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Partial confluence of maps onto graphs
and inverse limits of single graphs

by

Van C. Nall (Richmond, Va) and Eldon J. Vought (Chico, Cal)

Abstract. P(M) is the smallest integer such that if X is any continuum, f is any map from
X onto M, and K is any subcontinuum of M, then there are P(M) or fewer continua in X the union
of whose images under f is K. A formula is given for P(G) when G is a graph. In addition, an
affirmative answer is given to a question of Hagopian who asked if an aposyndetic continuum that
is the inverse limit of a single graph is locally connected.

1. Introduction. A general problem for a continuum M is to find the smallest
integer P(M) such that if X is any continuum, f is any map from X onto M, and K is
any subcontinuum of M, then there are P(M) or fewer continua in X the union of whose
images under f is K. For example, class[W] is the set of all continua M for which
P(M) =1, and if M is a simple closed curve or a simple triod, P(M) = 2. The first
author has shown [7, Theorem IL2] if M is a continuum that, for some integer n,
contains an n-od but no (n+1)-od, n> 1, then P(M) n(n—1). One purpose of this
paper is to show that if M is a graph, P(M) < 3n—1. More precisely, P(M) = 3n
—4t(M)—1 where t(M) is the number of points in M of order 1.

A second purpose is to answer a question of Charles Hagopian who asked if an
aposyndetic continuum that is the inverse limit of a single graph, is locally connected. It
is .proved here that if X is semi-aposyndetic and is the inverse limit of continua for

* which there is an integer n such that no factor contains an n-od, then X is a graph.

2. Partial confluence of maps onto graphs. A continuum is a compact connected
metric space (with metric g). A continuum M is an n-od, where n is an integer greater
than 1, if M contains a subcontinuum K, called the core of the n-od, such that M\K has
n components. If M is a continuum, let n(M) be the largest integer (if it exists) such that
M contains an n(M)-od. A map is a continuous function. If f is a map from a continuum
X onto a continuum ¥, then a subcontinuum K of Y i§ a w-set if there is a continuum
K’ in X such that f(K') = K. A subcontinuum J of a subcontinuum K of Y is a maximal
w-set in K if J is a w-set, and J is not a proper subcontinuum of a w -set which is
contained in K. The map f is n-partially confluent if every subcontinuum of Y is the
union of n or fewer w,-sets. For the continuum M let P(M) be the largest integer such
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that there is a map f from a continuum onto M that is not (P(M)—1)-partially

confluent. Note that P(M) is the smallest integer such that for every map of a continuum .

onto M, every subcontinuum of M is the union of P(M) or fewer W -sets.

A subcontinuum 4 of a continuum X is a free arc in X if A is an arc such that the
boundary of 4 is contained in the set of endpoints of A. A continuum G is a graph if it is
the union of a finite number of free arcs. For a graph G, let ¢(G) be the number of edges
of G, t(G) the number of points of order one in G, called terminal points, and v(G) the
number of vertices of G (here, a point of order one is not a vertex). Let §(G) be the first
Betti number for G. A spanning tree for G is an acyclic subcontinuum of G that contains
all of the vertices and terminal points of G, and whose edges are edges of G. If H is
a spanning tree, f(G) = B(G/H) = ¢(G)—e(H) = ¢(G)—((G)+v(G))+1 [1, Theorem 5
p- 36]. If K is a subcontinuum of G, a component of G\K whose closure is an arc with
both endpoints in K or a simple closed curve with one point in K is a chord of K.
Clearly, every spanning tree has $(G) chords. The following lemma is probably well
known, but the proof is short, and is included here for completeness.

Lemma 1. If G is a graph, then every finite collection of points of order two in G that *

does not separate G is contained in a collection of B(G) points of order two in G that does
.not separate G, and every collection of B(G)+1 points of order two in G separates G.

Proof. Let {x,,..., x,} be a finite collection of points of order two in G that does
not separate G, and such that the addition of any point to this collection yields
a collection that does separate G. For each j, let I ; be the interior of the edge of G that
contains x;. Then H = G\({ ] I) is acyclic, since every point of order two in H separates
H. Therefore, H is a spanning tree for G, and B(G) =e(G)—e(H) =1t.

