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Topics on analytic sets
by

R. Kaufman (Urbana, IIL.)

Abstract. A survey on some relations between analysis and descriptive set theory.

Introduction. The topics are presented in four essays and concern both set theory
and one or another kind of analysis: real variables, functional analysis, harmonic
analysis. Besides the proofs of the main results, examples and curiosities are presented in
no logical sequence. ,

Various approaches to descriptive set theory are presented in [6, 14, 16, 19].

I. Some analytic sets in function space

1. L denotes the metric space whose elements are Lebesgue measurable subsets of
(0, 1), with metric d(4, B) = A(A U B)—1(4 n B). A sequence (4,,..., 4,,...), le. an
element of IV, is called an I-sequence (infinite intersection) if there is an infinite sequence
M =N such that
A(N) 4,)>0.

neM
The class of I-sequences in LN is denoted .£.
THEOREM. S is an analytic set in LY, but not Borel.

We give the proof that .# is analytic, although it is entirely elementary. Let J be the
set of all infinite sets of natural numbers, and h the function defined on J x I by the
formula

B(M, Ay ooy Ay, ) =4[ 4y
neM
By the continuity properties of the Lebesgue measure, we see that h is upper
semicontinuous (using the usual product topology in both J and M. Now .£ is the
projection on IN of the subset of J x IN defined by h > 0, a set of type F,. Thus & is
indeed an analytic set.

To prove the more difficult assertion, we define measurable sets E(m, ..., m) for

each k-tuple of natural numbers by the formula

E(my, ..., m)={x: mxe(0, 1-277) modulo 1, 1 <j<k}.

5 — Fundamenta Mathematicao 139.3
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To abbreviate we write E (o) when ¢ = (m,, ..., m), and I(¢) = k, the length of k.
We call the sequences strings, and we say that a sequence o, with [(g,) > + co converges
to an infinite sequence (m,, m,, ...) provided the coordinates of o, converge to those of

the infinife sequence.

LEMMA. Suppose that (7,)%  is a sequence of distinct strings, and A((\5=1 E(a,)) > 0.
Then the sequence contains a subsequence (a,), with [(c,) — + co, convergent to an infinite
sequence (my, m,,...).

Proof. The strings o, have length > 1, and first elements m{. Hence the set
B defined by 0 < m% x < 1/2 (modulo 1) for all p has positive Lebesgue measure. If the
numbers mf were unbounded, then by the Lebesgue density theorem A (B E) < $A(E)
for every measurable set E, ie. A(B) = 0. Therefore there is an infinite sequence S, such
that m§ = m, for peS,. Then I(s,) > 2 for all but one peS,, whence m§ = m, along an
infinite subsequence S, < S,, etc.

Let  be the set of all trees of strings of natural numbers ([14, p. 112]). We
enumerate the strings by any method into a sequence (s,), and map 4 into IN by the
formula (here T is a tree)

(4] if 0,¢T,
A1) = {E (6) if geT

(The result of the mapping is then a sequence (4,(T), 4,(7T), ...)) The mapping is
obviously continuous, and the Lemma shows that if (4,(T))% is an I-sequence, then
T contains an infinite branch (using the customary language applied to trees). If (m,),
(my, my), ..., (my, my, ..., my, ...), ... all belong to T then (4, (T)), is an I-sequence
because

8

AE(my, ..., m)) = ]
i

(1—2"9)> 0.

1

It

The trees containing an infinite branch do not form a Borel set in 7 ([14, p. 113]),
whence .# cannot be a Borel set in IN.

2. Let Y be the Cantor set, represented by sequences (yy, ..., Yy, ...) With y, =0
or 1. A probability measure u on Y will be called an I,-measure if there is an infinite
sequence M < N such that the set defined by {y =1 for all meM} has positive
p-measure. The set £, of I-measures is (as before) an analytic set in the w*-topology,
and we will see in a moment that it cannot be a Borel set.

To do this, we define 2 mapping on IN to probability measures on Y. It will be
convenient to use sequences (f,)r; of measurable functions, equal to 0 or 1 a.e., as
a representation of IN. We simply write f for such a sequence. The measure u(f) is
defined by

1
JPU’p-n: yn’ )d.u(f)E,gp(fl(x)a (XN f;;(x)a )dx

for every polynomial p. It is clear that this formula is also valid for bounded
Borel functions p defined on Y. Moreover, it is evident that u(f) is an I,-measure if and
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only if f = (f;, ..., [, ...) is determined by an I-sequence in IN. Thus S, cannot be
a Borel set.

3. Here are some speculations about the class & o- Let us write A (lacunary) for the
class of all closed sets of the type {y,, = 1, me M} for infinite sets M < N, and A* for the
probability measures annihilating all A-sets. Finally, let A** be the class of all closed
sets F < Y such that u(F) =0 for every u in AL

The class A+ is of class CPCA in 2Y. If, for example, we knew that A+*.is not of
type CA, that would imply that %, is not Borel (and considerably more).

