FUNDAMENTA
MATHEMATICAE
140 (1991)

Hecke structure on Bredon cohomology
by

Jolanta Stominska (Torui)

Abstract. We construct a Hecke structure on equivariant Bredon cohomology with
local coefficients and then describe some of its properties. We compare this structure with
the Mackey structure defined by T. tom Dieck and with the Illman transfer.

0. Introduction. Let G be a finite group. We shall denote by Hg the
category whose objects are the G-orbits G/H, where H is a subgroup of
G, and whose morphisms are the Z(G)-homomorphisms of the permutation
Z(G)-modules Z(G/H') — Z(G/H) ([4],1.3). A Hecke functoris an additive
contravariant functor 7' : HY — Ab, where Ab is the category of Abelian
groups. The category of Hecke functors will be denoted by (H¢, Ab). The
Hecke functors can be considered as cohomological G-functors (see [6], [14]
and [16]). Their properties are described in [13] and [15]. Every Hecke
functor is a Mackey functor.

In this paper, we shall study connections of Hecke functors with Bre-
don cohomology theory ([2]). Bredon cohomology is an equivariant singu-
lar cohomology theory, which is defined on the category G-CW of G-CW-
complexes. Its coefficients are contravariant functors M : OF — Ab, where
Og is the category with the same objects as H¢g, whose morphisms are the
G-maps G/H' — G/H. These functors are called generic G-coefficient sys-
tems. The category Og can be considered as a subcategory of H¢ so for any
Hecke functor T and G-CW-complex K we have the Bredon cohomology
HE(K,T).

It is well known that the Bredon cohomology H{ (K, M) of a G-CW-
complex K with respect to a coefficient system M can be extended to a
coefficient system H¢ (K, M) by defining

MK, M)(G/H) = H5(G/H x K, M) = Hiy (K, MIy)
where Iy denotes the natural functor Oy — Og such that Iy (H/H') =

G/H' whenever H' is a subgroup of H.
If M is a Mackey functor, then HE (K, M) can also be extended to a
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Mackey functor and this definition gives us a Mackey structure on Bredon
cohomology with coefficients in M, in the sense of [5]. We show that if
M is a Hecke functor, then H§ (K, M) can also be considered as a Hecke
functor. This Hecke structure can be considered as an extension of the
Mackey structure defined by T. tom Dieck.

In Section 1 we present another extension of H (K, M) to a certain
coefficient system. We define a Hecke functor Z¢, (K, M) such that

T5(K, M)(G/G) = HE(K, M).
This functor can be extended to a functor
Z5 : G-CW°P x (ng,Ab) X Hcc’;p — Ab*,

where (—, —) denotes the category of functors and Ab* denotes the category
of graded abelian groups. Hence we can regard Z¢, as a Hecke structure on
Bredon cohomology. This structure was defined in [10]. It is induced by a
functor

v HE x (OF,Ab) — (OF, Ab)
such that v(G/G, M) = M for every coefficient system M. The structure
T¢., after restriction to OF, is not equal to HE..
We also give another equivalent definition of a Hecke structure on Bredon

cohomology. We introduce a functor § : Og x G-CW — G-CW such that
0(G/G,K) = K, for every G-CW-complex K. Then we show that

He(K,v(G/H,M)) = Hg(0(G/H, K), M),

for every coefficient system M.
If L is a local coefficient system on K, then we can define the coefficient
system H{ (K, L) in such a way that

Ho(K,L)(G/H) = He(G/H X K, Lpg/n) = Hy (K, L|H),

where pg/p denotes the projection G/H x K — K. We show that this
system can be extended to a Hecke functor and that

HE(GJH x K, L) = HE(0(G/H, K), Li(naym idx))
where mg/p denotes the map G/H — G/G. Hence, if we define
1a(K,L) = Hg(6(G/H,K), Ld(7g/n)) ,
then H¢, = 77 in this case.
We show that there is a map
¢»(G/H,K):G/H x K — §(G/H,K)

natural in G/H and K and such that pg/g = 0(7q/m)¢(G/H, K). This
map induces, for every coefficient system M : OF — Ab, a natural trans-
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formation of coefficient systems
O (K, M) TH(K, M) — HE(K, M) .

The natural transformation ¢*(—, M) of contravariant functors from G-
CWxO¢ to the category of graded abelian groups is a natural equivalence
if and only if M is a constant functor. In the case where M is a Hecke func-
tor, ¢*(K, M) is a natural transformation of Hecke functors. Let M0g(K)
be the local coefficient system on K determined by M. Then ¢*(K, M)
can be considered as the map induced by a natural transformation of local
coefficient systems on G/H x K

o(M,pcm) : MOc(K)pgam — M0g(G/H x K).

One of the results of this paper is the construction of a spectral sequence

E?? such that

EP? = He(K', T4 (K, L))
where K’ is a certain G-CW-complex. We discuss the cases where FY? =
HYM(K, L).

Some of the results stated in Section 1 will be proved in Section 2. We
show that the Hecke structure on Bredon cohomology can be described in
well known terms of category theory. We also prove that this construction
can be generalized to the case of functors from a category associated to a
G-poset to Ab. We shall begin Section 2 with a definition of such a category.

The author wishes to thank the referee for his careful reading of the
manuscript and his useful suggestions and observations.

1. Main results. We begin with the definition of Hecke structure on
the category of G-coefficient systems. We need the following notation.

Let Z(G)-Mod denote the category of left Z(G)-modules. The category
H¢ can be considered as a full subcategory of Z(G)-Mod, because there
is a natural inclusion ¢ : Hg — Z(G)-Mod given by «(G/H) = Z(G/H).
The natural inclusion Og — Hg will be denoted by i. For any G-map f :
G/H — G/H' ,i(f) is the Z(G)-module homomorphism Z(f) : Z(G/H) —
Z(G/H').

We shall consider the functor 5 : Z(G)-Mod®? — (Z(G)-Mod®, Ab) such
that for any Z(G)-modules A and A’

B(A)(A") = Homycy (A ® A', Z)

where Z = Z(G/QG) is the trivial Z(G)-module. If A = Z, then §(Z) is the
Yoneda functor Homgz gy (—, Z).

Let C and C’ be small categories. For any functors a : C — Z(G)-Mod
and o/ : C' — Z(G)-Mod the functor (3 induces a functor

Bla,a’) : CP — (C'°P, Ab),
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which is the composition (o/,id)Ba. If « is an additive functor, then so is

B(a,a’). The functor B(c, i) : HY — (OF,Ab) will be denoted by 3. It

follows from the definition that, for any subgroups H and H’ of G,
B(G/H)(G/H') = Homgc)(Z(G/H) ® Z(G/H'), Z)

Hence §'(G/G)(G/H') = Z and p'(G/G)(f) = idz whenever H' is a sub-
group of G and f is a morphism of Og.

Assume now that C is a small category. For any functors M, M’ : C —
Ab, we shall denote by M ® M’ the functor from C to Ab such that (M ®
M) (=) = M(—)® M'(—). Let Z¢c : C — Ab denote the constant functor
such that, for every object ¢ of C, Z¢(c) = Z, and for every morphism m of
C, Z@(m) =1idy. Then M ® Z¢c = Zc @ M = M.

Assume that « is a functor from C to Z(G)-Mod. Let

" Z(G)-Mod®? x(C°P, Ab) — (C°P, Ab)

be the functor such that, for any Z(G)-module A, o/'(A, M) = ((id, a)(A)
®@ M.

1.1. PROPOSITION. The functor o has the following properties:

(i) o (A, M)(c) = Homy ) (A®a(c), Z) @ M (c) whenever c is an object
of C.

(11) O[//(A, M) = a//(A, Z(Cop) ® M

(iii) If @ = vy where oy is a functor from C to Og then o' (Z(G/G), M)
=M.

Proof. (i) and (ii) follow immediately from the definition. (iii) holds
because (11)"(Z(G/G), Zogr) = Homz(g)(Z(—), Z) = Zoor - =

In particular, for C = Og we obtain the following fact.

1.2. COROLLARY. Let the functor v : HY x (OF, Ab) — (O, Ab) be the
composition (11)"(¢,id). Then, for every coefficient system M, v(—, M) =
B'(—=)® M and, in particular, v(G/G,M) =M. m

We shall also use the notation

V(= M) =M[-] and Zo» =Zo, -
Hence, for every coefficient system M, M[|G/H] = Zo.|G/H] ® M and
M|G/G] = M. If H' is a subgroup of G, then
M|G/H|(G/H") = Homy(Z(G/H) ® Z(G/H'),Z) @ M(G/H') .

