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A converse to a theorem of K. Kuratowski
on parametrizations of compacta on the Cantor set

by

Roman Pol* (Warszawa)

Abstract. A classical result of K. Kuratowski asserts that if a perfect compactum X is
a countable union of finite-dimensional compacta then almost every continuous map of the Cantor
set onto X (in the sense of the Baire category in the function space) is finite-to-one. We prove the
converse to this theorem and some of its refinements. )

1. Introduction. Our terminology is explained in Sec. 2. Given a compactum X, we
shall consider the space of all parametrizations of X on the Cantor set 2%, ie.,
continuous mappings of 2* onto X, equipped with the topology of uniform conver-
gence, and the phrase “almost every parametrization™ will refer to the Baire category in
the function space.

This note is related to the following results in dimension theory (cf. [Ku2; §45, 117,
[Na; VI4], see also Sec. 5.1):

1.1. THEOREM (Kuratowski [Kul]). If a compactum X without isolated points is
a countable union of finite-dimensional compacta then almost every parametrization of
X on the Cantor set is finite-to-one.

1.2. TaeoreM (Hurewicz [Hu]). A compactum X without isolated points is a coun-
table union of finite-dimensional subsets if, and only if, X has a finite-to-one paramet-
rization on the Cantor set.

In fact, one easily checks that the existence of a finite-to-one parametrization of
a compactum X on 2% implies that finite-to-one mappings are dense in the space of all
parametrizations of X on 2%. The main result of this note is the following theorem:

1.3. THEOREM. Let X be a compactum which can not be covered by countably many
finite-dimensional compacta. Then almost every parametrization of X on the Cantor set
has a perfect fibre.

It follows that a perfect compactum X is a countable union of finite-dimensional
compacta if, and only if, a typical, in the sense of Baire category, parametrization of
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X on 2 is finite-to-one. There are natural examples of compacta which are countable
unions of finite-dimensional subsets, but can not be covered by countably many
finite-dimensional compacta (cf. Sec. 2.5). For each such compactum X without isolated
points, finite-to-one parametrizations of X on 2* form a dense, but meagre set in the
space of all parametrizations of X on 2.

These facts are, in some sense, complementary to the results of Elzbieta Pol [PE].
She discovered similar phenomena, while investigating the Baire category of the spaces
of embeddings of compacta into the universal countable-dimensional Nagata space
[Na; VL6]. We should also quote here a classical paper by S. Saks [Sa] which, although
concerned with quite different topics, contains certain general ideas related to this note.

In Section 4 we discuss some refinements of Theorem 1.3, In particular, we exhibit
a kind of extreme behaviour of typical parametrizations of perfect compacta on the
Cantor set: either a typical parametrization of X on 2% is finite-to-one (see Kuratow-
ski's Theorem 1.1), or for almost every parametrization f: 2% — X the fibres f~*
represent all topological types of nonempty compacta in 2% (cf. Theorem 4.1 and Sec.
5.4). Other extreme properties of typical parametrizations are recorded in Corollary 4.2.

2. Terminology, some background and auxiliary facts. Our terminology follows
Kuratowski [Ku2]. We shall consider only separable metrizable spaces and by
a compactum we mean a compact space. The symbol diam E stands for the diameter of
the set E in a metric space. :

2.1. The Cantor set 2°. Let 2* be the space of infinite zero-one sequences
(fy» jzs +--) with the topology of pointwise convergence. We denote by 2" the set of
zero-one sequences (jy, ..., J,) of length n, and 2<% = U 21 2%

If a=(j,,...,j,)e2" and je2, we set a%j=(j,...,J,)e2"". For
t={j,Jz, .-)€2% and natural n, let t|n = (j,, ..., j,)€2" and, for each a €2", we define
1) B(a) = {te2>: t|n=1a}.

The collection {B(a): a€2=“} is the standard dyadic base for 2*; each B(a) is spht into
two disjoint open compacta B(a"0) and B(a"l).