4. Finally, we give an application to recent work of Kechris and Lyons [15]
concerning measures on the circle T of length 2. (T is considered as an additive group.)
A Rajchman set in T is defined by an infinite sequence M < N and an open subset
V#@ of T as follows:

teH(M,V) if mté¢V for each meM.

It is proved in [15] that H*—the probability measures annihilating all of the sets
H (M, V)~—is of class CA but not Borel. We obtain this result from the one above on the
class #, and some elementary considerations of Fourier analysis; we do not, however,
write out all the details.

To each sequence P < N we attach a probability measure u=up on T by the
formula

Am=fe™du= T] (1+exp(—i2 ™n))2.
mz0
m¢pP

Thus, when P is empty, u is the Lebesgue measure (d¢/2w) on T; in general, the support
of up is

0
EP)={n } ¢,27™ 5,=0 or 1, ¢, =0 for meP).
m=0
When P is infinite, then E(P) is a Rajchman set, because, when k > 1,
keP, teE(P) = 0 <2*t < (modulo 2r).

Our next objective is to explain why up(H (M, ¥)) = 0 unless M and P are related
in a certain way. For this we need information about . It is possible to pursue this in
great precision [17] but what we need can be derived from the identities

o0
Y1 +exp(—iu)| = |eos(/2)l, —oo <u<-+oo, [] cos27™u= (sinu)/u.
m=1

Thus, if » and s are positive integers, and 2° 2 [u| > 2', then [[ 5=, cos2 ™™u| < 271,
This leads us to define for n = £1, £2, +3, ...

d(n, P) = inf{|[klog2—log|nl|: keP}.
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We can then assert that if n;— +oco and |a(n)l>e> 0, then limsupd(n; P)
< ¢(g) < + oo. From this we shall deduce that up (H (M, V)) = 0 unless limsup d (m;, P)
< 400, where M = {m; <m, <...<m;<...}. We follow [17] closely.

Let & be continuous on T, h = 1 off ¥, 0 < h < 1, and such that h has mean value
n < 1. If there is a subsequence (m;) € M such that &(my, P) = +co, then himt)—n
converges weakly to 0 in the space L'(du), as we see with approximation of h by
polynomials, Any set B on which /(1) > 1 for each [ must therefore satisfy u(B) = 0.
In particular, we can conclude that H(M, V) has u-measure 0.

We return to the Cantor set ¥; but we represent it by sets P of natural numbers. We
write P? for the set obtained by squaring the elements of P and pup for the measure
attached to the set P? by the method introduced above.

To each probability measure ¢ in Y we associate the w*-integral

r(0) = f up2 0 (dP),
¥

a probability measure in T. We assert now that (o) belongs to H* if and only if o is not
an I,-measure. (This proves at once that H L is not a Borel set.) To begin the proof of the
assertion, we suppose that o is an I,-measure. Then there is an infinite set Q of natural
numbers such that ¢ {P: Q € P} > 0. Whenever Q < P, then x(P?) is concentrated in
the Rajchman set E(Q2), whence (by integration) (ro){E(Q%) >0, ie. ro ¢ H*

Conversely, we suppose (ro)(H (M, V)) > 0 for a certain Rajchman set H(M, V).
Writing M = {m; <m, <...<m;<...} we see that limsup d(m,, P <c(P)< +0
for a set of P’s in Y of positive g-measure. Since the elements of P? are perfect squares,
and (n+1)®>—n? > 2n, we see that the element g of P such that }m_,log?.-q‘ﬂ <¢(P)is
unique for large j. After vigorous applications of Egorov's theorem, we obtain an infinite
set Q such that o {P: Q < P} > 0, ie. ¢ is an I;-measure. We have thus completed the
proof that H* is not a Borel set.

1L Representations of PCA sets. This essay is based largely on the elegant work of
Becker [1]; it is intended to illustrate an application of properties of M-sets to
a problem of set theory instead of the more usual direction {rom set theory to M -sets.
The special properties of this class are discussed below.

Let (f,) be a sequence in C [0, 1], and L( ;) the set of functions ¢ in C[0, 1] which
are pointwise limits of subsequences of (f,). Then L(f,) is of type PCA in C'{0, 1], ic.
a projection of a coanalytic set. (In [1] this class is written 2}.) To explain this, let J be
the set of strictly increasing sequences of natural numbers /i = {n, <n, <... < <...}
and B the following subset of Jx C[0, 1]:

{#, 9 li:?lf;"‘(x) =g(x) for all x in [0, 1]}.