1.3. DEFINITION. We define a Hecke structure on Bredon cohomology

as a functor
Z&(—, =) (=) : G-CWP x (OF, Ab) x HY — Ab*
given by I¢,(K, M)(=) = Hg (K, M[-]). =
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We can also define a Hecke structure on Bredon cohomology with local
coefficients. Assume that K is a G-CW-complex. This means that K is a
CW-complex and that G acts on K in such a way that for every subgroup
H of G the fixed point set K is a subcomplex of K. Let K be the category
defined in [2], Ch. L5. Its objects are the finite subcomplexes of K and its
morphisms are the compositions of the inclusions and the maps induced by
the operation by the elements of G. We shall also use the notation g = K.
Assume that f : Ky — K is a G-CW-map. Then the map f : £y — K
is defined in such a way that, for each subcomplex K7 of Ky, f(K7) is the
smallest subcomplex K (f(K7)) of K which contains f(K}).

The local coefficient systems on K in the sense of Bredon are the co-
variant functors on K. If L is a local coefficient system on K, then the
local coefficient system Lf will also be denoted by Lf. Let L4 be the cat-
egory whose objects are the pairs (K, L) where K is a G-CW-complex and
L is a functor from K¢g to Ab. The morphisms of Lg are the pairs (f, o) :
(Ko, Lo) — (K, L) where f : Ky — K is a G-CW-map and ¢: Lf — L is a
natural transformation of functors. In [2], Ch. 1.6, 7, Bredon defined the co-
homology functor H¢, from the category £ to the category Ab* of graded
abelian groups. In this paper we shall use a slightly modified definition of
the term “local coefficient system”.

Let K(G) be the full subcategory of K whose objects are all subcom-
plexes of K of the form K(s), where s is a cell of K, and K(s) is the
smallest subcomplex of K containing s. We shall consider the functors from
the category K(G) to the category Ab and call them the local coefficient
systems on K. Assume that L : K(G) — Ab. We shall also use the notation
L(K(s)) = L(s). Let u: K(G) — K¢ be the natural inclusion of categories.
We shall denote by L¢ : Ko — Ab the left Kan extension of the functor L.
It follows from the definition that, for every subcomplex K’ of K,

L¢(K') = colim L/K".
Ke/K'
Here K¢ /K’ is the full subcategory of g whose objects are all subcom-
plexes of the form K(s) contained in K’ and L/K' is the restriction of L.
There exists a canonical functor e : L5 — Lg such that, for every pair
(K,L), e(K,L) = (K,(Lu)°) and a canonical natural transformation of
functors t : idz, — e such that, for every pair (K, L), t(K,L) = (idg, tr),
and the homomorphism

HE (K, tr)  Hy(K, (L)) — HE (K, L)

is the identity map. Let £(G) denote the category of all pairs (K, L) such
that L : K(G) — Ab. The morphisms of £(G) are the pairs (f,p) :
(Ko, Lo) — (K, L) where f : Ky — K is a G-CW-map and ¢ : (L°f)u — Ly
is a natural transformation of functors. We shall also use the notation
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(L¢f)u = Lf. It follows from the above considerations that we can define
the functor Hf, from £(G) to Ab* in such a way that, for every pair (K, L),
HE(K,L) = HE (K, LS).

Assume that f: Ky — K is a G-CW-map satisfying the condition that,
for every cell sg of Ky, there exists a cell s of K such that K(f(Ky(sg))) =
K(s). Then f induces a functor fg : Ko(G) — K(G) and, for every local
coefficient system L on K, we have Lf = Lfg. One can easily check that
in this case, for any functor Ly : Kg — Ab, (L1 f)u = (Liu)f.

Let 0 : K°? — O¢g be the canonical contravariant functor defined by
Bredon in [2], Ch. I.5. We shall use its restriction 0¢(K) : K(G) — Og.
For every cell s of K, 0 (K)(K(s)) = G/Gs where Gs = {g € G : gs = s}.

1.4. COROLLARY. There exists a functor vx : HF x (K(G),Ab) —
(K(G), Ab) such that

& (G/H, L)(K(s)) = Homg ) (Z(G/H) @ Z(G/G,), Z) @ L(K(s)) -

Proof. This follows from 1.1 for yx = (¢i0g)"(¢,id). =
We shall also use the notation L[G/H] = vx(G/H, L).

1.5. DEFINITION. We define a Hecke structure on Bredon cohomology of
K with local coefficients as a functor

T4H(K,—)(—) : (K(G),Ab) x HY — Ab*
given by Z(K,L)(G/H) = HA(K,LIG/H]). =
One can also prove that there exists a functor ~ : H(ép X Lo — Lg such

that, for every G-CW-complex K, v(—, (K, —)) = vx. Thus we can consider
the functor

I&(—, —)(—) : LE x HE — Ab" .
In order to avoid complications, we restrict ourselves to the case of the local
coeflicient systems defined on a fixed G-CW-complex K.

Let 9 : Z(G)-Mod — (H{', Ab) be the functor induced by the Yoneda
functor ¢ : Z(G)-Mod — (Z(G)-Mod°?, Ab). This means that, for every
Z(G)-module N and every subgroup H of G,

U(N)(G/H) = Homy)(Z(G/H),N),
and for every Z(G)-homomorphism f : Z(G/H') — Z(G/H),

J(N)(f) = Homzg)(f,idn).

For any Z(G)-module cochain complex C*, the functor ¢ induces a Hecke
functor cochain complex ¢* = ¥(C*) such that, for every natural number n,

¢"(G/H) =9(C")(G/H) = (C™)" .
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The functor ¥ also gives us, for each natural number n, the Hecke functor
h™, the nth cohomology functor of the cochain complex ¢*. Let Z(G)-Mod®
denote the category of Z(G)-module cochain complexes. We define a functor

h: Z(G)-Mod® x HY — Ab*
in such a way that, for every Z(G)-module cochain complex C*, h(C*, —) =
" .Let K be a G-CW-complex. Bredon in [2] introduced a functor
C*(K,-): (Kg,Ab) — Z(G)-Mod®,
such that, for every functor L : Ko — Ab,
H{(K,L)=h(C*(K,L),G/G).
Assume now that L : K(G) — Ab. Then we define
C*(K,L) = C*(K,L°).
Let S,, K denote the G-set of all n-cells of K. Then
CMK,L)= [] Ls).

seSp, K
If ge Gand £ = ({(s)) € C"(K, L), then gf = ((gf)(s)), where

(96)(s) = L(g)t(g™"s)
and L(g) denotes the map L(g: K(g~'s) — K(s)). Assume that o : L — L'
is a natural transformation of coefficient systems on K. Then the group
homomorphism H{ (K, ) is induced by the map [[,cq x @(s). Thus we
obtain a functor

C*(K,—-) : (K(G),Ab) — Z(G)-Mod® .
In Section 2 we prove the following result.

1.6. PROPOSITION. There exists a natural isomorphism of functors from

(K(G),Ab) x HY to Ab*
Io(K,=)(=) = h(C"(K,=),—). =

Assume now that M : OF — Ab is a coefficient system for the group G.

Then by the definition ([2])
C(K, M) = C*(K, MOG(K)),  H&(K, M) = H5(K, Mog(K)).

If 3: M — M’ is a natural transformation of generic coefficient systems
then the map C*(K, ) : C*(K, M) — C*(K, M) is given by the products
of maps [[,cq x B(G/Gs). This map induces the graded group homomor-
phism H*(K, [3).