2.2. Parametrizations of compacta on the Cantor set. We shall call continuous
mappings from 2% onto a compactum X parametrizations of X on the Cantor set (cf.
[Ku2; §45, 1I]). Given a compactum X, we shall consider the space $(2%, X) of all
parametrizations of X on 2% with the topology of uniform convergence. Speaking about
8(2°, X) we shall consider this space with the supremum metric on X; each such metric
on S(2%, X) is complete (cf. [Ku2; §44, V]).

2.3. Analytic sets and residuality. A space M is analytic if M is a continuous image
of the irrationals. Analytic sets in a space E are open modulo meagre sets in E (cf. [Ku2;
§11, VII]). Therefore, an analytic set M in a complete space E is residual (ie., E\M is
meagre) if, and only if, M intersects each set of type Gy, dense ini some nonempty open
set in E.

icm

Parametrizations on the Cantor set 39

2.4. The kernel of a space with respect to a o-ideal of subsets. Let E be a separable
metrizable space and let # be a nontrivial g-ideal of sets in E. There exists a nonempty
closed set Z in E such that E\Z € .# and no nonempty relatively open subset of Zisin
£ (cf. [Ku2; §24, II], [St]).

2.5. Countable-dimensional and strongly countable-dimensional spaces. A space E is
countable-dimensional (strongly countable-dimensional) if E can be covered by countably
many finite-dimensional sets (respectively, closed sets). Examples of compacta which are
countable-dimensional but not strongly countable-dimensional can be found in [Sm],
or [E-P]. The compactum X of this kind described in [E-P; Example 1.12] contains
finite-dimensional compacta K, K,, ... such that X\ Ji2, K, is zero-dimensional.

Let us recall the following fact (a special case of Sklyarenko’s theorem [Sk], cf.
[Na; VL3.E]D:if f: 2®° — X is a parametrization and E < X is not countable-dimensional,
then the set {xeE: f (x) is perfect} is not countable-dimensional.

2.6. HemMINGseN's LEmMMA [He], [En; 1.6.10] (cf. [Ku2; §45, IV, Th. 10]). Let S be
a compact set of dimension = n in a space X. There are open subsets Gy, ..., Gy+1 of
X such that G,NnS #D,85 < G, U...U G,y q and, for arbitrary closed sets L,, ..., L+
in X,if L,cG,and ScLiu...0UL,4q, then SNLin...nL,4y #9.

2.7. A universal compactum in 2% x2®. We shall need the following fact, easily
verified by standard arguments. For the sake of completeness, a proof is given.

LemmMA. There exists a compactum S < 2% x2%, each vertical section of S being
nonempty, such that for every continuous surjection g: 2° — 2% there exists an embedding
h: 2° — 2% with

8§ (h(22) x2%) = {(hog(®), h(®)): te27}.

» Proof. Let us write 2 = C x C, C being a Cantor set. Let S(C, C) be the space of
continuous surjections of C onto itself, endowed with the topology of uniform
convergence, let Q be a countable dense set in C, and let P = C\Q. The set P being
homeomorphic to the irrationals, there exists a continuous surjection p: P— S(C, C).
We define a closed subset T of (PxC)x(PxC) by

T= {((x, X)), G, y)): xeP, yeC},

and let S be the closure of T in 2% x2®. Notice that S\T < (@ xC)x(Q x C), and
therefore, the vertical sections of S and T coincide at each point of P x C. The projection
of S onto the first coordinate contains P x C, and hence it is equal to 2%,

Let g: 2® —2%® be an arbitrary continuous surjection, and let g = p(x), for some
xeP. Let.h: C—2® be an embedding defined by h(y) =(x, y). Then

{(x. a0)), (x, y): yeC}.

Identifying C with 2%, we complete the proof.

S (R(C)x2°) = T A (HC)x 2°) =
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3. Proof of the theorem. Let X be a compactum which can not be govered by
countably many finite-dimensional compacta and let Z = X be a nonempty compactum
all of whose relatively open nonempty subsets are infinite-dimensional (cf. Sec. 2.4).