Then B is coanalytic (its complement is analytic) and L(f,) is its projection in C [0, 1].
The striking converse of this is proved in [1]:

Every set of type PCA in C[0, 1] can be realized as L(f,) for a certain se-
quence (f;). ‘
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Examination of' the technique in [1] shows that the convergence is generally
unbounded; the notion of bounded convergence is more tractable, since it coincides
with weak convergence in the Banach space C[0, 1]. T learned of this problem from
Alexander Kechris ([1, p. 1647).

TurorREM. Let & be a set of type PCA in C[0, 1]. Then there is a sequence (f,) in
C[0, 1] such that "

(i) & = L(f,)

(ii) Every convergent subsequence ( Ju) 18 uniformly bounded.

L A key role is played by the notion of M-set; a brief explanation and lemmas
follow. The theory is treated much more thoroughly, but from a similar viewpoint, in
Chapters I, 1I of [14]. :

Let M, be the class of measures i on the torus T such that

Am)=[e™du -0 as |n|— 0.
(This class is often called the Rajchman class) When ueM,, all measures absolutely
continuous with respect to u share the same property. Consequently it is usual to work
with probability measures in M,; in this chapter we denote this class of measures by P,.
A Borel set supporting an element of P, is called an M -set; in this chapter and the next
only closed M-sets are of interest.

From the sequence cost, cos2t, ..., cosnt, ... no subsequence can converge on
a set of positive measure for any element u of P,. The proof of this follows from the
remarks above: let s be a bounded Borel function. Then one sees easily that
fh() cosntdp — 0, [h(t) cos?nt dp -3 [ h(t)du. If a subsequence cosn, ¢ Were to con-
verge on a set of positive u-measure, its limit would be 0 a.e. du on that set; at the same
time lim cos?m, ¢ = 1/2 a.e. This proves in passing that the measure x has no jumps, ie.
is a continuous measure. ‘

Let ue Py, let i have closed support E, and let § > 0. Then as explained in [14,
p. 294), E carries a measure ve Py such that g L v (u and v are mutually singular) and
[~V] < 8. (Theorems of this type appear to originate with Ivashev—Musatov.) By
Lusin’s Theorem, v can be adjusted so that its closed support has p-measure 0 (this is
a bit stronger than the relation pLv).

We can now oblain a stronger version of this, which will find repeated application.

LumMa 1. Let p belong to Py, let u have closed support E, and let § > 0. Then we can
Jind measures 4@ Py (for j = 1) with supports E; < E such that |4~ | < & and the sets E;
admit open neighborhoods V; which are pairwise disjoint.

Prool. First we find measures v;e P, with supports E2 B, 2 B,2...28;2...
such that |V, — | < 6/3, |#,—¥,| < 8/6, ..., and B;; has v-measure 0. (This is possible
by the remarks above.) Then [#,— | < 28/3 and v, is concentrated in the set B;—Bj.;.
Hence we can find a measure 4;€ Py, IIJ—-—ﬂI < 4, and the closed support E; of 4; is
a subset of B;—Bj.;. Thus E; is disjoint from the closure of the remainder set
Ukzj+1 B, so the open sets V; exist.
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LEMMA 2. We can find a system of open sets V(my, ..., my), defined for all strings of

natural numbers (my, ..., my) of lengths k=1,2,3, ..., such that
) Vim) 2 Vimg, my) 2 Vmg, my, my) 2 ...

@) Vimg,....,m)nV(m, ..., m) = unless m; =mj, ..

(i) Each intersection V{m.) "V (my, my))nV(my, my, my)n...
pact) My-set E(my, my, ..., my, ...).

Proof. We begin with any element p of Py, with support E. We find disjoint open
sets ¥ (m,), closed subsets E, < V(m,), and measures u(m,) in E(m,) such that
[&(my)— @] < 1/2. (Clearly we want u(m,)e P,.) For each E(m,), we find disjoint open
sets V(m,, m,), closed sets E(my, m,) S E(m,), and so forth. Now we require that
lA(my, my)—fi(my)| < 1/4, etc. We can also require that V(my, my) = V(m,), since
E(m,,m,) < E(m)< V(m,). The last step is to observe that each sequence
A(m,), A(my, m,), A(my, my, my), ... converges uniformly and the limit is the Fou-
rier-Stieltjes transform of an element of P,, whose support is a subset of
E(m)nE(m,, my)nE(m,, my, m3)n ...

To agree with the machinery in [1], the open sets ¥ (m,), V (m,, m;), ... must have
Lebesgue measures whose sum is finite. This is easy to arrange if we choose the initial
M -set E to have Lebesgue measure 0. After this we have to transform our sets from the
torus T = [0, 2m) to the interval [0, 1]. This presents no difficulty if we choose E in
[0, n].