The following result is an immediate consequence of 1.6.
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1.7. COROLLARY. There exists a natural isomorphism of functors from

G-CW°P x(OZF,Ab) x HY to Ab*
(= —)(=) = h(C*(=,—),—). =

Let f : Ko — K be a G-CW-map. For any local coeflicient system
L : K(G) — Ab, we shall denote by H(f, L) the group homomorphism
H{ (K, L) — HE (Ko, Lf) which is determined by the map (f,idzf). The
homomorphism H¢(f, L) is induced by the Z(G)-module cochain complex
homomorphism C*(f, L) : C*(K,L) — C*(Ky, Lf), which can be described
in the following way. Let C.(K,Z) denote the cellular chain complex of K
and let C.(f,Z) : C.(Ko,Z) — C.(K,Z) be the chain map induced by f.
Assume that so € S, Ko. If C.(f,Z)(s0) = >.;_; nis; where s; € S, K for
i=1,...,r, then, for any £ € C"(K, L),

(Cn(ﬁ L)E)(SO) = an‘)\if(si)

where, for i = 1,...,r, A; is the structural map

L(s;) — colim L(s) = Lf(sn) .
(s4) K(s)CK(f(Ko(s0))) (s) f(s0)

Assume now that M is a generic G-coefficient system. Then f induces
a homomorphism

He(f, M) : HG(K, M) — Hg (Ko, M)
which is determined by appropriate Z(G)-module homomorphisms
C™(f,M): C"(K,M) — C" (Ko, M)
such that, for sg € S, Ky and m € C"(K, M),
C™(f, M)(m)(s0) = >_ mipim(s;)
i=1
where, for i =1,...,7, pu; : M(G/Gs,) — M(G/Gs,) is the map induced by
the inclusion G, C Gy, .
We also have a natural transformation of local coefficient systems on Ky
(M, f): MOc(K) [ — M6g(Ko)

such that, for every cell sy of Ky, the map

SO(Ma f)(SO) : M(G/Gs) - M(G/Gso)

: colim
K(s)CK(f(Ko(s0)))
is induced by the inclusions G5, C G,. It is easy to check that
He (Ko, o(M, f))He(f, MO (K)) = Hg(f, M) .
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For a G-map f : K — K we shall denote by P(f) the fiber product
over K/G of f/G : K/G — K/G and the projection to the orbit space
7(K) : K — K/G. We shall consider P(f) as a subset of (K/G) x K.
The group G acts on P(f) by the action on the second coordinate. There
are two structural maps fi : P(f) — K and fo : P(f) — K/G such that
m(K)fi = (f/G)f2. Let ¢ : K — P(f) be the unique map such that
f = fi¢ and W(IN() = fa¢. Then ¢/G is a homeomorphism and (f2¢)/G is
the identity map on f(/G Further, G, = Gy, () for any x in P(f). It is
clear that P(f) = K if Gy = G ) for each k in K. Assume that f = f'f",
where f/ : K” — K and f” : K — K" are G-maps. Then there exist
unique G-maps psr : P(f) — P(f’) and 7y : P(f"”) — P(f) such that the
diagrams

K — P(f) — K K — P(f) — K’
J{f” lpf” lid lid l”f/ lf,
K' — P(f) — K K — P(f) — K

commute. If fis a G-CW-map, then the topology of P(f) is induced from
the topology of the product (f( /G) x K in the category of k-spaces.

Assume now that K is the product K’ x K of two G-sets with diagonal
action of G and that f = pxs : K’ x K — K is the projection onto the second
coordinate. In this case we shall use the notation Pg(K’', K) = P(pg/). If
K’ is a G-CW-complex, then K’ x K is a product in the category of k-
spaces. Since open cells of K’ x K are products of open cells of K’ and K,
Pg(K', K) has the natural structure of a G-CW-complex whose open cells
are subspaces of the form {((gk’,gk),k) : k € s,k € s’} where ¢ is a fixed
element of G, s is an open cell of K and s’ is an open cell of K’. We shall
denote by S(K) the G-set of all open cells of K. Thus

S(Pe(K',K)) = Pg(S(K'),S(K)) .
We can extend, in a natural way, the construction above to a functor
Ps : G-CW x G-CW — G-CW .

Let P : G-CWxG-CW— G-CW be the product functor; ie., P(K', K) =
K’ x K together with the diagonal action of G. There exists a natural
transformation of functors ¢ : P — Pg such that ¢(K’, K) is the map
determined by the projection pg: : K/ x K — K and by the projection
K'x K — (K’ x K)/G to the orbit space. This natural transformation has
the following properties.

1.8. PROPOSITION. (i) Let L be a local coefficient system on K. Then,
for every G-CW-complex K', the G-cellular map ¢(K', K) induces an iso-
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morphism of cohomology groups
HE(Po(K', K), L(pxr)1) — HEG(K' < K, Lpk) .
(ii) Let M : OF — Ab be a generic G-coefficient system . Then
Mg (K)(px')1 = MOc(Pa(K', K))
and the map ¢(K', K) induces an isomorphism
Hi(Po(K',K),M) — HA(K' x K, M0g(K)pk) .

Proof. (i) Set Ly = L(pks)1. It is clear that Lpx = L1¢(K', K).
Hence it is sufficient to prove that the maps C"(¢(K’, K), L1)¢ are isomor-
phisms and this follows from the fact that ¢(K’, K)/G is a homeomorphism
such that ((px+)20(K', K))/G = id(x/ x i)/

(ii) This assertion is a consequence of the fact that, for every z in
Po(K',K), G = Gy, where k = (pg/)12. =

The category O¢ can be considered as a full subcategory of the category
G-CW. The restriction of the functor Pg to the category Og x G-CW will
be denoted by 6. It is obvious that §(G/G, K) = K and that (pg/g)1 is
equal to 0(7¢/p,idx) where g g : G/H — G/G.

We shall use the notation

H;(6(G/H,K), L) = H;(0(G/H,K), Lé(Tg/m,1dKk)) ,
Co(3(G/H, K), L) = C5(8(G/H, K), Ld(rgm,idx))

Let u(G/H,K) : K — §(G/H, K) be the map determined by the identity
idg : K — K and by the map ug : K — (G/H x K)/G such that, for every
ke K, ug(k) = [(eH,k)]. It is clear that u(G/H, K) is an H-CW-map and
that, for every G-map f: G/H — G/H' such that f(eH) =eH’,

The map u(G/H, K) induces, for every local coefficient system L : K(G) —
Ab, a Z(H )-module cochain complex homomorphism

v (L,G/H):C*(6(G/H,K),L) - C*(K,L).
Let w*(L,G/H) : C*(6(G/H,K), L)Y — C*(K,L)¥ denote the restriction
of u*(L,G/H)* to the Z-module C*(§(G/H,K), L)“.

1.9. PROPOSITION. There exists a natural equivalence of functors from

(K(G),Ab) x OZF to Ab*
0" Hé((s(_ﬂ K)v _) - h(C*(K, _)7 _) )
such that, for each subgroup H of G and each local coefficient system L
on K, o*(L,G/H) is induced by the cochain complex homomorphism
w*(L,G/H). m
In the proof of this proposition we shall use the following facts.
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Assume that K is a G-CW-complex and that H is a normal subgroup
of G. Then K/H has a G-CW-complex structure induced from K and the
projection to the orbit space w: K — K/H is a G-CW-map.

1.10. LEMMA. Let L be a local coefficient system on K/H. Then the
image of the Z(G)-module cochain complex monomorphism C*(K/H,L) —
C*(K, Lw) is equal to C*(K, Lw)".

Proof. This follows immediately from the definitions of the cochain
complex of Bredon cohomology and of the homomorphism induced by a
G-CW-map. =

Assume now that K is a G-CW-complex. Let K" = K X, K be the
fiber product over K/G of two projections 7 : K — K/G onto the orbit
space. The group G acts on K" by the action on K x K and K” has a
natural structure of a G X G-CW-complex. The set of cells of K X g /g K is
S(K) xs(k)/c S(K), where S(K) is the cell set of K. Thus, we can assume
that the cells of K" are indexed by the set {(s,gs):s € S(K),g € G}. Let
p and p’ be the structural maps from K” to K. We can consider them as
the G x G-CW-projections p' : K" — K" /G x (e),p: K" — K" /(e) x G.

1.11. LEMMA. Assume that L is a G-local coefficient system on K. Then
there exists an isomorphism j : Lp — Lp' of G x G-local coefficient systems
on K" = K X K such that, for every cell s of K, j(s,s) is the identity
map.

Proof. Let (s,s") beacell of K”. Then there is g in G such that s’ = gs.
We define j(s, gs) : L(s) — L(gs) to be L([g]), where [g] : K(s) — K(gs) is
multiplication by g. m

Proof of Proposition 1.9. Let K be a G-CW-complex and let H
be a subgroup of G. We shall use the fact that there exists an isomorphism

a:(G/HxK)/G— K/H

such that a(G(gH,k)) = Hg 'k whenever g € G and k € K. This implies
that K" = K X /¢ K, with the group action restricted to (e) x G, is equal
to 6(G/(e), K) and that §(G/H, K) is equal to K" /(H x (e)) as (e) x G-
CW-complexes.

Let mg/p : G/H — G/G be the natural projection. Then 6(7¢/(c),idx)
=p : K" — K"/G x (e). Assume that dg/g : G/(e) — G/H is the
projection such that dg/p(g9) = gH for g € G. Then §(dg/p,idk) is the
projection onto the orbit space of H x (e).

Let L be a local coefficient system on K. From Lemmas 1.10 and 1.11
we conclude that there exist Z(G) = Z((e) x G)-isomorphisms of cochain
complexes

C*(6(G/H,K),L) = C*(K”ij’)HX(e) o~ C*(K”,Lp)HX(e) .
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Lemma 1.10 also yields a Z(G x (e))-module isomorphism C*(K,L) =
C*(K", Lp)(®)*&. Hence we obtain isomorphisms
C*(6(G/H,K),L)® =2 C*(K xg,c K, Lp)"*% = C*(K,L)" .