THEOREM 1. If G is a graph, then n(G) = 28{G)+t(G).

Proof. Let D be an n(G)-od in G with core K. It follows that K must contain each
vertex of G of order greater than two. For if it did not contain a vertex, then K could be
extended by an arc to a continuum K’ which contains that vertex, and is the core of an
(n(G)+1)-0d in G. }

Each component of G\K is either a chord of K or an arc, one of whose endpoints is
a terminal point of G. Each of the latter type of component contains exactly one
component of D\K, and each chord of K contains exactly two components of D\K.
A collection of points consisting of one element from each chord of K does not separate
G. So, by Lemma 1, the maximum number of chords of K is B(G). Thus
n(G) < 2B(G)+t(G).

On the other hand, G must contain a spanning tree (see the proof of Lemma 1), and
the spanning tree minus the interiors of the edges of G that contain the terminal points
of G is the core of a (26(G)+t(G)}-od. Thus, n(G) = 28(G)+¢(G).

LeMMA 2. Let f be a map of a continuum X onto the continuum M. Let K be
a subcontinuum of M, and C, and C, be disjoint nonempty closed subsets of K such that
BA(K) = C, U C,. Then there exists a connected set A that is either a w ~set in K, or the
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union of two w-sets in K, such that AnC, # @ # An C,. Moreover, if no w-set in
'K intersects C; and C,, then there is a component of M\K whose closure intersects C,
and C,. .

Proof. For i=1,2, let A; be the set of all points x in K such that there is
a continuum in X whose image contains x, lies in K, and intersects C;. Note that 4, and
A, are nonempty closed sets whose union is K. Let y be an element of 4, n 4,. Then
there exist wy-sets ¥; and ¥, such that yeY, nY,, and ¥, nC, # D # ¥,nC,, so
A=Y, VY, is the required set (it is possible that ¥, or ¥, might intersect both C,
and C,). ‘

Suppose the closure of no component of M\K intersects C, and C,. Then
M\K = Q; uQ,, a separation, such that cl(Q,)nK = C; and cl(@,)nK = C,. Let
D be a subcontinuum of X irreducible between f~*(C,) and f~1(C,). Then f(D) is
a wf-sét in K intersecting C,; and C,. :

LemMa 3. If K is a subgraph of a graph G, and E,, ..., E, are arcs such that both
endpoints of each arc are in K while the rest of the arc is in G\K, and no one of the arcs is
contained in the union of the others, then there exist points a, ..., a, such that for

'1<i<n, aiE, and | )!-,{a;} does not separate G.

Proof. Let E} be a free open arc lying in E, such that E1 n U?=2 E, =@, and let
a, be a point in E}. Then G\{a, } is connected. Suppose for 1 <k < n, points ay, ..., a,
and arcs Ejy, ..., E, have been selected so that ag,eEicE, for 1<i<k,
EinE;=@for 1<i<kand 1<j<n and {J}=;{a} does not separate G. Let
Ej.; be a free open arc lying in Exy; such that Ei.y 0 U5‘=1 E,=@, and let
G+ 1 €Eyq. Since Epyy N U§=1 Ei=0, (G\U{"=1 {al})\{ak+ 1} = G\U’f:f {ag} is con-
nected. By induction G\|J!=, {a;} is connected, where each point a;€E, for 1 <i<n.

THEOREM 2. If G is a graph then P(G)=3B(G)+t(G)—L

Proof Suppose f is a map from a continuum onto G. Let K be a subcontinuum
of G such that K is acyclic, each boundary point of K is a point of order two in G, and
K does not contain-a terminal point of G. In this case, K is irreducible about its
boundary B. Since |B| < n(G), it follows from Theorem 1 that |B| < 28(G)+¢(G). Let by
be an element of B and let €, = {b,, ..., by} be a maximal collection of points in
B that contains b, and is contained in the union of a collection &, = {E, .. = Exty-1}
of w-sets in K such that { ] &, is connected. Note that if no w -set in K cc?ntalns b, a.nd
another point of B, then &, may be empty. Also, note that no w-set in K contains
a point of 4, and a point of B\%;.