We shall prove that for a typical mapping in the space S(2*, X) of paramet-
rizations of X on 2% (see Sec. 2.2), there exists zeZ with the perfect fibre f~(z).

The main element of the proof is a branching process described in Step (1), and Step
(I1) is a straightforward inductive application of this process. In the next section we shall
refine this reasoning and, bearing this application in mind, we shall consider in Step (I)
a function d, not necessary for the present proof.

Step (I). Let f: 2° — X be a parametrization. Assume that we are given a finite
collection & of pairwise disjoint closed-and-open sets in 2%, a point
xeZn({f(E): Ee&} with f~*(x) = | &, and an ¢ > 0. Assume, in addition, that to
each Ee& a natural number d(E) > 0 is assigned, at lcast one of them being positive,

Then there exist a finite collection & of pairwise disjoint closed-and-open sets in
2% of diameter <&, and a nonempty open set % in the e-ball about f in the space
S(2%, X), such that: ‘

(A) # refines & and each Ee& contains exactly d(E) elements of #,

(B) if ue then u(2°\|)&)nu(l) F) =@ and diamu(| ) F) <,

(C) for each ue there exists yeZ () {u(F): FeF} with u™*(y) = J #.

Proof of (). Let & = {E,, ..., E,}, set d(i) = d(E), and

m=d(l)+...+d(@) >0.
For each i we choose a closed-and-open set A4, such that f~*(x)nE, < 4, < E,,
diam f(4) < &/3 and f(A)nf(2°\|J &) = @. For the collection o = {4,,..., 4,} we
have:

@) re\yéans () =0,

)] diam f (| #) <,

and there exists an open set W in X with

3 xeW and fR\J#)nW=2.

Split each A4; into d(i)+1 pairwise disjoint closed-and-open sets D(i),
Cy(i), ..., Cap(), where diam C,(i) < ¢, and let (see (A))

@ F={Cl):i=1,..,p, I=1,..,d(0)},
(5 D =D(1)u...uD(p).

Choose a compactum S < ZAW of dimension > m—1, with W\S #@, and let
Gy, ..., G, be open sets described in Hemmingsen’s Lemma 2.6. Let K, = G, be
nonempty compacta such that, for some open set ¥ in X,

6) ScVcK,u...uK,cW and W\V #@.
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Let e be any bijection of {(/, ): i=1,...,p, I=1,...,d(#)} onto {1, ..., m}, and
consider a parametrization g: 2° — X such that g coincides with f on 27\ ) o,
9(C:()) = Ko, and g(D) = f (| #)\V. For each 12, either g(t) = f(t), or both g(b),
f(®) are in f({) ), and therefore by (2), g is in the e-ball about f in §(2, X). Since
f and g coincide on 2°\| )« and f({) ) = g({) =), from (1) we obtain

(7 9@2\Ué)ng(U#)=0.

We also have g(2=\|) #) = £ 2=\(J #)0[f (J#\V], so by (3) and (6),
®) 92"\ #)n5 = 2.

Finally,

) 9(C0) < Gegpy  i=1,...,p, I=1, ..., d),

and, by (2) and (6),
(10) diamg(|) #) <.

Let % be a neighbourhood of g in (2%, X) contained in the s-ball centred at f,
and small enough that for each ue# all relations (7)-(10) hold with g replaced by w

Let ue. Property (B) is guaranteed by (7) and (10). Let 4(Cy(i)) = Leg,y- Then
L, = Gy, by (9), and since u(2®) =X, and u(2°\|J#)nS =0, by (8), we have
S < Lju...uL,. Therefore (see Sec. 2.6) there exists

yeSnLin...nL, c Zn({u(F): FeF},
and, by 8), u™'(y) = {J #, which gives (C).