2. The exposition in [1] leaves no room for improvement, so we simply note a few
changes necessary to obtain (ii) in the Theorem. The definition of Q [1, line 2, p. 167] is
expanded to include sequences such that || P;,|| is unbounded. In 3.3(b), p. 165, instead of
f =n we define f(x)= cos2nnx on the closed set Fg.

A natural question concerns the special position of the M-sets. Can this class be
replaced by the class L* of sets of positive Lebesgue measure, or the class IT of perfect
sets? Here L' is excluded because any disjoint subclass must be countable. As for I7, any
bounded sequence (f;) in C{0, 1] contains a subsequence convergent everywhere on
some perfect set. Since this work was first completed, substitutes for the M ,-sets have
been found, but all rely on some variant of the Riemann-Lebesgue Lemma.

Ly =my.
contains a (com-

3. The Banach space I' has an inseparable dual, and the weakly convergent
sequences converge in norm —the so-called Schur property. Hence, each set of type L(f,),
the set of weak limits of subsequences of a fixed sequence in /%, is closed. It would be
interesting to find other spaces X in which some of the sets L(f,) are not analytic even
though X is less complicated than CJ0, 1]. (It cannot be excluded that sets L(f,) in
X are always analytic but sometimes not Borel,) Some applications of descriptive set
theory to Banach spaces are presented by Szlenk [20] and Bourgain [3].

I On functionals attaining their norm. Let X be a real Banach space and C
a closed, bounded, convex set (c.b.c.s.) in X. The continuous linear functionals on X (ie.
elements of X*) which attain their suprema on C are called support functionals of C and
form a set &(C). (It would be more accurate to include the space X in the notation.)
Concerning & (C) there are two classical theorems.
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(a) James” Tuzorem [11, 12, 13, 7, 8]. & (C) # X* unless C is weakly compact.

(b) THEOREM OF BISHOP-PHELPS [2, 7, 4]. & (C) is a norm-dense subset of X*.

There is a third question, equally natural: when is & (C) of the second category (ie.
not of the first category) for every c.b.c.s. C? This occurs precisely when X has the RNP
(Radon-Nikodym property). This belongs to a theory created in large part by Phelps,
Stegall, and Bourgain [4].

When C is the unit ball of X, the set & (C) will be written o —the class of linear
functionals “attaining their norm”, In the case of separable spaces, o/ is an analytic set
in X*, provided with the w*-topology.

We give a proofl of the last assertion, because the method of proof has an interesting
consequence.

Let A be the [ollowing subset of X x X*: 4 contains pairs (x,f) such that

Ixl <1, sex*, |fl<1, f&x)=I1I.

When X is equipped with the norin topology and X* with the w*-topology, this set is
closed. When X is separable, the unit ball of X* is compact and metrizable. The
projection of 4 into X™* is just the part of & in the unit ball of X*. Thus o itself is
analytic. (All of this is elementary.) If f 5 0 and X is strictly convex then the equality
S (x)=|f| has at most one solution x in the unit ball of X. From a theorem of Lusin
[16, p. 397], it follows that « is a Borel set. (X is strictly convex if the inequality
ey -+ x50l < 1y | 4 |l x, ]l is strict whenever x, and x, are linearly dependent. When X is

xeX,

. not strictly convex, then some linear function f # 0 attains its norm on a line segment in

the unit ball of X.)

Every separable space X can be renormed to become strictly convex. The set & for
the new norm is then a Borel set; but we do not know if it can always be made into
a Gyset (i.e. for every separable space). Some spaces have no equivalent strictly convex
norm (Day, ¢f. [7]). For the classical spaces I, ¢o, C[0, 1], ..., & is a Borel set of rather
low complexity. Nevertheless:

THEOREM &/, Let X be a Banach space, separable but not reflexive. Then there is
anorm x|~ on X such that | x|~ < |x| <2|x|~, and relative to the new norm &~ is
not a Borel set in X*,

More exactly, there is a norm-compact set K in X* such that K n s is not a Borel
set in K.

(The remark about the set K is provoked by a controversy in set theory related to
Martin's axiom [18]. The more precise statement is true and has a definite meaning
even when X is not separable, but we do not dwell on this point here.)

Because of the intricacy of the most general form, we present elementary examples
for X = C[0, 1] and X = ¢,. The first example illuminates some classical ideas in real
analysis; the second does the same for Fourier analysis; and the most general relies on
a device from stochastic processes.

First example, X = C[O0, 1]. Let ¥; be the subset of X' defined by the conditions

f(1)=0, Var(f)<2.
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Here, “Var” means total variation. Later, we use B, (X) to mean the ball [ x|l < rin
X. Now Y, is a closed, bounded, convex subset of X. The space X~ has unit ball equal
w0 co(By(X)U Y,).