Let u = u(G/e, K). Since pu = p'u = idg and ju : Lpu — Lp'u is the
identity map it follows that the isomorphisms above are induced by the
maps w*(L,G/H). m

The G-complex §(G/H, K) will also be denoted by K[G/H]. Thus K[—]
can be considered as a functor from Og to G-CW. If| for each k in K, Gy
is a subgroup of H, then ¢(G/H,K) : G/H x K — K|G/H] is a G-CW-
homeomorphism.

As immediate consequences of 1.8 and 1.9 we obtain the following results.

1.12. COROLLARY. There exists a natural equivalence of functors from
(K(G),Ab) x OZF to Ab*

Hi{(—x K,—) - h(C*"(K,—),—),
where, for every local coefficient system L and every subgroup H of G,
Hi(G/H x K, L) = H;(G/H x K, Lpg /) - m

1.13. COROLLARY. There exists a natural equivalence of functors from

G-CW x (OF,Ab) x OF to Ab*
Hé(_[_]v _) - h(C*(_v _)a _) - u

1.6 and 1.7 yield the next results.

1.14. COROLLARY. Let K be a G-CW-complex and let H be a subgroup
of G.

(i) Assume that L is a local coefficient system on K. Then there are
isomorphisms

Hg(K|G/H], L) = H;(G/H x K, L) = Hg (K, L|G/H])

which are natural with respect to L in (K(G), Ab) and G/H in Og.
(i) Let M : OF — Ab be a coefficient system for the group G. Then
there is an isomorphism

z'(K,M)(G/H) : H;(K[G/H],M) — Hg (K, M[G/H])

which is natural with respect to K in G-CW, G/H in Og and M in
(OF,Ab). =

1.15. COROLLARY. (i) There exists a natural equivalence of functors
HE(K, —) and TE(K, —) from (K(G),Ab) x OF to Ab™.

(i) There exists a natural equivalence z* : Tf, — H}(—[—], —), and a nat-
ural transformation ¢* : T, — HE, of functors from G-CW°P x (OF, Ab) x
O, which is induced by the maps ¢(G/H, K).
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(iii) For a generic coefficient system M : OF — Ab,
My (K, M)(GH) = H(GH % K, MbG(G/H x K))
Ia(K,M)(G/H) = Hg(G/H x K, M0c(K)pc/n)

and the map ¢* (K, M)(G/H) is induced by the natural transformation of
local coefficient systems on G/H x K

o(M,pg/u) : MOc(K)pg/g — MOc(G/H x K).

Proof. (i) follows from 1.6 and 1.12. (ii) is a consequence of 1.7, 1.13
and the fact that the maps ¢(G/H, K) form a natural transformation of
functors from Og x G-CW to G-CW. (iii) follows from 1.13 and 1.8(ii)
because

Io(K,M)(G/H) = H;(K[G/H], M0g(K[G/H]))
and ¢(G/H, K) induces an isomorphism
HE(K[G/H], MOc(K[G/H]))
— Hg(G/H x K, Mbc(K|G/H])$(G/H, K)),
which satisfies the condition
Ho(G/H x K,o(M, ¢(G/H, K)))H¢(¢(G/H, K), M0g(K[G/H]))
— HA(6(G/H. K), M).
The equalities
MOc(K)pa/n = Mbc(K[G/H])$(G/H, K),
SO(MapG/H) = SD(M7 ¢(G/H7 K))
end the proof. m

In Section 2 we shall prove the following result.

1.16. COROLLARY. The natural transformation of functors ¢*(—, M)(—)
s an isomorphism if and only if M is isomorphic to a constant functor. In
this case, for any G-CW-complex K and any subgroup H of G,

Io(K,M)(G/H) = Ho((G/H x K)/G, M(G/G))
=HL(K/H,M(G/G)). =

Let T be a Hecke functor. We shall prove that in this case the coeflicient
system H¢ (K, T) can be extended to a Hecke functor, which will be denoted
by the same symbol. This is a consequence of the following result.

1.17. PROPOSITION. (i) Any functor k : HY x (HF,Ab) — (OF,Ab)
nduces a functor

K* 1 G-CW x (H2P, Ab) x HP — Ab*
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such that, for every G-CW-complex K, every Hecke functor T, and every
subgroup H of G,

K (K, T)(G/H) = H.(K,x(G/H,T)).

(ii) If d : K — K1 is a natural transformation of functors from HE X
(HZ, Ab) to (OF,Ab), then there exists a natural transformation of func-
tors d* : k* — kI such that, for every G-CW-complex K, every Hecke
functor T, and every subgroup H of G,

d*(K,T)(G/H) = H.(K,d(G/H,T)). =

The proof is easy and will be omitted. In Section 2 we shall prove the
following result.

1.18. PROPOSITION. There exists a functor I' : HF x (HZ,Ab) —
(O, Ab) and a natural equivalence * : I'* — HE, of functors from G-CW x
(HZ, Ab) x OF to Ab*. In particular, for every Hecke functor T, every
G-CW-complex K and every subgroup H of G, there is an isomorphism

(K, T)(G/H) : Hy(K, D(G/H,T)) — Hg(K.T)(G/H) . »
It is clear that using the isomorphism * we can extend H§ (K, T) to

a Hecke functor. If f : Z(G/H') — Z(G/H") is a Z(G)-module homomor-
phism, then

He (K, T)(f) = 4" (K, T)(G/H ) Hs (K, T'(f,idr))y* (K, T)(G/H") ™.

Let o : HY x (HZ,Ab) — (O, Ab) be the composition of the func-
tor 1" (1,id) which was defined before 1.1, and the restriction functor i’ :
(HZ,Ab) — (OF, Ab). Then ~v(id,i") = 4" where ~ is the functor defined
in 1.2, and for every Hecke functor T" and every subgroup H of G,

I5(K.T)(G/H) = Ho (K, v (G/H,T)).
Thus Z¢, after restriction to the category G-CW x (HX, Ab) x HY is equal
to (v')*.
1.19. PROPOSITION. There exists a natural transformation ¢ : v — I of

functors from HY x (HF, Ab) to Ab such that *C* = ¢* after restriction
to G-CW x (HF,Ab) x OF . =

Proposition 1.19 will also be proved in Section 2. It implies that if T is
a Hecke functor, then the transformation ¢*(K,T) : Z5(K,T) — HE(K,T)
extends to a natural transformation of Hecke functors when H{ (K, T) is
extended to a Hecke functor.

We shall need the following well known property of Hecke functors.
Assume that H is a subgroup of G and that H’ is a subgroup of H.
Consider the Z(G)-homomorphisms a : Z(G/H') — Z(G/H) and o' :
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Z(G/H) — Z(G/H'") such that for every g in G, a(gH') = gH and o’ (¢H) =
Z[h]EH/H’ ghH'.

1.20. LEMMA. Let T be a Hecke functor. Then there exist homomor-
phisms

r(H,H"):T(G/H)—-T(G/H"), i(H' H):T(G/H)— T(G/H)
such that the composition i(H', H)r(H, H') is multiplication by |H/H'|.

Proof. We define r(H,H') =T (a) and i(H',H) =T(a'). m

The following facts are immediate consequences of 1.20.

1.21. COrROLLARY. (i) If T(G/H") = (0), then |H/H'|T(G/H) = (0).

(ii) If T(G/H') is a p-group and |H/H'| = p", then T(G/H) is a p-
group.

(iii) Let Hy be a Sylow p-subgroup of H and let T(G/H), be the p-torsion
part of T(G/H). Then T(G/H), is a direct summand in T(G/H,).

(iv) If T : HY — Z,)-Mod is a p-local Hecke functor, then T(G/H) is
a direct summand in T(G/H,). =

Assume now that K is a G-CW-complex and that L is a local coeffi-
cient system on K. Then there exists an equivariant cohomology theory
h* : G-CW°? — Ab* such that, for every G-CW-complex K', h*(K') =
H{(Po(K',K),Ly), where L1 = L(pg+)1. The coefficient system of h* is
equal to the restriction of Z (K, L) to the category O . The results of [2],
Ch. IV, imply the following fact.

1.22. COROLLARY. There exists an “Atiyah—Hirzebruch” spectral se-
quence

HY(K',TL(K, L)) = HE'(Pg(K',K),L;). =

We shall study this spectral sequence in the case where the natural map
(pr')1 + Po(K',K) — K induces an isomorphism of cohomology groups
HE(K,L) = HA(Po(K' K), Ly).