According to Lemma 2, if B\#, # @, there is a point b,)+1 in B\%, and w-sets
E, and E{ in K such that Eyn%, #@, byuy+1€Ei, and EynE]#d. I?,et
b, = {bu(l;ﬂ, vevs bat)+a(zy} be a maximal collection of points in B\#, that contains
busy+1 and is contained in the union of a collection &, = {Exu), .-+ Eaty+a- 2t of

- wpsets in K such that | )&, is connected.

Suppose (i), ¥;, where €, is contained in B, and &; have been defined for. 1ig 'k,
let v = Y ¥, a(i), and suppose B\U{‘:l #,+# @. By Lemma 2, there is a point b, +; in
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B\{J{-1 %, and w-sets E; and E; in K such that E;n | Ji=, %, # &, b,+, € Ef, and
EinE] #@. Let Gyo1 = {Dy+1, .- s Dosop+ 1y} be a maximal collection of points in
B\U}i‘=1 %, that contains b,.; and is contained -in the umion of a collection
Shr1={Ep—kt1s--> Evtapt -+ 1y} Of wy-sets in K such that | J &+, is connected.

By induction, there is an integer g4 such that B\| J{_., %, = @. Since there is no
w-set in K that contains a point of ¢, and a point of &; where j # 1, it follows from
Lemma 2 that there is a j, j # 1, and an arc 4, in cl(G\K) with one endpoint in %, and
the other in %;. There is no w-set in K that contains a point of ¢, U %, and a point of
%, where k¢ {1, j}. It follows from Lemma 2 that thereis a k, k¢ {1, j}, and an arc 4, in
cl(G\K) with one endpoint in %, U ¥, and the other in %,. Continuing, we obtain arcs
Agy.eny Agoy. Then U?;} A; contains arcs A, ..., A;—; such that for 1 €i<g~1,
Aj less its endpoints is a subset of G\K, both endpoints of 4; are in K, and 4 is not
contained in | J;«; 4}. Then, by Lemma 3, there exists a set of g— 1 points that does not
separate G. Hence, by Lemma 1, ¢—1 <:$(G). ‘

Let & = | Ji., &0 (Jiz] {E}, Ef}). Then | J & is connected and it contains B, so
U&=K. Let m be the number of w,-sets in &. Then

m< |Bl—q+2(@-1)= < 2B(G)+t(G)+B(G)—

Suppose K is any subcontinuum of G. Then K is the limit of a sequence {K;}% of
subcontinua of G such that for each i, K; is acyclic, the boundary points of K, have order
two, and K; does not contain a terminal point of G. Each K; is the union of
n = 3B(G)+t(G)—1 or fewer w f-sets So for each positive integer i, there exist n w-sets

., 0% such that K, = U "1 Q}. Choosing subsequences if necessary, assume that
{Q,} 2, converges to a continuum Q; for 1 < j < n. Clearly Q; is a wy-set for 1 <j <
and | J}-; Q;is contained in K. To see that { J1-, @, = K, let y be an element of K. For
every positive integer i, there exists y, in K, such that limy; = y. For every positive
integer i, there exists an integer a(i), I < a(i) < n, such that y;€ 0l There is an integer
@, 1 < o < n, such that a(i) = o for infinitely many i’s. Without loss of generality assume
that () = « for all the i’s. Then y,e 0} for all i’s, and y = lim y,elim Q% = Q, which is
contained in U}=1 Q;. Hence K is the union of n = 38(G)+t(G)—1 w-sets.

Let X be an acyclic subcontinuum of G such that K contains all of the vertices of G,
the boundary points of K have order two, and K does not contain any of the terminal
points of G. We will produce a map f from a continuum onto G such that K is not the
union of fewer than 38(G)+t(G)—1 w ~sets.

