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Hecke structure on Bredon cohomology

by

Jolanta S  l o m i ń s k a (Toruń)

Abstract. We construct a Hecke structure on equivariant Bredon cohomology with
local coefficients and then describe some of its properties. We compare this structure with
the Mackey structure defined by T. tom Dieck and with the Illman transfer.

0. Introduction. Let G be a finite group. We shall denote by HG the
category whose objects are the G-orbits G/H, where H is a subgroup of
G, and whose morphisms are the Z(G)-homomorphisms of the permutation
Z(G)-modules Z(G/H ′) → Z(G/H) ([4], I.3). A Hecke functor is an additive
contravariant functor T : Hop

G → Ab, where Ab is the category of Abelian
groups. The category of Hecke functors will be denoted by (Hop

G ,Ab). The
Hecke functors can be considered as cohomological G-functors (see [6], [14]
and [16]). Their properties are described in [13] and [15]. Every Hecke
functor is a Mackey functor.

In this paper, we shall study connections of Hecke functors with Bre-
don cohomology theory ([2]). Bredon cohomology is an equivariant singu-
lar cohomology theory, which is defined on the category G-CW of G-CW-
complexes. Its coefficients are contravariant functors M : Oop

G → Ab, where
OG is the category with the same objects as HG, whose morphisms are the
G-maps G/H ′ → G/H. These functors are called generic G-coefficient sys-
tems. The category OG can be considered as a subcategory of HG so for any
Hecke functor T and G-CW-complex K we have the Bredon cohomology
H∗

G(K,T ).
It is well known that the Bredon cohomology H∗

G(K,M) of a G-CW-
complex K with respect to a coefficient system M can be extended to a
coefficient system H∗G(K,M) by defining

H∗G(K,M)(G/H) = H∗
G(G/H ×K,M) = H∗

H(K,MIH) ,

where IH denotes the natural functor OH → OG such that IH(H/H ′) =
G/H ′ whenever H ′ is a subgroup of H.

If M is a Mackey functor, then H∗G(K,M) can also be extended to a
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Mackey functor and this definition gives us a Mackey structure on Bredon
cohomology with coefficients in M , in the sense of [5]. We show that if
M is a Hecke functor, then H∗G(K,M) can also be considered as a Hecke
functor. This Hecke structure can be considered as an extension of the
Mackey structure defined by T. tom Dieck.

In Section 1 we present another extension of H∗
G(K,M) to a certain

coefficient system. We define a Hecke functor I∗G(K,M) such that

I∗G(K,M)(G/G) = H∗
G(K,M) .

This functor can be extended to a functor

I∗G : G-CWop × (Oop
G ,Ab)×Hop

G → Ab∗ ,

where (−,−) denotes the category of functors and Ab∗ denotes the category
of graded abelian groups. Hence we can regard I∗G as a Hecke structure on
Bredon cohomology. This structure was defined in [10]. It is induced by a
functor

γ : Hop
G × (Oop

G ,Ab) → (Oop
G ,Ab)

such that γ(G/G,M) = M for every coefficient system M . The structure
I∗G, after restriction to Oop

G , is not equal to H∗G.
We also give another equivalent definition of a Hecke structure on Bredon

cohomology. We introduce a functor δ : OG × G-CW → G-CW such that
δ(G/G,K) = K, for every G-CW-complex K. Then we show that

H∗
G(K, γ(G/H,M)) ∼= H∗

G(δ(G/H,K),M) ,

for every coefficient system M .
If L is a local coefficient system on K, then we can define the coefficient

system H∗G(K,L) in such a way that

H∗G(K,L)(G/H) = H∗
G(G/H ×K,LpG/H) = H∗

H(K,L|H) ,

where pG/H denotes the projection G/H × K → K. We show that this
system can be extended to a Hecke functor and that

H∗
G(G/H ×K,LpG/H) ∼= H∗

G(δ(G/H,K), Lδ(πG/H , idK)) ,

where πG/H denotes the map G/H → G/G. Hence, if we define

I∗G(K,L) = H∗
G(δ(G/H,K), Lδ(πG/H)) ,

then H∗G ∼= I∗G in this case.
We show that there is a map

φ(G/H,K) : G/H ×K → δ(G/H,K)

natural in G/H and K and such that pG/H = δ(πG/H)φ(G/H,K). This
map induces, for every coefficient system M : Oop

G → Ab, a natural trans-
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formation of coefficient systems

φ∗(K,M) : I∗G(K,M) → H∗G(K,M) .

