such that
A< wand {g;4,: ek} is a partition of B. Define a bijection /2 4 — B by /(x) == gex if
x€Agand let H = <{g,: £eA})>. Then |H| < » and f(x)& Hx r B for every x ¢ 4, which
shows that [Hxn A| = |Hxn B| for every xeR".

(ii) = (i). Let H be a subgroup of G such that |H| < x and [Hx v A| = |Hx ~ B| for
every xeR". Let f: A~ B be any bijection such that f (x)& Hx for every xe A. For each
he H define A} = {xeA: f(x) = hx}. Then 4 = U,‘G,, A, s0 we can find A, < A4}, such
that {4,: heH} is a partition of A. Obviously, {hd,: heH} is a partition of B. Thus,
ALB m

Il H is a group from (ii) of one of the above lemmas then we sdy that H witnesses
that the respective (i) holds.

Note that if H witnesses that A4 %B (resp. 4 < B, 4 is paradoxical), then so does
every group H, of size less than x (resp. every countable group) containing H and
contained in G. Indeed, any H -orbit is partitioned into H-orbits, so il [HxnA| =
=|Hxn B| for all x, then [H,xn A| = |H,xnB| for all x.

1. The main purpose of this section is to show the existence of nonparadoxical sets
of positive Lebesgue measure and the existence of nonparadoxical sets which are

nonmeager and have the Baire property. Such sets have empty interior (see [17 or [10],
Th. 9.14, p. 137, Th. 9.15, p. 139).

THEOREM 1.1. For every group G containing the group of translations of R and for
every A = R" the following are equivalent:

0 4 2R

(ii) there exists a countable subgroup H of G such that HA ,»f;'; R";

(iii) there exists a countable subgroup H of G such that IRN\HA| < 2;

(iv) A4 belongs to no proper G-invariant s-ideal of subsets of R";

(V) every set containing A is G-paradoxical,

We shall need two lemmas,

Lemma 1.2. Let A be the union of a countable family of at most k-dimensional affine
subspaces of R, where k < n. There exist N €w, a partition {A,: m < N} of A and a set
of translations {g,: m < N} such that

U gud, = R"\4,
m<N

Proof. Proceed by induction on k. For k = 0 th

¢ -set 4 is countable, so take any
translation g such that gd n 4 = @, For k>0 tal

ke a translation ¢ such that no

icm

Nonparadoxical sets 181

k-dimensional alfine subspace which is contained in A is moved into A. Then what
remains is g4 N A, which is the union of a countable family of at most
(k—1)-dimensional affine subspaces of R". We cannot move any point from g4 n A into
g~ (gA N A), s0 take (g4 N A)U(g™' (g4 N A)) and use the induction hypothesis. m

Lemyma 1.3, For every countable subgroup G of D" there is a countable subgroup H of
T" such that each H-orbit meets infinitely many G-orbits, i.e., for every x in R there is an
infinite subset S of H such that hyx¢Ghx for any distinct h, h, eS.

Prool Let G be a countable subgroup of D", Let G, = G n T". The group G, can
be identified with the G -orbit of 0. Let V be the linear space generated by G, over Q.
Take teR"\V and let H,; = {{t}>. Then H, nG = {id}.

Let A = Fix (H, w G). For every ge (H,; U GY\{id}, fix (g) is an affine subspace of
R" of dimension at most n—1, thus A4 is the union of a countable family of at most
(n—1)-dimensional affine subspaces of R". By 1.2 there exist New, a partition
{4,: m< N} of 4 and a set of translations {g,;: m < N} such that

UN Jn 4w S R\A.

Let H = (H, u{g,: m < N})>. We show that H has the required property. Take
xeR™ If x¢A then let S=H,. If hx =gh, x for distinct h, h,eS and geG then
h = ghy, contrary to H; "G = {id}. If xeA then there is m such that xe4,, and
gux¢d. Let §=H, g, =

Proof of 1.1 ((i)=> (iv) = (ili) = (i) = (i); (v)=>(ii}) and ()= (v)).