Fortunately, the argument does not depend on an exact description of this set, only an
approximation. Before proceeding to an explicit description of the dual norm in X*, we
write two elementary but important facts about Stieltjes integrals.

(A) When [ €Y,, then the Stieltjes measure df is continuous, ie. has no jumps. In
fact, since f has bounded variation, f = f, —f,, where f; and f, are monotone increasing.
Now f; and f, have exactly the same jumps (left-hand jumps or right-hand), and these
can be canceled so that f = g, —g,, where g, and g, are monotone and continuous.
Then df < dg,+dg,.

(B) For every f in X and every measure y in I = [0, 1]

1
§fu= f(l)y(l)—fﬂ([(), tDdf ()

the integral on the right is generally a Stieltjes integral but not a Lebesgue integral, and
there is no concern about the end-points 0 and 1. When f € Y;, then the integral is also
a Lebesgue integral and

1
fel, = {#([0, df () = —[ fu.

To see this we can write f (t) = o ([, 1]) with a continuous Borel measure ¢ in (0, 1);
and then apply Fubini’s theorem.
To write the formula for the dual norm |u|~ we define first

|l = sup {|u ([0, J): 0 <t <1}
Then we have

LemMA 1. For every measure p, |u|™ = max(||ul, 2 |[x]).

Proof From the formula in (B) we get

If fu] < 2 Il

The definition of the unit ball in X~ shows that the right member in the lemma is no
less than |u|~, and of course |||~ = |ul.

It remains to be verified that |||~ > 2 |ul/’. Suppose then that ||u||’ > ¢ > 0; since
u([0, t]) is continuous on the right, there is an open interval U < (0, 1) on which
|u([0, £])| > c. Let x be the characteristic function of U and let g be the absolutely
continuous function such that g(1)=0 and ¢'(t) = ([0, t])x(*) ae. Then g has
variation at most a =m(U) |u|', whence 2a~*-g belongs to Y,. Moreover,

fop=—[u(0, Ddg, [gdu< —~c*m(U).

for any feY,.

Thus
[ul™ 2 2m(U)-2a™" = 2¢%/| .

As this is true for any ¢ < ||u|’, we obtain [ju|~ = 2||¢|’, and Lemma 1 is proved.
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I_TEMMA 2. Stf)?l)()se that |uf’ =1, |ul| < 2. Then MU attains its norm on the unit ball of
X~ if and only if the set A(y) of numbers t such that #([0, 1]) = ||u|’ is uncountable.

Remark. Lemma 2 depends on the correctness of remarks (A) and (B), in contrast
with the habitual latitude in real analysis.

Prool Suppose that [ fiu =2, and f belongs to the convex hull of B (X)u ¥,.
Then f = lim (t,g, (1 ~t,) h,), with 0<t, <1, g,eB,, h,e¥,. Then SAHEIA M
+(1=1,) 2 € 24, (| ull - 2). Consequently t,—0 and so f =1limh,; but ¥, is closed,
whence f'¢ Y;. (This deduction is used several times later) Thus

= fu(0, Ddf (1) = +2, Var(f)<2, |u(0, ] <1 on (0, 1).

Combining the equality and the inequalities we see that the measure dfis concentrated
in the set where p([0, t]) = =1, and the latter set must be uncountable,

Conversely, if A4 (u) is uncountable, it contains a perfect set A, because it differs
from its closure by at most a countable set. Let 2 be a continuous probability measure in
4g and let f be defined by the equations f(1) =0, df = ~u([0, £])dA(t). Then
Var(f) < 1, so that 2f belongs to ¥; and [f dy = 2. That is, y attains its norm 2 on the
unit ball of X™.

To finish up the example, we use a classical theorem of Hurewicz [10; 14, p. 137]:
in the set F' of non-void closed subsets of [3/4, 1], the uncountable closed sets form an
analytic, non-Borel set. We now define for each element S of F a function ¢ (f) = ¢ (t, 5)
in C'[0, 1] such that

@0<p@<l,

® @0 =0, ¢=1o0nS ¢<1on [0,1]-S5,

() Jolo' (0] de < 3/2,

(d) the map from S to ¢(t, S) is a continuous map into C* [0, 17.

The measure u defined by u([0, t]) = ¢(, S) attains its norm precisely when S is
uncountable, and all the me s i belong to a norm-compact set K in the dual space.
Thus K« is not a Bor

The following construction of ¢ (t, S) is perhaps excessively detailed; many variants
would serve equally well. Let (1,) be a sequence of intervals in (—1, 2), forming a basis
for the open subsets of (1, 2). Let u,,&C* (=00, c0), 4, > 0 on 1, u, = 0 outside I,,,
and [u,| - up,| < 273, We define first

L3

P, §)s= 1= Y d(S, L)u, @, 0<t<1.
new
This fulfills all of (a)-(d) except ¢(0) = 0. We definc (at last)
L S) = W, S), 1251,
PG =Gnmp, 5, 0<r<1p.