By an end arc of K is meant an arc in K which contains a terminal point of X and is
contained in-a free arc of K. If f(G) # 0, there are B(G) pairs of end arcs, {[a, b1,
[ai, b1}, 1 < i < (G), where b, and b} are terminal points of K, and there is an arc
[, b7 in the closure of G\K. If t(G) # 0, then there are an additional t(G) end arcs of
K, {[a, b1}, B(G)+1 < i < B(G)+1(G), where b, is a terminal point of K and there is an
arc [b;, b7] in the closure of G\K from b, to b}, where b} is a terminal point of G.

Let x be a point in the interior of [b,, by]. For each i from 2 to B(G) let A, be an arc
in K u[b,, x] which is irreducible from x to a point ¢, in (@, b,y and which contains the
arc [b;, x]. Note that A4, does not intersect (x, b, 1] or (a,, i]. Let 4, be an arc

[Bl+(g—1)— 1 =3B8(G)+1t(G)—1.
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containing b, from x to a point ¢, in (a, b’) Also, for 2 < i < (G), let 4} be an arcin
Ku [bn x] v [b;, bi] which is irreducible from ¢ to x, and which does not intersect
(a;, ¢) or (x, b1]. Note that 4] must contain [a}, b}]. Let 4} be an arc in K U [b}, x]
which is irreducible from ¢, to x and does not contain b,.

If t(G)#0, for BG)+1<i<P(G)+¢(G) and i1, let 4, be an arc in
K u[b,, x]u[b;, b] which is irreducible from b; to x and which does not intersect
(x, b1].

Let F be a simple fan which consists of 28(G)+t(G) arcs with the common endpoint
x'. Define the map [ from F onto G as follows. For 1 <i < B(G)+1(G), map one leg of
F one-to-one onto 4; sending x' to x. For 1 <i < $(G), map one leg of F one-to-one
onto 4jsending x" to x. Note that A and each 4, 1 <i < $(G)+1(G), contains exactly
one w,-set which is maximal in K, and each A4, 2 <i< f(G), contains exactly two
wy-sets which are maximal in K. Observe also that these [1+B(G)+1(0)]
+2[B(G)—1] = 3B(G)+t(G)—1 w-sets are all necessary in order for their union to be
K. Therefore, K is not the union of fewer than 38(G)+:(G)—1 wj-sets. So
P(G) = 34(G)+1t(G)—1.

Since B(G) = &(G)—(t(G)+v(G))+ 1, P(G) = 3(e(G)—v(G))— 2t(G) +2, which is a for-
mula that makes P(G) trivial to compute. Also, from Theorem 1 it follows that
B(G) = $(n(G)—t(G)), s0 P(G) = $n(G)~4t(G)—1. If t(G) = 0, P(G) = 3n(G)—1, and, in
general, P(G) < 3n(G)—1, which suggests the following question.

QuestioN 1. Is there a continuum X such that P(X) > 2n(X)—

The next theorem will allow us to consider P(X) for a larger collection of con-
tinua.

THEOREM 3. Suppose n is a positive integer, and the continuum X = lim(X,, f,),
where each X, is a continuum such that P(X,)<n. Then P(X)< n.

Proof. For each positive integer i there is a map g; from X onto some X, such
that diam(g; *(g,(x))) < 1/i for each x in X [4, Lemma 1.162, p. 167]. Let f be a map
from the continuum M onto X, and let L be a subcontinuum of X. Since g; f is
n-partially confluent, for each positive integer i there is a collection {K},..., Ki} of
continua in M such that ( Ji=;g; f(K) = g,(L). Let L= f(K}) for each j, 1 <j <n
Choosing subsequences if necessary, assume that for each j, 1<j <n, the sequence
{I}}f2, converges to a continuum Lyin X, and the sequence {Ki}, converges to
a continuum K; in M. It follows that f(K;) =L, for each j, 1 <j<n