The natural transformation φ∗(−,M) of contravariant functors from G-
CW×OG to the category of graded abelian groups is a natural equivalence
if and only if M is a constant functor. In the case where M is a Hecke func-
tor, φ∗(K,M) is a natural transformation of Hecke functors. Let MθG(K)
be the local coefficient system on K determined by M . Then φ∗(K,M)
can be considered as the map induced by a natural transformation of local
coefficient systems on G/H ×K

ϕ(M,pG/H) : MθG(K)pG/H →MθG(G/H ×K) .

One of the results of this paper is the construction of a spectral sequence
Ep,q
∗ such that

Ep,q
2 = Hp

G(K ′, Iq
G(K,L))

where K ′ is a certain G-CW-complex. We discuss the cases where Ep,q
2 ⇒

Hp+q
G (K,L).

Some of the results stated in Section 1 will be proved in Section 2. We
show that the Hecke structure on Bredon cohomology can be described in
well known terms of category theory. We also prove that this construction
can be generalized to the case of functors from a category associated to a
G-poset to Ab. We shall begin Section 2 with a definition of such a category.

The author wishes to thank the referee for his careful reading of the
manuscript and his useful suggestions and observations.

1. Main results. We begin with the definition of Hecke structure on
the category of G-coefficient systems. We need the following notation.

Let Z(G)-Mod denote the category of left Z(G)-modules. The category
HG can be considered as a full subcategory of Z(G)-Mod, because there
is a natural inclusion ι : HG → Z(G)-Mod given by ι(G/H) = Z(G/H).
The natural inclusion OG → HG will be denoted by i. For any G-map f :
G/H → G/H ′ , i(f) is the Z(G)-module homomorphism Z(f) : Z(G/H) →
Z(G/H ′).

We shall consider the functor β : Z(G)-Modop → (Z(G)-Modop,Ab) such
that for any Z(G)-modules A and A′

β(A)(A′) = HomZ(G)(A⊗A′,Z)

where Z = Z(G/G) is the trivial Z(G)-module. If A = Z, then β(Z) is the
Yoneda functor HomZ(G)(−, Z).

Let C and C′ be small categories. For any functors α : C → Z(G)-Mod
and α′ : C′ → Z(G)-Mod the functor β induces a functor

β(α, α′) : Cop → (C′ op,Ab) ,
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which is the composition (α′, id)βα. If α is an additive functor, then so is
β(α, α′). The functor β(ι, ιi) : Hop

G → (Oop
G ,Ab) will be denoted by β′. It

follows from the definition that, for any subgroups H and H ′ of G,

β′(G/H)(G/H ′) = HomZ(G)(Z(G/H)⊗ Z(G/H ′),Z) .

Hence β′(G/G)(G/H ′) = Z and β′(G/G)(f) = idZ whenever H ′ is a sub-
group of G and f is a morphism of OG.

Assume now that C is a small category. For any functors M,M ′ : C →
Ab, we shall denote by M ⊗M ′ the functor from C to Ab such that (M ⊗
M ′)(−) = M(−) ⊗M ′(−). Let ZC : C → Ab denote the constant functor
such that, for every object c of C, ZC(c) = Z, and for every morphism m of
C, ZC(m) = idZ. Then M ⊗ ZC = ZC ⊗M = M .

Assume that α is a functor from C to Z(G)-Mod. Let

α′′ : Z(G)- Modop×(Cop,Ab) → (Cop,Ab)

be the functor such that, for any Z(G)-module A, α′′(A,M) = β(id, α)(A)
⊗M .

1.1. Proposition. The functor α′′ has the following properties:

(i) α′′(A,M)(c) = HomZ(G)(A⊗α(c),Z)⊗M(c) whenever c is an object
of C.