1.23. COROLLARY. Assume that M is a G-generic coefficient system such
that, for every k in K, the map K' /Gy, — pt, where pt is a one-point space,
induces an isomorphism of cohomology groups

M(G/Gy) = H*(pt, M(G/Gy)) 2 H*(K' |Gy, M(G/G})) .
Then there exists a spectral sequence Ho(K', T8 (K, M)) = HET(K, M).
Proof. There exists a spectral sequence

qu(K/) = Hg‘<Kﬂ Mq(K,)) = Hg+q(PG(K/7K>7M)7
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where the M9 are G-generic coefficient systems such that, for every subgroup

H of G,
MUK\ (G/H) = HY(Pe(K', G/H), M) = HL(K' x G/H)/G x G/H, M)
~HL(K'/H xG/H,M) = HYK'/H,M(G/H)).

It follows from the assumptions that H¢ (K, M9(K')) = (0) for each natural
number ¢ > 0, and that there is a natural transformation of functors v(K"') :
M*(K') — MY(K') which induces an isomorphism H{ (K, M*(K')) =
HE (K, MO(K")).

Let M* = M*(pt). Then M? = (0) whenever ¢ > 0, and the map v(pt) :
M* — M? is a natural equivalence of functors. The natural map fx/ : K’ —
pt induces a morphism of spectral sequences F;*(pt) — E:*(K'). Since
(pr' )1 = (Ppt)1Pa(fr,idk) it follows that (pg+); induces an isomorphism
of cohomology groups H5, (K, M) = HY(Pg(K',K), M). We can now apply
1.22. =

We shall need the following notation. Assume that F' is a G-set of
subgroups of G, i.e. a set of subgroups closed under conjugation by elements
of G. Then we shall denote by F}, the set of all Sylow p-subgroups of groups
in F. If F,Fy are G-sets of subgroups of G then the G-set {H N Hy :
H € F,Hy € Fy} will be denoted by F o Fy. We shall denote by F U Fp
the ordinary union of the sets F' and Fy. We shall also use the notation
F'=FU{G}. If K is a G-CW-complex, then F(K) ={Gy : k € K}.

Assume now that R is a commutative ring. We say that a CW-complex
Ky is R-acyclic if the map II : Ky — G/G induces an R-module isomor-
phism H,(Ky, R) — R of the ordinary cellular homology groups with R
as coefficients. This is equivalent to the condition that, as R-modules,
H.(Ky, R) is isomorphic to H*(Ky, R) and to R.

1.24. LEMMA. (i) Let M : OF — R-Mod be a generic G-coefficient
system. Assume that for every subgroup H € F(K)' the CW-complex K
is R-acyclic. Then II induces an isomorphism M(G/G) = H{ (K, M).

(ii) Assume that, for every subgroup H € F(K)', II induces an iso-
morphism h,(K, R)(G/H) — R, where h, (K, R)(G/H) = H,(C.(K, R)H).
Then, for every Hecke functor T : HY — R-Mod, II induces an isomor-
phism T(G/G) 2 H:(K,T). m

This result will be proved in Section 2.

1.25. LEMMA. Let F' be a G-set of subgroups of G and let K be a G-CW -
complex. Assume that one of the following conditions holds.

(i) The CW-complex K is R-acyclic whenever H belongs to F(K)' o F
=(F(K)oF)UF.
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(ii) There exists a prime number p such that |G/Gp| is an invertible
element of R and the CW-complex K™ is R-acyclic whenever H belongs to
F(K) oF,.

Then for every H in F, the CW-complex K/H is R-acyclic and II in-
duces an isomorphism h.(K, R)(G/H) — R.

Proof. It is sufficient to prove that II induces an isomorphism

h.(K,R)(G/H) — R,
because, for each natural number n, there is an isomorphism
b: H,(C.(K/H,R)) — H,(C.(K,R)).
If (i) holds, then from 1.24(i) it follows that II induces an isomorphism
R — H°(Hompg(C.(K, R)®, R)) and that, for each n > 0,
H"(Homp(C.(K,R)™,R)) = (0).

This implies that h,(II, R) is an isomorphism.

Assume now that (ii) holds. Let H € F and let H, be a Sylow p-
subgroup of H. Condition (i) of this lemma holds for F' = Fj,, hence II
induces an isomorphism h. (K, R)(G/H,) — R. For each n, h,(K,R) is a
Hecke functor and h,,(I1, R) is a natural transformation of Hecke functors.
The result now follows from 1.20 and from the assumption that |H/H,| is
an invertible element of R. m

1.26. COROLLARY. Let K and K' be G-CW-complexes. Assume that one
of the conditions of 1.25 holds for K' and the family F = F(K). Then, for
any coefficient system M : OF — R-Mod, there exists a spectral sequence

HY(K',T&(K,M)) = HET(K,M).
Proof. Lemma 1.25 implies that K'/H is R-acyclic for each H in F.
Thus, by the Universal Coefficient Theorem for cohomology,
H*(K/H,M(G/H)) = H'(K/H,M(G/H)) = M(G/H)
for each H in F'. Now we can apply 1.23. n
As an immediate consequence of 1.26 we obtain the following fact.

1.27. COROLLARY. Let p be a prime and let K be a G-CW -complex such
that, for each k in K, the Sylow p-subgroups of Gy, are equal to (e). Assume
that |G/G,|~' € R . Then there exists a spectral sequence

H?(G, HE (K, M[G/(e)])) = HEM(K, M).
Proof. In this case we may consider K’ equal to a universal free G-CW-

complex EG. The Bredon cohomology groups of this complex with respect
to any coefficient system M’ are equal to the cohomology groups of G with
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coefficients in the Z(G)-module M’(G/(e)). (See Example 1 on p. I-25 of
2].) =

The following result shows that in many cases the spectral sequence
described in 1.26 trivializes.

1.28. COROLLARY. Let R be a commutative ring and let K' be a G-CW -
complex. Assume that one of the following conditions holds.

(i) There erists a prime number p such that K'" is R-acyclic whenever
He (F(K')),oF(K') and |G/G)| is an invertible element of R.

(ii) For every prime number p, K is Z/p-acyclic whenever H €
(F(K"))po F(K'), K is Z-acyclic and R = Z.

(iii) The CW-complex K' is finite-dimensional, Z-acyclic and R = 7.

(iv) The CW-complex K' s finite-dimensional, Z/p-acyclic and
R=17Z/p.

Then, for any Hecke functor T : HY — R-Mod,
T(G/G) = HX(K',T) = H5(K',T).

Proof. If (i) holds, then the result follows from 1.24(ii) and from 1.25.
Assume that (ii) holds. Lemma 1.25 implies that, for each prime p and
each H € F(K')', h.(II,Z/p)(G/H) is an isomorphism. Assume that H €
F(K'). From the fact that h,(K’,Z) is a Hecke functor and from 1.21(i) it
follows that

|H|Cokerho(II,Z)(G/H) = |H|Kerho(m,Z)(G/H) = (0),

and |Hh,(K',Z)(G/H) = (0) for each n > 0, because H,(K',Z) = (0).
Hence h,(II,Z)(G/H) is an isomorphism and we can apply 1.24(ii). The
statements (iii) and (iv) are consequences of the Smith theory ([3], Ch. III.
5.2). In this case Z/p-acyclicity of K’ implies Z/p-acyclicity of K’ for
every p-subgroup H of G. =

For a G-set F' of subgroups of G, we shall denote by O(F') the full
subcategory of O whose objects are the G-orbits G/H where H belongs
to F. The following result can be considered as a special case of one of the
results of [8], which says that every p-local Mackey functor is acyclic on the
category O(F') in the case where F' contains the Sylow p-subgroups of G
and Fo ' C F.

1.29. COROLLARY. Let F' be a G-set of subgroups of G such that F o F
CF,F'oF,CF and F, = (F"),, i.e. all Sylow p-subgroups of G belong to
F,. Assume that |G/Gp|~* € R. Then, for any Hecke functor T : HY —
R-Mod,

T(G/G) = lim*T = lim°T.
O(F) O(F)
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Proof. Let F,, be the set of maximal subgroups of F. Assume that
F,, = {Ho,...,H,}. Define EF = %;_(E(G/H;) where E(G/H) =
o G/H. It is well known that EF has a structure of a G-CW-complex
such that, for every H € F, EFf is R-acyclic and F(EF) C F, and that
([10], [13]) H&(EF,T) = limg ) T. Now, it is sufficient to apply 1.28. =

2. Hecke structure on categories associated to G-posets. In
this section, we shall prove the results which were stated and not proved in
Section 1. Some of these will be considered as special cases of more general
facts concerning categories associated to G-posets which will be presented
in this section.