If x is a point in L there is a map o from the positive integers into the integers from
1 to n, and a sequence of points {ki}iZ, such that ki e KLy and g, f (kiw) = g,(x) for
each positive integer i. There is a j/, | €j < n, such that «(i) = j’ for infinitely many #'s.
Choosing subsequences if necessary, assume (i) =j' for each positive integer i. Then
{Kki:}221 converges to a point k; in K, and f (k;) = x since dlam( Yg:(x)) < 1/i for
each positive integer i. So xe L. We havc shown that L = ( )i~ L;, and, since each L, is
a wyset, L is the union of n w -sets.
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If X is the inverse limit of a single graph, define P*(X) to be the minimum of
{P(G)|G is a graph and X is the inverse limit of G}. According to Theo-
rem 3, P(X) < P*(X). For example, if M is the Ingram continuum [2, p. 100] then M is
the inverse limit of a simple triod, M is not the inverse limit of an arc [2, Theorem 3,
p. 106], and M is in class[W] [3, Theorem 1, p. 190]. So P*(M)=2 and
PM)=1,

3. Inverse limits of a single graph. The purpose of this section is to answer
a question of Charles Hagopian who asked if an aposyndetic continuum that is the
inverse limit of a single graph is locally connected. This question is related to the more
general problem of when a one-dimensional aposyndetic continuum is locally connec-
ted. For example, it is not known if a one-dimensional unicoherent and mutually
aposyndetic continuum is locally connected [see the Houston Problem Book, problem
48]. Since every one-dimensional continuum is the inverse limit of graphs, it is natural
to view those continua that are the inverse limits of a single graph as an important
subclass of one-dimensional continua.

A map f: X—Y is an e-map if ¢ is a positive number such that f~*(y) has
diameter less than ¢ for each y in Y. A space X is semi-aposyndetic if for each pair of
points in X there is a continuum in X that contains one of the points in its interior and
does not contain the other point.

THEOREM 4. If a continuum X contains an n-od, then there is a positive number ¢ such
that if f is an e-map from X onto a continuum Y, then Y contains an n-od.

Proof Suppose C is an n-od with core K in X. Let {L,,..., L,} be the
components of C\K. For each i, 1<i<n, let x; be an element of L, Let
8, = min{g(x;, K)}, and let 9, = miny;{0(x;, cl(L))}. Let &= (min{d,, 8,})/2.

Suppose f is an e-map from X onto Y. For each i, the set f(L;uK)\
(Uj»:f(L; UK)) is not empty, since it contains f(x). Therefore, the continua in
the collection {f(L;uK)}{-; have a point in- common and no one of them is con-
tained in the union of the others. The union of this collection contains an n-od [6,
Theorem 1].

If a continuum X = [im(X,, f,), then for each positive number ¢ thére is an e-map
into some X, [4, Lemma 1.162, p. 167]. So, if there is a positive integer n such that each
X, does not contain an n-od, then X does not contain an n-od.

THEOREM 5. A continuum is d graph if and only if it is semi-aposyndetic and does not
contain an infinite-od.

" Proof. Every hereditarily locally connected continuum that does not contairvan
infinite-od is a graph [5, Theorem IIL1, p. 568]. Suppose the continuum X is
semi-aposyndetic and not hereditarily locally connected. Then there is a sequence
{K;}%2, of disjoint continua in X that converges to a nondegenerate continuum K in X.
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Let x and y be different points in K. Without loss of generality, it can be assumed that
there is a continuum J in X that contains x in its interior and does not contain y. There
is an integer N such thatifn > N, K, nJ # &, and K,\J # @. Then J UK u{{Jn>x K,)
is an infinite-od. .

The next two theorems follow immediately from Theorems 4 and 5.

THEOREM 6. If X = lim(X,, f,) and each X, is a continuum, X is semi-aposyndetic,
and if there is a positive integer n such that each X, does not contain an n-od, and each X,
is a continuum, then X is a graph.

Since, for a positive integer n, there are only finitely many graphs that do not
contain an n-od, if each X, in the statement of Theorem 6 is a graph that does not
contain an n-od, then X is the inverse limit of a single graph. Clearly, if G is a graph,
there is an integer n such that G does not contain an n-od.

TaEOREM 7. If X is the inverse limit of a single graph G, and X is semi-aposyndetic,
then X is a graph. ‘
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