Step (II). One readily checks that parametrizations with a perfect fibre form an
analytic set in S(2%, X). Therefore, by Sec. 2.3, we have to show that if % is a G;-set
dense in some &y-ball about g, € %in S(2%, X), then there exist f €% and ze Z such that
the fibre f~%(z) is perfect. ]

let ¥=%,n%, ..., where ¥,=S52%, X)> %, > ... are open sets. Starting
from the triple (go, %, &), With %, = {2}, one can define inductively, using Step (I)
(the function d being constantly equal to 2), triples (g,, %, &), (g2, F, €3), ..., Where
g;€%, #, are finite families of pairwise disjoint closed-and-open sets in 2, and the
sequence &, > £; > ... converges to 0, such that the following conditions hold:

(11)  denoting by 4, the closed &-ball centred at g,, we have %4, = &, = %,
fori=0,1,...,

(12) ., refines &, the diameter of each element of %4, and of gi1({J F+y) is
less than ¢, ‘

(13) 284, is less than the distance between g;+1(2°\|J %) and gir () Fir1)s

(14)  there exist x,eZn () {g,(F): Fe&F} with g7 '(x) = |J &,

(15)  each member of & contains exactly two members of F.;.
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Let (see (11))

(16) feﬁ B,c% and F= i(_]O(U 7).

i=0
The compactum F is perfect, by (12) and (15). We shall check that
17 F=f"%z) for some zeZ.

Since the diameters of g;((J &) tend to zero, by (12), so do the diameters of f(| ) &),
and hence f (F) = {z}, ze Z being the limit of the sequence x;, X,, ... in (14). Let t¢F
and let i be such that t¢ () #,. By (13), the distance between g,-ﬂ(z) and g;+,(F) is
greater than 2g;4, and since f is in the &+;-ball about g;..1, we get f(£)¢ f(F), ie,
f(t) # z. This proves (17) and completes the proof of Theorem 1.3.

4. A refinement of the theorem. The arguments given in Section 3 can be refined to
yield the following theorem.

4.1. THEOREM. Let X be a compactum and let M be an analytic set in X which can
not be covered by countably many finite-dimensional compacta. Then almost every
parametrization f: 2° - X has the following property: for each continuous surjection
g: 2% — 2% there are homeomorphic embeddings v: 2% — 2% and w: 2%° — M such that
o(g @) = f1(w() for all te2=.

For each parametrization k: 2* — K the set P(k) of points x in K with the perfect
fibre k™*(x) is of type F,s, while the set U(k) of points in K with uncountable fibre is
analytic (cf. [Br2], [Ku2; §39, VII]) and there is a continuous surjection k: 2% — 2%
such-that P(k) is not of type G, (cf. [Br1]) and U(k) is not Borel (cf. [M-S], [Ku2;
§39, VII]). Therefore, Theorem 4.1 yields the following corollary.

4.2. COrROLLARY. Let X be a compactum which can not be covered by countably many
finite-dimensional compacta. Then for almost every parametrization f: 2% — X the set
{xeX:f~*(x) is perfect} is not of type G,, (being of type F ;) and the set {xe X: f~!(x)
is uncountable} is not Borel (being analytic).

43. Proof Theorem 4.1. (A) By Sec. 2.7, it is enough to prove that if
S <2®x2%® is a compact set with all vertical sections nonempty, ie.,

) S, =8n({t}x2*) % B, for te2®,

then for almost every parametrization f: 2% — X there are homeomorphic embeddings
v: §-+2% and w: 2* -+ M such that

2 o(S) = f"t(w(), for te2~.

Since, as one readily checks (cf. 5.6), parametrizations with this property form an
analytic set, we have to verify that each Gyset 4 of second category in the space of
parametrizations S(2%, X) contains such a mapping (cf. 2.3).