(@)= (iv) is obvious. ‘

(iv) => (iii). Suppose not (iii). Let I = {B < R™: there is a countable fsubgrot}? H Qf
G such that B < HA}. Then 3 is a G-invariant o-ideal and by the negation of (iii), 3 is

TOper.
? Op(iii)::»(ii). Let H be a countable subgroup of G such that [R"\HA| <2°. Take
a translation g¢(R™HA). Then g[R"\HA] < HA. Thus {{g}vH>A =R" and

UH) A5 R"
<{g}(ii) =I:»> (i). Let H be a countable subgroup of G such that HAZR", and le? H, be
a group which witnesses that. Each H,-orbit meets HA4, so each (H, \:H y-orbit meets
A. Applying 1.3 to {H, w H) we get a countable subgroup H, of T" such that eacl:
Hy-orbit meets infinitely many (F, u H)-orbits. We shall show that for every xeR

[KH,wH VHYxNA| = w.

So take x& R" and an infinite set S < H, such that hy x ¢ (H, U H) hx for any distinct
h, h, 8. For every heS, find a,e An {H, u H) hx. For distinct h, @1 €Ss, th_e ele':r?er.nts
a,, ay, € A are different since they belong to different (H, v H )-o;bxts. S being in ,ngl:f
yields that [¢H, UH, UHY>xn Al = o. Thus (Hy,WH, LH) Wlt'nesses that A% bl.

(v) = (ifi). Suppose not (iii). Let {G,: & < 2°} be an enumeiatlon of all c?unta e
subgroups of G. We define inductively a subset {x,: @ < 2°} of R"\A such that for every
a the orbits G,x, are pairwise disjoint and disjoint from A,
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Suppose {x;: f <o} is already defined. Then |R"\G,A|=2° and [|J{G,x,:
f < e}l < 2% The set R"\G, 4 is the union of whole G,-orbits and { ) {G,x,: f < a} is
too small to meet all of them, so there is x, such that the G,-orbit of x, omits
Au{Gyxs: B<u}.

Finally, let B = AU {x,: & < 2°}. We claim that B is G-nonparadoxical. Indeed, if
H is a countable subgroup of G, then there is o such that H = G, and Hx, N B ={x,}.
Thus H does not witness that B is paradoxical, contrary to (v).

(i)=(v). Every B= 4 is countably G-equidecomposable with R” by the Banach~
Schréder-Bernstein Theorem and so is G-paradoxical. m

Note that 1.1 (71(i)=> "1(i)) implies that for every set 4 which is not countably
equidecomposable with R” there exists a paradoxical set B 2 4 which is not countably
equidecomposable with R". Indeed, take any countable group H such that each H-orbit
is infinite and let B = HA.

Using the above arguments one can also prove that

o If @ < » < 2 then for every set 4 and for every group G = T" the following are
equivalent: '
(@) A% R .
(if) 4 belongs to no proper G-invariant x-complete ideal of subsets of R".
CoROLLARY 1.4, For every n there is a nonparadoxical set of full Lebesgue measure
in R™
Proof Let 4 be a meager set such that R"\4 is null (see [8], Th. 1.6). Apply 1.1
(TG = 71(v)) to G =D" to find a nonparadoxical set B2 4. m
The dual argument gives
COROLLARY 1.5. For every n there is a nonparadoxical comeager set in R". m

In contrast with 1.4 and 1.5, every set of positive Lebesgue measure contains
a paradoxical subset of full measure and every nonmeager set with the Baire property
contains a paradoxical subset such that the difference is meager. Again, this will be
a consequence of a more general

ProOPOSITION 1.6. Let G be a subgroup of D" such that every nonempty open set is
G-paradoxical and let 3 be a G-invariant c-ideal in R, If 4 is such that
A4, % U\U,
Jor some A1, U, in3 and a nonempty open set U, then there exists B in 3 such that A\B is
G-paradoxical.

Proof. Let H be a countable subgroup of G which witnesses that A\A 1% U\U,
and that U is G-paradoxical Let B=H (4, 0U)). Then Be3 and |Hx n (4\B)
=|Hxn U| = o for every xeA\B. Thus H witnesses that A\B is G-paradoxical. w

COROLLARY 1.7. Every set of positive Lebesgue measure contains a paradoxical subset
of full measure.