Second example, X =¢,. To avoid certain technicalities, we use' complex
. . . . . i
scalars, The space ¢, is realized as trigonometric series ) 2% - o @, €, (t), where e, (£) = €™,

and the dual space as absolutely convergent trigonometric series Y. b,e,. The duality
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is defined by (e, e,) =1 if m+n=0, (e,, ¢,) = 0 otherwise. (The advantage of this
formalism will appear presently.) The set Y; consists of those elements of X which are
FourierStieltjes series of measures of norm at most 2. These are the series ) a, e, such
that [Y a,b_,| < 2sup|Y b, e, ()| for all series 3. b,e,(t) in the dual. We observe that
when Y a, e, represents a measure y and f belongs to the dual, (T a,e,.f> = [ fdy,
a Lebesgue integral. As before the norm || ||~ has for its ball the closed convex hull of
B, uY,, and the dual norm is written | f~.

LemmA 1. Let f (tj =3 a,e,(t) be an absolutely convergent Fourier series. Then

11~ = max (£l 20 1lw)-

Proof. Itis clear that | f||~ > || f]. Suppose that |f (t,)] > ¢, so that |f(£)] > ¢ on

some open interval I on the circle, of length m(I). Let u be the measurefft—)x, dt, so that
i has variation at most ||f],m(I). By the Riemann-Lebesgue Lemma, the Fou-
rier-Stieltjes series of u belongs to X, and (identifying x4 with that series) peay,, with
a=|fllomd/2. Now {u,f>=m()c? whence |f|~ =2c*|f|lz*. Thus we get
I£1I™ = 2¢; the inequality || |~ < max(|.f]l, 2] fl,) is obvious from the definition of Y;.

Lemma 2'. Let f belong to the dual space, and || f|, = 1, | f|l < 2. Then f attains its
norm, 2, on the unit ball of X" if and only if the set A(f) of t such that |f ()] = 1 is an
M -set. (M,-sets were introduced at the beginning of Section IL)

Proof. If fattains its norm +2, then {a, f> = 2 for some series Za )in Y, by
an argument presented in the first example. Now the series represents a measure u of
variation at most 2, whence [ fu = +2. Thus |f (£)] = 1 a.e. dy, that is, u is concentrated
in A(f), and A(f)is an M,-set. Conversely, if 4 (f) is an M y-set, it carries a probability
measure such that £(+ co) = 0. The same property is shared by 4 = 27 1, an element of
Y;. But then {f, u) =2, since ff =1 ae. dA.

We use the fact that the class of M,-sets is not a Borel set in the class of all closed
sets in the circle [14]. We map each closed set S # @ to a smooth function f such that
0< ¢ <1land A(f) = S. A small change from the construction done before is that all
functions must be periodic. By Parseval’s formula, periodic functions with bounded
derivatives have absolutely convergent Fourier expansions. In order to ensure that the
norm of fin the dual space is less than 2, we simply replace f by 1—¢+¢f, for a suitable
constant ¢ > 0. Since the embedding of C* into ¢} is compact (again by Parseval), we
obtain a perfect analogue of the first example.

Recent work on descriptive set theory of classes occurring in harmonic analysis is
presented by Tardivel [21] and Godelroy [9].

The general case of Theorem «f. Like the two special cases already presented, this
depends on an analytic set that is not Borel, in an auxiliary metric space. Let J be the
Polish space of all infinite sets of natural numbers, and let # be a closed subset of J.
Then #™ denotes the class of sets containing some member of the class %. Thus #* is
always analytic in J.

LeMMA 1. For a certain closed # = J, B* is not a Borel set.
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Proof. An explicit example is the collection of all sequences
1, 2m, 2m3m, pm3mans

where ny 2 1,n, 2 1, ny 2 1, ... The assertion that 4% is not Borel is very close to the
same assertion about the set of trees containing an infinite branch [14, p. 113].