Letg = 9,n%, ... be a G,-set, dense in some g,-ball about g, € ¥, where the sets
Fo=8Q2%, X)> %, >... are open.
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(B) We shall use the notation introduced in Sec. 2.1. For each ae2”, let (see
Sec. 2.1(1)
" #(a) = {B(b): be2" and Sn(B(a)xB(b)) # a}.
Given a€2”, Be¥(a) and je2, we let
dynj(B) = card{B'e #(a"j): B' < B}e{0, 1, 2};
by (1), Y sesta) danj(B) > 0. Notice that for each te2®,

S, = {t} x (i U &(tli).

Fix a closed subset P of the irrationals w™ and a continuous mapping p: P — M
such that if N < P is a relatively open nonempty set, then p(N) can not be covered by
countably many finite-dimensional compacta.

To this end, we start with an arbitrary continuous surjection k: o™ — M, next we
consider the kernel P in »™ with respect to the o-ideal of sets N such that k(N) can be
covered by countably many finite-dimensional compacta (see Sec. 2.4), and p is the
restriction of k to P. ’

(C) We shall define inductively the following objects: parametrizations

Gise-osfp: 2° 2 X,
positive numbers
g >8>..., -0,
families
U(n) = {U(a): ae2"}
of pairwise disjoint open sets in X with diam U(a) < I/n for ae2", famiﬁes
W'(n) = {N(a): ac2"}

of pairwise disjoint closed-and-open sets in P with diam N(a) < 1/n for a2, finite
families

- F(a), ae,
of pairwise disjoint closed-and-open sets in 2%, and bijections,
a(a): ¥(a)—> F(a), for ae2",
such that the following conditions are met:

(3) U@ j) = U(a), N(a"j) = N(a), for ae2=",

@  p(N@) <= U), g,( #@) < Ula), for ac2<°,
(8) if BeS(), B'e¥(a"j) and B" c B’ then c(a”j)(B") < o(a)(B),
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(6) for each te2® the sequence of the triples (g;, Z (£]1), &) (92> F(t]2), &5), ... has
properties (11)—(13) formulated in Step (I), Sec. 3 (with & replaced by Z (t]i)),

(7) there are points X,, a2’ such that x,ep(N @)n () {g,(F): FeF(a)} and
g txa) = Ugf' (a) (cf. (14), Step (II), Sec. 3),
(8) forae2", if Ce#(a) and C= a(a)(B), where Be ¥ (a), then C contains exactly
d,nj(B) elements of & (a"j) (see (B), cf. Sec. 3(15)).
(D) Let us postpone to the next section the construction of the objects described in
(C), and let us check that, once we have them, the statement formulated in (A) follows

easily. We shall appeal to the reasoning in Step (II), Sec. 3.
Let fe¥ be the limit of the sequence g3, gz, --- (cf. Sec. 3(16)). For each te2™ let

9) F, = ﬁ U & (tli).
i=1

Property (6) allows 6ne to repeat the arguments justifying (17) in Sec. 3, which,
combined with (4) and (7), gives us

(10) F,=f"'(x), where {x}= ﬂ U(tl) = M.
i=1

Let a homeomorphic embedding w: 2 — M be defined by (sec (10) and (3))

(1

Fix (t,s)eS. For each n there exists a unique B,(t, 5)e F(t|n) containing s; let
F(t, s) = o(t|n)(B,(t, s)) be the cotresponding element of #(t|n). The decreasing
sequence F,(t, s) © F,(t, 5) = ... (see (3)) of closed-and-open sets in 2° with diameters
converging to 0 determines a unique point v(t, s) of F, (see (9)). Thus a homeomorphic
embedding v: §—2% is defined such that (see (B) and (9))

w(t) = x,.

v(S,) = F,.

This, together with (10) and (11), shows that o(S) = f~*(w()).