* ©

icm

Nonparadoxical sets 183
Proof. Let A be a set of positive Lebesgue measure and let U be an open set with
the same measure. By a theorem of Banach and Tarski, there are null sets A yand U,

h that
sue A4, % U\U,

and all the pieces of the decomposition are Lebesgue measurable (see [10], Th. 9.17,
p- 140, or [1]). By 1.6, 4 contains a paradoxical subset C such that A\C is null. m

COROLLARY 1.8. Every nonmeager set with the Baire property contains a paradoxical
subset such that the difference is meager.

Proof. Use the Baire property to verify the hypothesis of 1.6. m

2. In the previous section we proved that above every set which is not countably
equidecomposable with R" there exist paradoxical sets which are not countably
equidecomposable with R". We also proved that below every set which is “large” in the
sense of measure or category there exist paradoxical sets which are still “large”. We shall
see that the last property is no longer true if we consider arbitrary uncountable sets.
This gives rise to the following definition,

DrmNITION 2.1. A set A is hereditarily nonparadoxical if A has no uncountable
paradoxical subsets.

The restriction to uncountable subsets is reasonable, since every countably infinite
set is paradoxical. For every uncountable set 4, if 4 is hereditarily nonparadoxical then
4 is nonparadoxical and the implication fails only for countably infinite sets and the
empty set. As we shall see (Prop. 2.4), the family of hereditarily nonparadoxical sets is an
ideal and that is the reason why all countable sets are said to be hereditarily
nonparadoxical. Note that all countable sets are contained in the ideal generated by
uncountable hereditarily nonparadoxical sets.

Recall that d, denotes the Euclidean metric in R”. An obvious example of an
uncountable hereditarily nonparadoxical set is given by

Provosition 2.2. If X is a subset of R" such that d, is 1-1 on [X7? then X is
hereditarily nonparadoxical. m

Every subset X of R” such that d,, is 1-1 on [ X7 will be called a set without repeated
distances.

P. Erd&s proved that every subset of R” of cardinality % > w contains a set without
repeated distances of cardinality » (see [3]). Thus

© cvery subset of R” contains a hereditarily nonparadoxical set of the same cardinality.

Section 2 is mainly devoted to the study of the relationship between sets without
repeated distances and sets without uncountable paradoxical subsets, but we shall begin
with several comments.

Vitali’s set § (i.e., a selector from Q-orbits) is countably equidecomposable with R,
by L1, so § is not hereditarily nonparadoxical.

F. B. Jones showed that there is a Hamel basis of R which contains a perfect set
(5], see also [71). Therefore

3 — Fundaments Mathematicae 139.3
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e there are perfect sets which are hereditarily nonparadoxical.

By 1.7,

® a hereditarily nonparadoxical set has inner measure zero

and by 1.8,

e 2 hereditarily nonparadoxical set contains no nonmeager subsets with the Baire
property.

EXAMPLE 2.3. For every n there is a set without repeated distances in R™ which is both
nonmeasurable and without the Baire property.

Proof. We shall construct a set without repeated distances which meets every
nonmeager G; set and every G, set of positive Lebesgue measure. This is simple for
n=1, so assume that n> 1.

Let {F,: « < 2°} be an enumeration of all G, subsets of R* which either are of
positive Lebesgue measure or are nonmeager. We define inductively an increasing
sequence {4,: « < 2°} of subsets of R" such that for every o, d, is 1-1 on [4,7%
|4, = o, and A,NF, # @.

Suppose that {d;: B <o} is already defined. For z,teJpeady, 2%t lot

Z.=1{x: d,({x, 2)) = d,({x, })}; note that Z,, is an (n— 1)-dimensional affine sub-

space of R". For y,z, te|Jp<ady, z#1, let ¥, = {x: d,({x, 2)) = d,({y, t})}, an
(n—1)-dimensional sphere in R" Let
X, =U{Z:: 2z, te | Ag, 2# O { Yt , 2, te U 4, z#1}.
B<a f<a

Choose an affine (n— 1)-dimensional space ¥ which is parallel to no Z,,. Again,
choose an affine (n—2)-dimensional subspace of V which is parallel to no Z,, ~V, and
so on. After n—1 steps you will have chosen a line E such that the intersection of E with
each Z,, has cardinality 1.