(ii) α′′(A,M) = α′′(A,ZCop)⊗M .
(iii) If α = ιiα0 where α0 is a functor from C to OG then α′′(Z(G/G),M)

= M .

P r o o f. (i) and (ii) follow immediately from the definition. (iii) holds
because (ιi)′′(Z(G/G),ZOop

G
) = HomZ(G)(Z(−),Z) = ZOop

G
.

In particular, for C = OG we obtain the following fact.

1.2. Corollary. Let the functor γ : Hop
G ×(Oop

G ,Ab) → (Oop
G ,Ab) be the

composition (ιi)′′(ι, id). Then, for every coefficient system M , γ(−,M) =
β′(−)⊗M and , in particular , γ(G/G,M) = M .

We shall also use the notation

γ(−,M) = M [−] and ZOop
G

= ZOG
.

Hence, for every coefficient system M , M [G/H] = ZOG
[G/H] ⊗ M and

M [G/G] = M . If H ′ is a subgroup of G, then

M [G/H](G/H ′) = HomZ(G)(Z(G/H)⊗ Z(G/H ′),Z)⊗M(G/H ′) .

1.3. Definition. We define a Hecke structure on Bredon cohomology
as a functor

I∗G(−,−)(−) : G-CWop × (Oop
G ,Ab)×Hop

G → Ab∗

given by I∗G(K,M)(−) = H∗
G(K,M [−]).
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We can also define a Hecke structure on Bredon cohomology with local
coefficients. Assume that K is a G-CW-complex. This means that K is a
CW-complex and that G acts on K in such a way that for every subgroup
H of G the fixed point set KH is a subcomplex of K. Let K be the category
defined in [2], Ch. I.5. Its objects are the finite subcomplexes of K and its
morphisms are the compositions of the inclusions and the maps induced by
the operation by the elements of G. We shall also use the notation KG = K.
Assume that f : K0 → K is a G-CW-map. Then the map f : K0 → K
is defined in such a way that, for each subcomplex K1 of K0, f(K1) is the
smallest subcomplex K(f(K1)) of K which contains f(K1).

The local coefficient systems on K in the sense of Bredon are the co-
variant functors on K. If L is a local coefficient system on K, then the
local coefficient system Lf will also be denoted by Lf . Let LG be the cat-
egory whose objects are the pairs (K,L) where K is a G-CW-complex and
L is a functor from KG to Ab. The morphisms of LG are the pairs (f, %) :
(K0, L0) → (K,L) where f : K0 → K is a G-CW-map and % : Lf → L0 is a
natural transformation of functors. In [2], Ch. I.6, 7, Bredon defined the co-
homology functor H∗

G from the category Lop
G to the category Ab∗ of graded

abelian groups. In this paper we shall use a slightly modified definition of
the term “local coefficient system”.

Let K(G) be the full subcategory of KG whose objects are all subcom-
plexes of K of the form K(s), where s is a cell of K, and K(s) is the
smallest subcomplex of K containing s. We shall consider the functors from
the category K(G) to the category Ab and call them the local coefficient
systems on K. Assume that L : K(G) → Ab. We shall also use the notation
L(K(s)) = L(s). Let u : K(G) → KG be the natural inclusion of categories.
We shall denote by Le : KG → Ab the left Kan extension of the functor L.
It follows from the definition that, for every subcomplex K ′ of K,

Le(K ′) = colim
KG/K′

L/K ′ .

Here KG/K
′ is the full subcategory of KG whose objects are all subcom-

plexes of the form K(s) contained in K ′ and L/K ′ is the restriction of L.
There exists a canonical functor e : LG → LG such that, for every pair
(K,L), e(K,L) = (K, (Lu)e) and a canonical natural transformation of
functors t : idLG

→ e such that, for every pair (K,L), t(K,L) = (idK , tL),
and the homomorphism

H∗
G(K, tL) : H∗

G(K, (Lu)e) → H∗
G(K,L)

is the identity map. Let L(G) denote the category of all pairs (K,L) such
that L : K(G) → Ab. The morphisms of L(G) are the pairs (f, %) :
(K0, L0) → (K,L) where f : K0 → K is a G-CW-map and % : (Lef)u → L0

is a natural transformation of functors. We shall also use the notation
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(Lef)u = Lf . It follows from the above considerations that we can define
the functor H∗

G from L(G) to Ab∗ in such a way that, for every pair (K,L),
H∗

G(K,L) = H∗
G(K,Le).