.Before the next lemma we present a summary of some classical theorems
of functional analysis. These are used to prove Lemma 2 below, and also Lemma 1
in IV,

(1) Suppose X is a Banach space, [, ..., f, elements of X* weX** and ¢ > 0.
Goldstine’s Theorem asserts that there is some x in X such that |w| > |ix| and
w(f)—/yx)l <& 1<j<n Instead, we suppose |[w| <r. Then, by successive ap-
proximation, we find x in X such that |x|| <r and w(f) = fi(x), 1<j<n

(2) Let f'e X*, and let L be a finite-dimensional subspace of X*. As usual L* is the
null-space in X of L. Suppose that | f (x)| < r x|, for each x in I*. Then (Hahn—Banach)
there is some g in X* such that ||g|| < rand ¢ = fon L' By linear algebra, g—f belongs
to L, so the distance d(f, L)< |g] €

LeMMA 2. Let X be a Banach space that is not reflexive. There are sequences (x )3~
in X and (ffy in X* such that

) llxgll <473, (4l <1,

(i) fi(x) =1 when 1 Sk <, fy(x) =0 when 1 <j <k

Proof. Let &eX™, |&| <4/3, and d(£, X)>1, and let fieX* [fill <1,
E(fY) = 1. Again, let x e X, |x,]| <4/3, f;(x;) = 1. Now, since d(&, X) > 1, there is
some f,€X*, | /5]l <1, such that f,(x,) =0 and &(f,) = 1. (In the opposite case the
distance from ¢ to Rx, would be at most 1.) Since ||£[} < 4/3, there is some x,€ X,
x5l <473, such that fj (x;) = £(f3) =1, and f(x;) = £(f3) = 1, ete.

Remark. A similar lemma occurs in James’ Theorem. Any weak accumulation
point y of the sequence (x;) would satisfy f; () = f,(y) = ... = 1, and therefore y could
not belong to the linear span of (x;). This contradiction shows that some separable

" subspace of X is not reflexive.

Returning now to the metric space J, we write its elements as sequences
A= {n, < n, <...<n, <...}so that the rth element n, depends continuously on i, We
define a homeomorphism ¥ of X into J by the formula

A={n <m<..<n<..}

I/" (ﬁ) = }: zurxm-v
resl

We observe the implication
Sl @) <
We denote by A the closed convex hull in X of the set {y

Lemma 3. Every element x of A is an integral {\ (A dA, where 1 is a Borel probability
measure in %.

278 = p < k.

(A): AieB}.
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To explain Lemma 3, we observe that J, being a complete, separable metric space,
is a Gy-set in a compact metric space. Thus the notion of a probability measure in 4 has
a definite meaning. Since  is continuous on &, the integral can be taken as a strong
(Bochner) integral.

Proof. Every element x of A is a limit lim,, [y (#)dA,, with a sequence (4,) of
discrete probability measures in &%. For each § > 0 we proceed to find a compact set
K, < & such that A,,(K,) > 1—6 for every m. (This is expressed by saying that the
sequence of measures is “uniformly tight”) We observe first that for each
m=1,2,3,... :

li;n S da,) =0,

whence there is some k, such that fy ([ (A)d1,) <476 for all m, and s =1, 2, 3, ...
On the set of 7 such that ng > k(s), the inequality fi (W () =27 holds. Since
Sy @) >0 is always true, the set [);2,{i: n,<k(s)} has A, -measure
>1-Y2,27%6 =1~4, for every m.

Thus, some subsequence of (4,,) converges w* to a measure A concentrated in 4.
Since ¥ is continuous on %, we obtain x = fl// () dA.

Next we define a map & of J into X*. To prevent confusion between ¢ and v, we
write this map as @ (E). First, let

pp(l)=1 for any set E,
pgm) =1 if meE, m>2,
ppm)=1=5"" if m¢E, m>2.

Next we choose numbers a,(E) so that ‘the series ®(E) = % a,(E) f;, satisfies
@ () (x,) = ¢z (m), '

Explicitly }%-; a,(E) = gg(m), or a;(E)=1, a,(E) = 0z()— (1), a3(E) = ¢z (3)
—¢5(2),... Thus a;(E)=1, lay,(B)| <574, |a(E) <572, ..., whence |&(E)| < 5/4,
and the range of ¢ has compact closure in X*,

m=1,2,3,...

Lemva 4. (2) For every E and every i, ® (E)( (A)) = .9, and the supremum of ¢ (E)
over A is +1.

(b) The supremum is attained if and only if E*e®*, with E* = Ew {1}.

Proof. The first statement of (a) is a consequence of the inequality
9L P(E)(x,)< 1. For the second, we observe that # contains sequences
{1, ny, n,, ...} whose second element n, is as large as we please. For every set E we have
DE)(Y@) = 1—5"m.

For (b) we observe that & (E)(y (7)) = 1 if and only if the set # (actually, a sequence)
is contained in Eu{1}. The respresentation of A established in Lemma 3 yields the
assertion.

The norm || |~ has for its unit ball the closed convex hull of the set
B (X)u(4/3) AU (—4/3)4, a subset of the ball B, (X). Hence Jx|~ < ||Ix] < 2 x|
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Since the functions @ (&) satisly @ (E)| < 5/4 < 4/3 we conclude that |®(E)|~ = 4/3.
By Lemma 4 we sce that @ (E) allains its norm +4/3 if and only if it attains the value
41 on A, if and only if E*e#". The next step is to confirm that the last condition
defines & non-Borel subsct of J.