Obviously, the intersection of E with any sphere contained in R” has cardinality at
most 2, hence |ENX,| <2° Any line parallel to E has the same property.

Casel: F,is of positfve Lebesgue measure, Choose a line E, parallel to E and such
that 4, (E; A F,).> 0. This can be done by Fubini’s theorem (sec [8], p. 53).

Case 2: F, is nonmeager. Choose a line E parallel to E and such that E; A F, is
nonmeager. This can be done by the Kuratowski-Ulam Theorem (sce [83, Th. 15.4,
p. 57). ‘

In both cases take a,eE,n(F\X o (see [8], Th. 51, p. 23) and let
A, =Up<ady 0 {a,}. Clearly, d, is 1-1 on [4,J%

Finally, let A = | Jy<20 4,. Then 4 is a set without repeated distances and 4 meets
every nonmeager G, set and every G, set of positive Lebesgue measure, hence A4 is not

meager and is not null. By 17 it is nonmeasurable and by 1.8 it lacks the Baire
property. m

The following proposition ensures the existence of uncountable hereditarily
nonparadoxical sets which are not just sets without repeated -distances.
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PropoSITION 2.4. The family of hereditarily nonparadoxical sets is a proper invariant
ideal.
In the proof of 2.4 we shall need

Lemma 2.5. For every subset A of R", the Jollowing are equivalent:
(i) A is hereditarily nonparadoxical,
(i) for every countable group G

{xeR™ |GxnAl=ol<w. a

Proof of 24. If both A and B satisfy 2.5(ii), then so does 4 U B. The ideal is
obviously proper and invariant. =

Note that the family of hereditarily nonparadoxical sets is not a s-ideal, Indeed, if
A is uncountable and B is countably infinite then A+ B is {B)-paradoxical.

The next proposition compared with 2.5 shows the combinatorial relationship
between hereditarily nonparadoxical sets and sets without repeated distances.

PROPOSITION 2.6. If X is such that d, is 1-1 on [X]?, then Jor every infinite subgroup
G of D"
[{xeR™ |Gx n X| > 1} <16.

Proof. Suppose not. Let S be a selector from those G-orbits which intersect X in
sets containing at least two elements. For every se S choose distinct X Y€ Gsn X and
g,€ G\{id} such that g, x, = y,. Since |S| > |G|, the function s — g, cannot be 1-1. Take
s, te$§ such that s #t and g, =g,. Then ¢,[{x,, x}] = {y,, yo» thus d,({x,, x,}) =
=d,({ys »}), a contradiction. =

The ideal of hereditarily nonparadoxical sets is not generated by sets without
repeated distances. Indeed, by an observation of A, Krawczyk, the set of all natural
numbers is hereditarily nonparadoxical and is not the union of finitely many sets
without repeated distances. The last property is a consequence of the following theorem
due to van der Waerden:

® Suppose the set of natural numbers is the union of finitely many sets A;, i <k. Then
at least one of 4, contains arithmetic progressions of any finite length (see [97).

However, all countable sets were added in the definition of hereditarily nonparadoxical
sets in a somewhat unnatural way. Thus it scems interesting to ask whether the ideal of
hereditarily nonparadoxical sets is generated by sets without repeated distances together
with all countable sets. The following example answers negatively this question.

EXAMPLE 2.7, For every n there exists a hereditarily nonparadoxical set A in R" such
that A is not the union of a.countable set and finitely many sets each without repeated
distances.

Proof. Consider R canonically embedded in'R". Define inductively an uncountable
set B < [0, 1/2) such that the distance function d, is 1-1 on [B]% Partition B into
a countably infinite number of uncountable sets 4, and let

A= {k+d4: k<i; i, kew).
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We shall show that A is not the union of a countable set and finitely many sets each
without repeated distances. For suppose otherwise and let 4 =CU | JjcmX ;» Where
C is a countable set, mew, and d, is 1-1 on each [XJ% By 26, for every j

[{x_eR: ZxnX || > 1} < w.

Take i > m. The set 4, is uncountable, hence there is xe 4; such that for every j < m,
[ZxnX] <1 and x¢ZC. Then
[Zxn(Cu (J X)) <m.
j<m

But |Zx n A] > m for every x & 4;, contrary to the assumption that A = C U [ J;<p X J

We claim that 4 is hereditarily nonparadoxical as a subset of R".