Let W be a G-poset, i.e. W is a poset and G acts on W in such a way
that, for any ¢ in G and any w, v’ in W, w C w’ implies that gw C gw’.

The category W[G] is defined as follows. Its objects are the elements of
W; for any w, w’ in W

Moryy () (w',w) = {g € G : g’ Cw},

and the composition of morphisms is the multiplication in G. Let G, =
{9 € G : gw = w}. Then G\, = Mory g (w,w) and Mory (¢ (w', w) is a left
G-set and a right G,,-set.

By Sub-G we shall denote the G-poset of all subgroups of G. The group
G acts on W[G] by conjugation. Assume that d : W — Sub-G is a G -poset
map such that, for every w in W, dw is a subgroup of G,,. Such G-poset
maps will be called admissible. By Wy[G] we shall denote the category
whose objects are the elements of W and whose morphism sets are obtained
from the morphism sets of W[G] in such a way that, for any w, w’ in W,

Morw, a1 (W', w) = Moryy (g (w',w)/dw .

The composition of morphisms in Wy[G] is induced by the composition of
morphisms in W[G]. This definition is correct because if gw’ C w, then
g(dw')g~! C dw so we have the inclusion gdw’ C (dw)g of subsets of G.
The morphism w’ — w of Wy[G] which is defined by an element g of G such
that gw’ C w will be denoted by [g].

If H is a subgroup of G then any G-poset can be considered as an H-
poset. Assume that d : W — Sub-G is an admissible G-poset map. Then
dyg : W — Sub-H will denote the admissible H-poset map such that, for
every w in W, dgw = H N dw. The category Wy, [H] will be denoted by
Wy[H] and will be considered as a subcategory of Wy[G].

If H = (e), where e is the neutral element of G, then we obtain the
category associated to the poset W. We shall use the notation Wy[(e)] = W.
If V is a G-subposet of W, then the restriction of d to V' will also be denoted
by d.
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Now we present the main examples of categories described above.

2.1. EXAMPLE. Let W = Sub-G and let d = id : Sub-G — Sub-G. Then
W4[G] = Og. The category Wy[H] will be denoted by Og, g. Its objects are
the G-orbits G/H’ and its morphisms are those G-maps f : G/H' — G/H"
which are defined by the elements h of H satisfying the condition h='H'h C
H" in such a way that f(gH') = ghH".

2.2. EXAMPLE. Assume that K is a G-CW-complex. Let V' be the
G-poset of all finite subcomplexes of K and let W’ = V'°P be the G-poset
opposite to V'. For every finite subcomplex K’ of K, we define

d(K') =Gk ={g € G: gk = k whenever k € K'}.

Then W)[H|? = Ky for any subgroup H of G. If V is the G-poset of all
subcomplexes of K which have the form K (s), where s is a cell of K, then
Wa[H]P = K(H), where W = V. u

Let 04(G) : W4[G] — Og be the covariant functor such that, for any w
in W, 04(G)(w) = G/dw and, for any morphism [g] : v — w of Wy[G],
04(G)(lg]) = [g]. Assume that

ka(G) : HY x (W4[G]°P, Ab) — (W4[G]°P, Ab)
is the functor (:104(G))” (¢,id) which was defined before Proposition 1.1. For
any subgroup H of G and any contravariant functor from Wy[G] to Ab,
ka(G)(G/H, M)(w) = Homgc)(Z(G/H x G/dw),Z) @ M(w) .

In Example 2.1, k4(G) is the functor 7 defined in 1.2. In Example 2.2,
we obtain the functor vx described in 1.4. We shall also use the notation
ka(G)(G/H, M) = MIG/H].

Assume now that M and N are contravariant functors from W,[G] to Ab.
For any subgroup H of G, let A\(H,G) : Wy[H] — W,4[G] be the inclusion
functor.

The Z-module of all natural transformations of NA(H, G) to MA(H,G)
will be denoted by Homyy, (N, M). The group G acts on the Z-module
Homyy (N, M), where W = Wjy][(e)], in such a way that for any o: N — M
in Homy, (N, M), and for w € W and g € G,

(90)(w) = M([9] ") elg™ w)N([g]) ,
where [g] : g7 w — w.
2.3. PROPOSITION. The image of the group monomorphism
p : Homyy, g1 (N, M) — Homyy (N, M)
is equal to Homy, (N, M)H.

Proof. It is obvious that the image of y is contained in Homyy (N, M)*.
Let 7 be a natural transformation from N(e, H) to M (e, H). Assume
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that, for every w in W and h in H,
M([A)7(w) = 7(h~ w)N([h])

where [h] : 1w — w is an isomorphism of W,[H]. Let [h/] : w' — w be an
arbitrary morphism of Wy[H]. Then [A/] is the composition of the morphism
[e] : w' — h'7lw of W = Wyle] and the isomorphism [h'] : A’ ~tw — w of
Wy[H]. Hence M([R'])T(w) = 7(w")N([h']), which ends the proof. m

We shall need the following facts, which can be obtained immediately
from the results of Auslander [1] and Mitchell [9]. Let C be a small category.
Consider two functors P : C — Ab and @ : C°? — Ab. Their tensor product
over C, P ®c @, is defined as the coequalizer of the diagram

t
H H PB)®Q(B') = H P(B")® Q(B"),
B,B'€ObC feMorc(B,B') ¥ Breobc

where t(p®q) = pRQ(f)q and t'(p®q) = P(f)p®q whenever p € P(B) and
q € Q(B’). Thus P®c Q is the coend of the functor P : C x C°? — Ab such
that P(B, B') = P(B)®Q(B’). If M and N are contravariant functors from
C to Ab then we denote by Hom¢ (M, N) the abelian group of all additive
natural transformations from M to N. This group can also be considered
as the end of an appropriate functor.

Let B be an object of C. Then the representable functor Z(Morc(—, B))
is a projective object in the category (C°P;Ab) of contravariant functors
from C to Ab. For any functor IV : C°? — Ab there is a group isomorphism

HOHl([;(Z(MOrC(—, B))v N) = N(B) )
which is natural in B.

Assume that C’ is a subcategory of C and that M is a contravariant
functor from C’ to Ab. Then C ®¢ M and Homc/ (C, M) are contravariant
functors from C to Ab such that, for any functor N : C°P — Ab,

Hom¢(C ®c M, N) = Home/ (M, N),
Hom¢ (N, Home/ (C, M)) = Home/ (N, M) .
For any object B of C we have
((C ®(C/ M)(B) = Z(MOI’(C(B, —)) ®(C/ M,
(Home/ (C, M))(B) = Homes (Z(More(—, B), M) .
It is obvious that C @ M (resp. Home/ (C, M)) is a left (resp. right) Kan
extension of the functor M along the inclusion C' — C. It follows from the

definition that (C®c M )(B) is the coend of the functor P : C' x C'°? — Ab
such that

P(B',B") = Z(Mor¢(B, B')) ® M(B")
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and that Home/ (C, M)(B) is the end of the functor P’ : C' x C'°? — Ab
such that

P'(B', B") = Hom(Z(Mor¢(B’, B)), M(B")) .

Assume now that C = Wy[G|] and C' = W. For any functor M :
WG] — Ab, we can consider Homyy (Wy[G], M) as a contravariant func-
tor from Wy[G] to Z(G)-Mod. The action of G on Homy, (Wy[G], M)(w) is
given by the action of G on the group of natural transformations

Homyy (Z(Moryy, g (—, w)), M) .

Let ¥ : Z(G)-Mod — (H{', Ab) be the composite of ¢ : Hg — Z(G)-Mod and
the Yoneda functor Z(G)-Mod — (Z(G)-Mod®?, Ab). We define a functor

va(G) : HY x (Wy[G]°P, Ab) — (W4[G]°P, Ab)
in such a way that
va(G)(G/H, M)(w) = 9(Homw (W4[G], M)(w))(G/H).

2.4. COROLLARY. Let H be a subgroup of G and let M be a contravariant
functor from Wy4[G]°P to Ab. Then

va(G)(G/H, M) = Homy (W,4[G], M) = Homyy, 11 (WalG], M) .
Proof. Let w € W. Then Proposition 2.3 implies that
Homyy (Wa[G], M)(w)" = Homy (Z(Morw,[c)(—, w)), M)™
= Hode[H} (Z(MorWd[G] (_a w))7 M) - u
2.5. PROPOSITION. (i) There exists a natural equivalence of functors t :
ka(G) — va(G).
(ii) For any functors N, M : W4[G]°® — Ab there exists an isomorphism
Homyy, ¢y (N, M[G/H]) — Homy (N, M)™

which is natural in N and M. This equivalence is also natural with respect
to G/H in Hg.