Let J; be the subset of J defined by E = E*, ie. n; = 1. Since J, is closed, and
9" iy, itis clear that the set of £ defined by E¥Xe#™ is not a Borel set. Since the
functionals @ (F) belong to some norm-compact set K in X*, K n o7 is not a Borel set
in X*

£V, A variant of Theorem .7, This scction uses a bit more about weak and weak*
topologies than 1L It shows how the mappings i and &, after small adjustments, can be
combined with imperfect analogues of Lemma 2 (in I11). Suppose that X is not reflexive,
and therefore X* is nol. Then some norm || ||~ in X* fulfills the precise version of
Theorem .« (which applics to non-separable spaces). But || |~ is not always the dual of
a norm in X; according to an interesting theorem of Davis and Johnson [5], X* can be
renormed so that it is not isometric with any dual space! (A key idea is due to Kadec.)
Nevertheless:

TurorEM «*, The space X carries a norm ||x)|~ such that ||x|| < x|~ < 2 [|x|, and
the dual norm in X* fulfills the precise version of Theorem of.

(Of course x*|™ = [lx*]| < 2]|x*}|~ for all linear functionals x*.)

Before the first lemma, we make some remarks about the isometric imbeddings
Z o Z% and 2% ¢ ZW Since the first of these is a proper inclusion, there is
a functional & e Z*** such that || = 1 and & = 0 on Z. We claim that 4 (¢, Z*) = 1/2.
Otherwise ||&~f|| < 1/2 for some feZ*. In particular, |f(2)| < 1 |z|| for every z in Z,
since &(z) = 0. But then ||f] < 1/2, whence |{~f1] = 1/2.

The inequality d(¢, Z*) > 1/2 means that for each finite-dimensional sub-
space F of Z*, and cach &> 0, there is some y in Z** guch that y=0onF, |y =1,
E(y) > 1/2-¢.

Lumma 1. Let Z be separable, but not reflexive. Then there are sequences (f) & Z**,
(y) & Z* such that

@ Iyl <473, 140 <1 1Al <2 for k22

(ii) Sy () = 1 when 1<k <, fily) =0 when 1<j <k,

(iii) wh-lim p, = 0, in the dual spuce of Z.

Proof. Let (z) be a dense sequence in Z, and let £eZ**, (¢ =5/4, {=0on
Z (considered as a proper subspace of Z*¥). Then there is some f, € Z** such that
I/l <1 and &(f) =1 Thus we can choose y;€Z* such that A <4/3. and
L) = E() = 1, yy(z)) = E(z,) = 0. Next, since d(¢, Z¥) > 5/8 >1/2, there Is an
f,E2Z*% such that |/} < 2, () = 0 &(fy) = 1. (In the opposite case, the distance
from ¢ to Ry, would be at most 1/2) Finally, there is a y, & Z* such that [ly,] <4/3,
Pazy) = E(zy) =0, y,(zg) = &(z) = 0; o) =E(f) =L L) = E(f)) =1, et (At

the third step we choose fy so that |3l <2, ()= f3002) =0, () =1)
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Next, we need a small change in the definition of ¢ and @ (E). Let ¢ be defined so
that
pp(m) = 1-27""2

Then the @ (E) constructed by the same method as before satisfies || (E)| < 5/4.

‘We can now complete the proof of Theorem &/* in the special case of separable
spaces X, ie. taking Z = X. Here we choose for A* the w*-convex closed hull of
{Y(®): ieB}. Using the same argument as in Lemma 3(III) we see that the elements
y of A* are either Bochner integrals [y () dA as before, or else 0 < #(E)y < ¢ < 1, for
all E in J, with a ¢ depending only on y. Here, of course, we use the fact that
w*-lim y; = 0. The unit ball for the new norm in X* is w*-co (B, U (4/3) 4* U (—4/3) A*),
Since this is the unit ball of a dual norm, the proof is complete in the special case X = Z.

When X is not separable, it contains a separable, non-reflexive subspace Z. The
functionals @ (E) belong to Z** < X**, but the elements (/) are not defined over all of
X, that is, they are not elements of X*. Let (#) be an extension of ¥ (i) to all of X, of
the same norm. No matter how this is done, ®(E)(f(#)) has the same value, since
@ (E) € Z**. This allows us to define (in a somewhat arbitrary manner) a w*-closed set
A* < X* These elements of X* are extensions of the functionals constructed before,
and serve exactly the same purpose.

In place of this process of two stages, is it possible to perform the first step in X'? In
the case of certain non-reflexive spaces (“Grothendieck spaces” [7, p. 150]),
w¥-convergent sequences in X* must converge weakly, thereby obstructing the
simplification. '

when m>= 2, m¢E.
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