Let G be a countable subgroup of D" and let X be an uncountable subset of 4, We
shall show that G does not witness that X is paradoxical.

Fix ¢t and s such that |X n(s+4,)] > o. Let

Y={xeXn(s+A4): [Gxn{J{k+4: k<t}] <)
By 2.4, U {k+ A,: k <t} is hereditarily nonparadoxical. Thus, by 2.5, Y is uncountable.
Coamv. YKE (J{k+A4,: i t; i, kew).

Suppose that Y <§ | ) {k+4;: i #t; i, kew}. Then there is a partition {¥;: lew}
of Y and isometries g;€ G such that (Jiwg, Y= |J{k+4;: i £ 1; i, kew).

At least one of the sets Y, is uncountable and hence contains two different elements
which are moved by the same isometry. Recall that B < [0, 1/2) has no repeated
distances, hence | ) {k+4;: 1 % t; i, ke w} does not contain any two elements such that
the distance between them is equal to the distance between some elements of Y,
a contradiction.

Since YK |J{k+4;: i #¢t; i, kew}, there is x,e ¥ such that

1Gxo N Y| > [Gxon | {k+Ay: i #t; i, kew)].
Since xo€ ¥, |Gxon () {k+4,: k<t}| < w and
[Gxon U {k+4;: k<i; i, kew)| < w.
Thus [Gx, N X| < @ and so G does not witness that X is paradoxical, since x,&X. m

3. The main purpose of this section is to prove

THEOREM 3.1. (T1CH) For every n, the countable union of hereditarily nonparadoxical
sets in R" has inner measure zero and does not contain nonmeager subsets with the Baire
property.

Our theorem gives an apparent generalization of the following result by Erdés and
Kunen:

e (TICH) The countable union of sets without repeated distances has inner measure
zero (see [3], p. 136).
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Unfortunately, the author does not know any example of a set which is hereditarily
nonparadoxical and is not the union of countably many sets each without repeated
distances.

QuesTion. Is every hereditarily nonparadoxical set the countable union of sets each
without repeated distances?

Obviously, if we assume that 2° = w,, then the answer is “yes” by a result
of Kunen:

e (CH) For every n, R" is the union of countably many sets each without repeated
distances (see [6]).

LEMMA 3.2. If % > w; and f+ % — [, %! then there exist an uncountable subset § of
% and a countable subset C of w, such that |f (O NnCl=w for each Ee8.

Proof. For every £ let ge: @y = [ (&) be the enumeration of elements of f (&) such
that if & < § then g, (o) < g¢(B). Define g: x - w, by g(&) = ge(w). There exists {ew,
such that |g™'[{{}]l> w,. Let S=g"1! [{{}] and let C=[0,{). Obviously,
[fONCl=w for every £eS. m

Lemma 3.3. If A is hereditarily nonparadoxical and G is a subgroup of D" such that
|G| = w,, then
[{xeR"\Fix(G): |Gxn 4| = o} < o,.
Proof. Suppose, towards a contradiction, that
[{x eR"\Fix (G): [Gx n 4] = &,}| > w,.
Let T be a selector from the G-orbits having uncountable intersection with 4 and
omitting Fix (G). By our assumption |T| > w,. Define J: T—=[G]* by f(t) = {geG:
gte A} for te T. By 3.2 there is an uncountable subset § of T and a countable subset C of
G such that |f (s) N C| = w for every seS, and because Gs N Fix (G) = @ the last implies
that |Csn 4| = @ for every se§.
Let H=<{C) and let B = {xeA: 3geC IseS gs = x}. The group H is countable

and B is an uncountable H-paradoxical subset of 4, contrary to the assumption that
4 is hereditarily nonparadoxical. m

Lumma 3.4. If A is the union of countably many hereditarily nonparadoxical sets and
G is a subgroup of D" such that |G| = w,, then
[{xeR"\Fix(G): |Gxn 4] = w,}] < ,.
Proof. Obvious from 33. m
We shall also use the following folklore lemma (see [3], p. 136).