Proof. (i) It follows immediately from the definition that, for any
win W,
Z<M0rWd[G](_7 w)) = H Z(MorW(_7gw)) .
lg]€G/dw

Assume that [g] € G/dw and that v’ C gw. Then the morphism w’ C gw
of W corresponds to the morphism [g7!] : w’ — w of Wy[G]. Hence

va(G)(G/H, M)(w ( I1 Mgw)

[g]€G/dw
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The group G acts on H[g]EG/dw M (gw) in such a way that, for any ¢’ € G,
we have

d( II mlow)= TI M) Dmllg) " gw),

[9]€G/dw lg]eG/dw

where, for every g € G, [¢' '] : gw — (¢') " Lgw.

Let £ ® m be an element of x4(G)(G/H, M)(w) such that £ : Z(G/H x
G/dw) — Z is a Z(G)-module homomorphism and m belongs to M (w). We
define

tG/H M)(w)(Eom) =[] &H, gdw)M(g™"])m,
[9]€G/dw

where [¢g71] : gw — w. It is easy to check that this definition is cor-
rect and that t is a natural equivalence of functors. For example, let
n : Z(G/H,) — Z(G/H) be the Z(G)-module homomorphism such that

n(H;) = Z[g/]eG/H n(lg'])g'H. Then
Emeid)(Hy,gdw) = > n(lg)é(g'H, gdw)
l9'l€eG/H

and v4(G)(n,ida)(w) is equal to the operation by > .cq,mn([9])(9")-
Thus

(t(G/Hy, M)kg(n,idy))(w) (€ @ m) = t(G/Hy, M)(w)(é(m ®id) @ m)
= I X ey H gdw)M(lg™")m

l[9]€eG/dw [¢’'l€eG/H

- I X ), (¢) " gdw)M(jg™"])m

l9leG/dw [¢'l€eG/H

= > g [ M) DEH, (¢) " gH)M([g g )m

lg'leG/H lg]eG/dw
=va(G)(n,idy)(w) [ €H, gdw)M (g~ ])m
[9]€G/dw

= va(G)(n, idan) G/ H, M))(w)(§ @ m) .
This proves that t(G/H, M) is a natural transformation with respect to
G/H in He.
(ii) follows from (i), 2.3 and 2.4. m

Assume now that C = C, is a chain complex of contravariant
functors from Wy|G] to Ab. For any functor M : Wy[G]°®? — Ab, we
denote by H"(C, M) the nth cohomology group of the cochain complex
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Homyy,)(Cs, M). As an immediate consequence of 2.5(ii), we obtain the
following result, which will be used in the proof of Proposition 1.6.

2.6. COROLLARY. There exists an isomorphism of contravariant functors
from Hg to Ab*

H*(C,M|-]) —» h(Homy (Cy, M), —),
which is natural in M and C. =

We shall now give another description of the cochain complex of Bredon
cohomology. In the case of cohomology with a generic coefficient system
this was done by Bredon in [2], Ch. 1.9. Let K be a G-CW-complex. Then
¢ (K) denotes the chain complex of functors from O to Ab such that, for
any subgroup H of G, ¢.(K)(G/H) is equal to the ordinary cellular chain
complex of K with Z as coefficients. If n is a natural number, then

en(K) = Z(Mapg(—, SuK)) =[] ZMoros(—,G/Gy)),
[s]e(SnK) /G

where S, K is the G-set of n-cells of K and Map.(—, —) denotes the set of
G-maps. For any generic coefficient system M there is an isomorphism of
cochain complexes

C*(K,M)® = Homoy,, (c.(K), M) .
Let A" denote the inclusion Og () — Og. One can easily check that
(KN = [ ZMoro, ., (-, G/Gs)) = J[ Z(Morsup-c(—,Gs))
seS, K seS, K

and that, for any generic coefficient system M, there is a Z(G)-module
cochain complex isomorphism

C*(K, M) = Homo,, ., (cc(K), M).
It follows from 2.3 that, for any subgroup H of G,
C*(K,M)" = Homoy, ,, (c.(K),M).

We shall denote by ¢.(K) the chain complex of functors from Kg to
Ab such that, for any finite subcomplex K’ of K, ¢,(K)(K’) is the ordinary
cellular chain complex C,(K',Z). If f is a morphism of K¢ then ¢, (K)(f) =
C.(f,Z). The restriction of ¢,(K) to the category K(G) will be denoted by
the same symbol. If s is a cell of K then ¢,(K)(s) = C.(K(s),Z). Let
A K(e) — K(G) denote the natural inclusion. It is easy to see that

e(E)N =[] ZMorx(e(s,—))
seS, K
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and that, for any local coefficient system L, there is an isomorphism of
Z(G)-module cochain complexes

C*(K,L) = HomlC(e) (Cx(K),L).
Thus, for any subgroup H of G and any local coefficient system L : K(G) —
Ab, there is an isomorphism of cochain complexes

O*(K7 L)H = HomKZ(H)(é*(K)?L) .

Proof of Proposition 1.6. This is an immediate consequence of
2.6 in the case where Wy[G]°P = K(G), M = L and C, = ¢, (K). m

As an immediate consequence of 2.5, we obtain the following result.

2.7. COROLLARY. Assume that H is a subgroup of G.

(i) Let M be a G-generic coefficient system. Then there is an isomor-
phism M|G/H] — Homo,, ,,(Oq, M).

(ii) Let K be a G-CW-complez and let L be a local coefficient system on
K. Then there is an isomorphism L[G/H| — Homy ) (K(G),L). =

Corollary 1.13 yields the next result.

2.8. COROLLARY. Let K be a G-CW-complex and let H be a subgroup
of G. Then there exists a natural equivalence of chain complexes of G-
coefficient systems

U*(G/H) : O¢ ®OG,H C*(K) — C*(K[G/H]) .

Proof. This follows from the fact that, for any G-generic coefficient
system M, there is an isomorphism

Homoy, (¢« (K[G/H]), M) — Homoy, ,, (¢« (K), M).

Consider the H-CW-map v = u(G/H,K) : K — K[G/H]| described before
Proposition 1.9. It follows from the proof of 1.9 that this map induces an
isomorphism of cochain complexes

w* = w*(G/H,M) : C*(K[G/H],M)¢ — C*(K, M)
For every subgroup J of G, the map u induces a map v’ : K/ — K[G/H]’.
Thus u induces an Og, g-map from ¢, (K) to ¢.(K[G/H]) and v.(G/H) is
the adjoint of this map. =
The following fact will be used in the proof of 1.16. We shall use the
notation of 1.14 and 1.15. For any two subgroups H, H' of G, we shall

denote by p(H, H') the G-map G/(HNH') — G /H' induced by the inclusion
HNH CH'.

2.9. PROPOSITION. Let K be a G-CW-complex and let M be a generic
coefficient system for G. Assume that H is a subgroup of G and that, for
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every k in K, the map M(p(H,Gy)) : M(G/Gy) — M(G/(H N Gy)) is an
isomorphism. Then the map
o (K, M)(G/H)z"(K,M)(G/H) : H(K|G/H],M) — H:(G/H x K, M)
is an isomorphism.

Proof. The G-set S(G/H x K) of all cells of G/H x K is equal to the
G-set G/H x S(K). If s is a cell of K and g is an element of G then

MOc(K)pa/u(gH,s) = M(G/Gs),

Mg (G/H x K)(gH,s) = M(G/(gHg™'NG,)) = M(G/g(HNG 4197 "),
and ¢(M,pg/m)(gH, s) is the composition of three isomorphisms:
M(G/Gs) — M(G/g~Gs9) — M(G/(HNg™'Gsg)) — M(G/gHg™'NG) .
Now, the result follows from 1.15(iii). m

Proof of Corollary 1.16. This result follows from 2.9 and from
the facts that the functor M is isomorphic to HA(—, M) = HL(G/G, M)

and that the functor Z&(G/G, M) is constant because (G/G)|G/H] = G/G
whenever H is a subgroup of G. =

We shall now compare our constructions with the Illman transfer, which
was defined in [7]. We shall denote by O¢ g (K) the full subcategory of Og g
whose objects are of the form G /Gy, where k € K. Let Ay : Og.u(K) — Og
be the natural inclusion and let wy : Og g (K) — Og be the functor such
that wy(G/H') = H/H N H'. Assume that M is a generic G-coefficient
system, NN is a generic H-coefficient system and that there exists a natural
transformation of functors {2 : Nwg — MAg. Then there exists the Illman
transfer

T(K,2): H(K,N) — H:.(K,M).
Immediately from the definition and from 1.6, it follows that 7*(K, {2) is
the composition of the map determined by 2% : C*(K, N)¥ — C*(K, M),
which is induced by 2, and i(H,G) : Z5(K, M)(G/H) — H{ (K, M), which
was described in 1.20.