(E) The construction of the objects in (C) requires only some modifications of the
proof of Step (I) in Sec. 3. Suppose that for some n we are given a parametrization g,,
¢ >0, collections %(n), A (n), and collections # (a), a2", together with bijections
o(a): ¥(a) > F(a), described in (C) (we start with the parametrization gq and g
introduced at the end of (A), and we let #(0) = {X}, #'(0) = {P}, # (D)= {2°},
#@) = 27}, o@)2%) = X). ‘

We shall proceed for each ae?2" separately, so let us fix some ae2" and set f =g,
e=s¢, & =F(), N=N(@), U=U(@), x=x, (see (7), 0 =od(a) &L(a)—4&

Let & = {E,, ..., E,}. For each je2 and i = 1, ..., p, define d,()e{0, 1, 2} in the
following way: pick Be S (a) with o (a)(B) = E; and set d,(}) = dan;(B) (see (B)). By (B),
m(j) = d;(1)+ ... +dy{p) > 0, for je2.
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Let o = {Ay, ..., 4,} and W S ) =% be as in the proof of Step (I) (see

(1)—(3), Sec. 3). Since xep(N)n VE’, one can choose closed-and-open nonempty subsets
No, Ny of N such that p(No)np(N) =8, p(N)<W, and diamN; < 1/(n+1),
diamp(N) < 1 /2(n+1)). Let Uy, U, be disjoint open sets of diameter < 1/(n+ 1) with
p(N) = U; and U;c= W. We split each 4, into dy()+d,()+1 pairwise disjoint
closed-and-open sets

D(i)1 Cj[(l)-: l= 1., ...,dj(i), ]= 0, 1’

with diam C(i) < &, and we set (see (4), (5), Sec. 3)

F={Cpl: i=1,...,p, I=1,...,d)()}, D=D(1)u...uD(p).

If E;=oc(@)B), Be(a), the collections % ={Bef(@"j): BcB} and %
={CeZ(j): C < E,} have the same cardinality d (i) and therefore, for je2, there exists
a bijection o(a"j):(@"j) = #(j) which maps each &% onto %;.

Let S;< p(N)) be compacta with dim S; > m(j)—1 and let the sets G;, Ky, V},
1< m(j), Kjy = Uy, be chosen as in the proof of Step (1), for each §; separately (cf. Sec.
3(6)). A parametrization g:2® - X is defined following Step (I), where
g(D) = £ (J #\W u V) and g|2°\() o = f12®°\|J &, so that (7)~(10) in Sec. 3 are
satisfied with # replaced by each F(j). We set U(@"j)=U, N@"j)=N,,
F (@) =F(j), g. = g. The parametrizations g,, defined for each ae2" separately,
coincide with g, outside (] #(a) and g,() #(a)) = Ufa). Therefore, if : 2° — X is
identical with g, outside the union | J{| ) # (a): ae2"}, and § coincides with g, on each
{J # (a), the parametrization § has all properties of the parametrizations g, we were
interested in. The distance between g and g, is less than &,. Let 4, be the closed ¢,-ball
about g, in S(2°, X) and let % < %, be a neighbourhood of g, small enough that each
parametrization ue % keeps the properties of § which are essential for us (cf. Step (I),
next to (10)). Let g, ; € % N %. The argument following (10) in Sec. 3 shows that for each
b =a"j, ae2", je2, there exists

% €p(NB) () {gn+1(F): FeF®)}, with grti(x) = U F(b).

Finally, the distance §(a")j) between g,+(2°\|J # (@) and g,+1(J #@")) is positive
for each ae2", je2 (see (7), Sec. 3) and let ¢,4;>0 be small enough that
26,41 < min{d(b): be2"*!} and the closed &, -ball 4,4, about g, is contained in
#,0%,.1. This completes the inductive construction, ending the proof of Theorem 4.1.

5. Comments

5.1. The theorem of Kuratowski provides in fact more information than stated in
Theorem 1.1 (see [Ku2; §45, II]):

THEOREM (Kuratowski). Let K, K,,... be a séquence of perfect finite-dimensional
compacta in a compactum X. Then, for almost every parametrization f: 2% ~ X, the order
of f at each point of K, is at most dmK;+1, i=1,2,...
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Hence, if Z is a perfect subcompactum of a compactum X, for a typical
parametrization f: 2° - X the points in Z of order one form a dense Gj-set in Z. In
particular, a typical parametrization f of a perfect compactum X on 2% is irreducible,
ie, f(F)# X for any proper compactum F in 2%

Consider the countable-dimensional, but not strongly countable-dimensional
compactum X mentioned in Sec. 2.5. By the theorem of Kuratowski, for almost all
parametrizations f: 2% — X the set U(f) = {xeX: f~*(x) is uncountable} is disjoint
from | )iz, K;, hence zero-dimensional. Nevertheless, typically, U(f) is not Borel in X,
by Corollary 4.2.