LemMa 3.5, Let A be a subset of R". If either

() 4 has positive Lebesgue measure, or

(i) A is nonmeager and has the Baire property,
then there are perfect sets P, Q such that P+Q < A.
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Proof of 3.1. Let 4 be a set of positive Lebesgue measure and suppose that 4 is
the union of countably many hereditarily nonparadoxical sets. By 3.5(i) there are perfect
sets P, Q such that P+Q < 4. Choose P, < P of cardinality w,. Then

[fxeR™ KPDxN (P +0) =0} =10
and, under 71CH, {Q| > w,. But P, +Q, being a subset of 4, is the union of countably

many hereditarily nonparadoxical sets. Thus we get a contradiction with 3.4.
For category use 3.5(ii) instead of 3.5(i). m

Note that for sets without repeated distances the proof may be much simpler,
Indeed, use 2.6 instead of 3.3.

A simple consequence of 3.4 is the fact that, under 71CH, no sphere in R" (n > 1) is
the union of countably many hereditarily nonparadoxical sets.

We give another application of 3.4. Every set of rationally independent numbers
contained in R is hereditarily nonparadoxical. We shall show that the situation may be
completely different in R, for n> 1.

ExaMPLE 3.6. (TICH) For every n > 1 there is a set of rationally independent vectors
in R" which is not the union of countably many hereditarily nonparadoxical sets.

Proof Assume 2% > w,. Consider R? canonically embedded in R". Let S be the
circle contained in R? and let X be a subset of S, of cardinality w,, consisting of
rationally independent vectors. We shall define inductively a sequence {d,: o < 29}
such that:

(@) if «< B then 4, = 4,

(ii) for every a, A4, s a set of rationally independent vectors of cardinality |of + »;,

(ifi) for every o, 4, = | Jp<o4 4 Y (r, X), where r,e R and - denotes multiplication of
vectors from a linear space over R by elements of R.

Let Ay = X and suppose {4,: B < «} is already defined. Let V = Ling (X). Note
that for every reR, r-V is the linear space generated by r-X over Q.

Let W be the linear space generated by U;K,,Ap over Q. Define the function
fi: WxV =R as follows: for we W and veV
rif r is such that rro=w, v, w0,

fw, v)={0

Since [W| < 2° by the induction hypothesis and || < 2, there is ro € f LW x V1u{0}.

We shall show that 4, = ( Jy<. 4, U (r,- X) satisfies (if). The set Up=aAy is a basis
of Wand r,- X is a basis of r," ¥. By the choice of r,, W (ry* V) = {0}, thus 4, is a basis
of the linear space W+(r,: V).

Finally, let 4 = | J,<2w4,. Clearly, A consists of rationally independent vectors.
We claim that A is not the union of countably many hereditarily nonparadoxical sets.
Indeed, let G be the group of rotations about 0 generated by the rotations which move
elements of X into elements of X. Then |Gl = w;, Fix(G) = {0} and

[{xe A\Fix(G): |Gx n 4] = o} = 2.

By 3.4 the set 4 is not the union of countably many hereditarily nonparadoxical sets. w

if there is no such r.
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4. This section was inspired by the paper [3] of Erd8s. We consider unions of sets
without repeated distances.

Baumgartner proved that if 4 is a set without repeated distances, then R\A
contains an infinite arithmetic progression (see [31, p. 135). The following lemma
((i) = (iii)) shows that for every set 4 which is not countably T"-equidecomposable with
the real line and for every countable set X there exists a copy of X which is contained
in R\A.

LeMMA 4.1, Let » be a cardinal such that o < % < 2° and let A be a subset of R".
The following are equivalent:

0 4% R

(i) for every subgroup H of T, if |H| < x then HA # R";

(iii) for every set X of cardinality less than % there is a translation t such that
tX = R"\4.

Proof. (i)=(ii). (Compare with L.1(if) = (i).) Suppose that HA =R". Let S be
a selector from H-orbits and let §, be a subset of § of cardinality [H|. Obviously,
KHUS>xnA|l=|Hl =|KHUS,)x| for every xeR" But this means that A'T;; R,
contrary to (i).

(i) = (i) is obvious.