2.10. ExamMpPLE. Let M be a generic G-coefficient system and let H
be a subgroup of G. Assume that M satisfies the assumptions of 2.9. Let
Iy : Oy — Og be the natural functor such that, for every subgroup H' of
H, Ig(H/H') = G/H'. Consider the map 2 : MIgwyg — Mg such that,
for every k in K, 2(G/Gy) = M(p(H,G4))~!. Then there exists the Illman
transfer

TK,2): H;(K,MIy) = H:(G/H x K,M) — H:(K, M)
and the composition
T 9" (K, M)(G/H) : I(K, M)(G/H) — 1 (K, M)(G/G)
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is the map i(H, G) from 1.20. m

A G-generic coefficient system M is naturally equivalent to the restric-
tion of the functor H2(—, M) to the category Og. Hence Corollary 1.15
implies that the functor v(1,id), where ~ is the functor described in 1.2, is
naturally equivalent to a functor vy : OZF x (OZF, Ab) — (OF, Ab), defined
in such a way that

’YO(G/H7 M)(G/Hl) = Homopy (Z(MapG(_a G/Hl [G/H]))a M)

whenever H, H; are subgroups of G and M is a G-generic coefficient system.
Recall that

G/H\[G/H] = (G/H x G/H))/G) x G/H, |
The “classical” uniqueness theorem ([2], IV. 4,5) implies that there exists
an isomorphism of cohomology theories

which is natural with respect to M in (O, Ab) and G/H in Og.

Let Iy : OF x (OF,Ab) — (OZF, Ab) be the functor such that, for any
subgroup H of G and for any G-generic coefficient system M, I't(G/H, M)
is the restriction of the functor H*(G/H x —, M) to Og. Then

I'n(G/H,M)(G/H;) = Homo, (Z(Map(—,G/H x G/Hy)), M)
and there is an isomorphism of cohomology theories
ro(= M)(G/H) : Ho(—, [o(G/H, M)) — He(—, M)(G/H)

which is natural with respect to M in (OZ, Ab) and G/H in Og.

The G-map ¢(G/H,G/H;) determines a natural transformation of func-
tors ¢o : yo — Ip. As a consequence of 1.14 and 1.15 we obtain the following
result.

2.11. COROLLARY. Let ¢f : HE(—,v0(—,—)) — HE(—, To(—,—)) be the
natural transformation which is induced by ¢o. Then ¢*(z*)~1r* = rigs
where ¢*, z* are the natural transformations described in 1.15.

Proof. This follows from the fact that, by [2], Ch. IV .4, 5,
(K, M)(G/H)do(K, M)(G/H) = H*(¢(G/H, K), M)r" (K, M)(G/H)

whenever H is a subgroup of GG, K is a G-CW-complex and M is a generic
G-coeflicient system. m

We shall now prove Propositions 1.18 and 1.19. Let K be a G-CW-
complex. Then we have the Hecke functor chain complex ¢, (K) : HY — Ab,
such that, for any subgroup H of G,

&.(K)(G/H) = Homy ) (Z(G/H), C.(K. ) = C.(K., Z)".
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From the fact that ¢, (K) is a direct sum of representable OZ functors and
¢, (K) is the direct sum of the analogous representable H¢? functors it follows
that ¢, (K) is the left Kan extension of c,(K). Assume that T is a Hecke
functor. Then there is an isomorphism of cochain complexes

Homo, (¢ (K),T1) — Homp,, (¢« (K),T),

which is natural in K and 7. This isomorphism follows from the formal
properties of left Kan extensions. If X is a finite G-set, then

HE(X,T) = HY(X, T) = Homg,, (Homgc) (1(—), Z(X)), T) .

Proof of Proposition 1.18. Assume that 7T is a Hecke functor. Let
T’ be the contravariant functor from Z(G)-Mod®? to Ab such that

T'(A) = Homgy,, (Homg ) (¢(—), 4),T),
T/(f) = HomHG (HomZ(G) (L(_)7 f)7 ldT) 3

whenever A is a Z(G)-module and f is a Z(G)-module homomorphism. This
means that 7" is a right Kan extension of 7" along the functor ¢. It is obvious
that Tt = T. We define I" by

I'(G/H,T)(G/H:) = T'(Z(G/H) ® Z(G/H1)),
I(G/H,T)(f) = T'(id®Z(f))
whenever H, H; are subgroups of G and T is a Hecke functor. If f” :
Z(G/H) — Z(G/H") is a Z(G)-module homomorphism and if ¢ : T — T
is a natural transformation of Hecke functors, then
r(f",0)(G/Hy) = (f" ®id).

(One can simply observe that the category H¢ can be defined either in terms
of just the orbits G/H or in terms of finite G-sets. The two definitions give
the same category of additive functors into Ab. With the definition in terms
of finite G-sets, one can define I'(G/H,T) to be T(G/H % (—)).)

It follows from the definition that there is an isomorphism
H:(G/H x G/H,,T) = HX(G/H x G/H,,T) = H:(G/H,,'(G/H,T)),
which is natural with respect to G/H and G/H; in Og and T in (H{, Ab).
Thus there exists an isomorphism of cohomology theories
which is natural with respect to G/H in O¢ and T in (HZ, Ab). =

Proof of Proposition 1.19. Consider the functors Dy, Dy : Hg X
O¢ — Z(G)-Mod defined by

Dy(G/H,G/H,) =7Z(G/H) ® Z(G/H,) 2 Z(G/H x G/H,y),
Dy(G/H,G/H1) = ((Z(G/H) ® Z(G/ H1)) ®z(c) Z) ® Z(G/ Hy)
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~ 2((G/H x G/H))/G) @ Z(G/Hy) = Z(G/H, [G/H]) .
If f/: Z(G/H) — Z(G/H") is a Z(G)-module homomorphism and fy :
G/H; — G/Hs is a G-map, then D1(f", fo) = f" @ Z(fo) and Da(f", fo) =
((f"®Z(fo)) ®id) @ Z(fo). The Z(G)-module homomorphisms
Z(¢(G/H,G/Hy)) : Z(G/H x G/H1) — Z(G/H\[G/H])

induce a natural transformation (o : D1 — Dy of functors from Hg x Og to
Z(G)-Mod. It follows from the definitions that there are isomorphisms

¥ (G/H,T)(G/Hy) = Homg(Z(G/H x G/Hy),7) & T(G/H)
= Homp,, (Homgzg)(«(—), D2(G/H,G/Hy)),T)
which are natural with respect to G/H in Hg, G/H; in Og and T in

(HZ,Ab). Let ¢ be the natural transformation from ~" to I" induced by
Co. Then ¢ determines a natural transformation ¢* : Z5, — I'* such that

¢*C* — ¢*. n
Now, we shall prove Lemma 1.24. Let K be a G-CW-complex. Assume
that F' is a G-set of subgroups of G which contains the group G and all

subgroups of the form Gy where k € K. It is well known that, for any
generic coefficient system M and for any Hecke functor T',

Homo, (¢« (K), M) = Homo(r)(c«(K), M),
Homp,, (¢« (K),T) = Homg (¢ (K),T),

where H(F) is the full subcategory of Hg whose objects are all orbits G/H
such that H € F. The statement (i) of 1.24 is a well known consequence
of the existence of the spectral sequence which is described in [2], Ch. 1.10.
The statement (ii) can be proved in a similar way.

Proof of Lemma 1.24(ii). For any natural number n, the functor
¢n(K, R) = ¢,(K)®R is a projective object in the category (H(F'), R-Mod),
because it is a sum of representable functors tensored with R. Thus there
exists a spectral sequence

Ext}y ) (hq(K, R),T) = HE (K, T),

where Extﬁ( ")
transformations of functors from H(F)°P? to R-Mod and %q (K, R) is the gth

homology functor of the chain complex ¢, (K, R). For any subgroup H of G

is the nth derived functor of the functor Homy gy of natural

(K. R)(G/H) = Hy(Homg ) (Z(G/H). C.(K, R))) = H,(C.(K, R)").
It follows from the assumptions that Eq (K,R) = (0) for ¢ > 0 and
%O(K, R) = ZO(G/G, R) = MOI‘H(F)(—, G/G) ®R
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is a projective object in the category of additive functors (H(F")°P, R-Mod).
Hence H (K, T) = Homgp) (Morgp)(—,G/G) @ R, T) =T(G/G). =

Other applications of the Hecke structure on the Bredon cohomology
theory will be presented in [11] and [12].
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