5.2. A classical theorem of Lusin [Lu; Ch. 1V], the theorem of Kuratowski, and
Theorem 4.1 (cf. also Purves [Pu]) provide the following

PROPOSITION. Let M be a Borel set in a compactum X. Then M can be covered by
countably many finite-dimensional compacta if, for a typical parametrization fi 22X,
whenever B = 2° is a Borel set, so is the intersection f(B)n M.

53, Let.# be the o-ideal of subsets of the Hilbert cube I* which can be covered by
countably many finite-dimensional compacta, and let #* be the o-ideal of sets E = I®
such that for almost every parametrization f: 2® —I% all but countably many fibres
£~1(x) with x € E are countable. By Kuratowski’s theorem in 5.1, # < .#*, and Theorem
4.1 shows that all analytic sets in #* are in fact in #. Under the Continuum Hypothesis,
any uncountable Lusin set L in I® (ie, L intersects each meagre subset of I* in an at
most countable set [Ku2; §40, VII]) belongs to S* (see Sec. 5.1), but L¢.# (the
members of # being meagre in I*). The sets in J* are countable-dimensional (see the
theorem at the end of Sec. 2.5). It seems that more information about the g-ideal S*
would be of some interest.

54. Let X be a compactum all of whose nonempty open sets are infinite-
dimensional. Given a parametrization f: 2® — X and a compact set T = 2% we let
P(f, T) = {xeX: f~'(x) is homeomorphic to T}.

By a theorem of Ryll-Nardzewski [RN], the sets P(f, T) are Borel. Theorem 4.1 shows
that, for a typical parametrization f: 2° — X, each point in X is a point of

condensation of every set P(f, T) with nonempty T. As was observed in Sec. 5.1,

typically P(f, {t}) is a dense G-set in X.

5.5. Bruckner and Garg [B-G] proved that for a typical continuous mapping
£+ I =1 of the unit interval onto itself, the fibres f~*(x) are of one of the following three
types: a perfect set, a union of a perfect set and a singleton, a singleton, and all but
countably many fibres of f are perfect.

For n > 2, a typical Peano function f: I—1I" ie, a continuous mapping of the unit
interval onto the n-cube, is finite-to-one, This can be easily checked by standard
arguments (more spcifically, a typical Peano function f: I—I"is of order < 5if n =2,
and of order < n+2 if n 3z 3).

A typical parametrization f: I —I* of the Hilbert cube on the unit interval has the
universal property described in Theorem 4.1. In fact, only a slight adaptation is needed
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in the proof of Theorem 4.1 to pass from parametrizations of I on 2 to parametriza-
tions on I In particular, for a typical Peano function f: X~ I% for the Hilbert cube, all
_topological types of nonempty compacta in 2% appear as the fibres /™1 (x).

5.6. For the reader’s convenience we provide an argument Justifying analyticity of
the set of parametrizations defined by (2) in Sec. 4.3.

Let By, B,,... be a base of closed-and-open .sets in 2. Using the notation
preceding (2) consider the set

L= Ll_){(f, v, w, t): (6(S) "B, # @ and w(t)¢ f (By) or
(v(S)nB, =@ and w(t)e f (B))}.
The set Lis of type F, in the product of appropriate complete function spaces with the
Cantor set 2 and so is the projection H of L parallel to the compact coordinate 2.

The complement of H is therefore a G,-set and its projection on the first coordinate is
the set defined by (2).
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