(ifi) is a reformulation of (ii). Indeed, for (ii) = (iii) consider H = (X ). Then take
teT" such that t(0)¢ HA. For (iii) = (ii) consider X = {h(0): heH}. m

Theorems 4.2 and 4.3 give a strengthening of the following result due to
Erdés:

o (TICH) If A is the union of countably many sets each without repeated distances, then -
there are a linear space ¥ over Q of size w, and a translation ¢ such that tV n 4 = @&

(see [3]).

Theorem 4.2 states, under the same assumptions, that for every linear space V over
Q of size less than 2° there is a translation ¢ such that tV N A = @,

TurorEM 4.2. Let » be a cardinal such that »* < 2° and let A be the union of » many
sets each without repeated distances. Then

(i) A5 R" (ie. A generates a proper D'-invariant 2°-complete ideal),

(i) for every set X of cardinality less than 2° there is a translation t such that
tX = R\ 4.

Proof (i) If 2°=w,; then A is the union of finitely many sets each
without repeated distances and thus 4 is hereditarily nonparadoxical by 2.4. Hence ®
follows from 1.1()=>(v). So we may assume that 2° > w, and % is an infinite
cardinal.

Let A = { J,<x A4, and suppose d, is 1-1 on [4,]? for every & Suppose not (i) and let
G be a group of cardinality less than 2 which witnesses that 4 5 R". Without loss of
generality we can assume that |G| = A > »* and every G-orbit has cardinality A, for
some A < 2% (we can enlarge G by adding »* translations). :
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By 26, [{x€R™ |Gx n 4, > 1}| < 4 for every a. Hence |{xeR": |Gxn A| = A} < 4,

since A > x. But A <2 so there is x,€R" such that
|Gxyn Al < 4 =|Gxyl,

contrary to the assumption that G witnesses that 45z R"

(i) Obviously, A R" implies that 4 2'755' R" and this gives (ii) by 4.1. m

Note that 4.3(i) implies that if x* < 2 then R" is not the union of x many sets each
without repeated distances. Of course, using the same argument as in Section 3, it can be
proved that such a union has inner measure zero and does not contain nonmeager subsets
with the Baire property (if 2 = w, then the union is hereditarily nonparadoxical by 2.4).

The next theorem states that for existence of a linear space omitting the countable
union of sets each without repeated distances the translation ¢ is superfluous,

TueOREM 4.3. (T1CH) Let x be a cardinal such that x* < 2 and let A be the union of
% many sets each without repeated distances. If 0¢ A, then there is a linear space V over
Q of size 2° such that ANV =@.

Proof (*). Assume that 0¢ 4. We define inductively a sequence {X,: o < 2°} such
that:

@

(i

Xﬂ = {0}:
if « < §, then X, = X,

(iii) |X,| = o 41 for every a,

(iv) Ling(X,)nA =@ for every a.

By the assumption that 0¢ A, (iv) is satisfied for « = .

Suppose that {X,: f < a} is already defined for some & < 2%. If & is a limit ordinal,
then let X, = | Jp<. X p- f o= f+1, then let B = Q- A, where - denotes multiplication.
The set B is the union of max (x, ) many sets each without repeated distances and
max (x, w)* < 2% since x* < 2° and 2° > w,.

Consider X = Ling (X ) Since X has cardinality less than 2%, by 4.2(ii), there is
a translation ¢ such that tX nB=@. Define X, =X s {t(0)}. We only need to
check (iv).

Suppose x€Ling(X,) N A. Then x = r-£(0)+v, where reQ and ve Ling (X,). By
the induction hypothesis, we can assume that r 3 0. Then (1/r) - x €(t(0)+ Ling (X)) n B,
contradicting the choice of t.

Finally, let V = Ling (_u<z« X,). Then |V| = 2¢ by (iii) and VN A4 = @ by (iv). m

The author would like to thank Piotr Zakrzewski for suggesting the problem, many
significant remarks, and constant help during the preparation of this paper, The author
is also indebted to Adam Krawczyk for the example inserted in the paper and to the
referees for their remarks which influenced the present form of the paper.

S e

(") P. Zakrzewski, in a conversation with me, showed the existence of a subgroup of R" of
cardinality w, which is disjoint from a given set of measure zero. We use a similar method in our
proof.
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