Assume that f : K0 → K is a G-CW-map satisfying the condition that,
for every cell s0 of K0, there exists a cell s of K such that K(f(K0(s0))) =
K(s). Then f induces a functor fG : K0(G) → K(G) and, for every local
coefficient system L on K, we have Lf = LfG. One can easily check that
in this case, for any functor L1 : KG → Ab, (L1f)u = (L1u)f .

Let θ : Kop → OG be the canonical contravariant functor defined by
Bredon in [2], Ch. I.5. We shall use its restriction θG(K) : K(G) → OG.
For every cell s of K, θG(K)(K(s)) = G/Gs where Gs = {g ∈ G : gs = s}.

1.4. Corollary. There exists a functor γK : Hop
G × (K(G),Ab) →

(K(G),Ab) such that

γK(G/H,L)(K(s)) = HomZ(G)(Z(G/H)⊗ Z(G/Gs),Z)⊗ L(K(s)) .

P r o o f. This follows from 1.1 for γK = (ιiθG)′′(ι, id).

We shall also use the notation L[G/H] = γK(G/H,L).

1.5. Definition. We define a Hecke structure on Bredon cohomology of
K with local coefficients as a functor

I∗G(K,−)(−) : (K(G),Ab)×Hop
G → Ab∗

given by I∗G(K,L)(G/H) = H∗
G(K,L[G/H]).

One can also prove that there exists a functor γ : Hop
G × LG → LG such

that, for every G-CW-complex K, γ(−, (K,−)) = γK . Thus we can consider
the functor

I∗G(−,−)(−) : Lop
G ×Hop

G → Ab∗ .

In order to avoid complications, we restrict ourselves to the case of the local
coefficient systems defined on a fixed G-CW-complex K.

Let ϑ : Z(G)-Mod → (Hop
G ,Ab) be the functor induced by the Yoneda

functor ϕ : Z(G)-Mod → (Z(G)-Modop,Ab). This means that, for every
Z(G)-module N and every subgroup H of G,

ϑ(N)(G/H) = HomZ(G)(Z(G/H), N) ,

and for every Z(G)-homomorphism f : Z(G/H ′) → Z(G/H),

ϑ(N)(f) = HomZ(G)(f, idN ) .

For any Z(G)-module cochain complex C∗, the functor ϑ induces a Hecke
functor cochain complex c∗ = ϑ(C∗) such that, for every natural number n,

cn(G/H) = ϑ(Cn)(G/H) = (Cn)H .
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The functor ϑ also gives us, for each natural number n, the Hecke functor
hn, the nth cohomology functor of the cochain complex c∗. Let Z(G)-Modc

denote the category of Z(G)-module cochain complexes. We define a functor

h : Z(G)-Modc ×Hop
G → Ab∗

in such a way that, for every Z(G)-module cochain complex C∗, h(C∗,−) =
h∗.

Let K be a G-CW-complex. Bredon in [2] introduced a functor

C∗(K,−) : (KG,Ab) → Z(G)-Modc ,

such that, for every functor L : KG → Ab,

H∗
G(K,L) = h(C∗(K,L), G/G) .

Assume now that L : K(G) → Ab. Then we define

C∗(K,L) = C∗(K,Le) .

Let SnK denote the G-set of all n-cells of K. Then

Cn(K,L) =
∏

s∈SnK

L(s) .

If g ∈ G and ` = (`(s)) ∈ Cn(K,L), then g` = ((g`)(s)), where

(g`)(s) = L(g)`(g−1s)

and L(g) denotes the map L(g : K(g−1s) → K(s)). Assume that α : L→ L′

is a natural transformation of coefficient systems on K. Then the group
homomorphism Hn

G(K,α) is induced by the map
∏

s∈SnK α(s). Thus we
obtain a functor

C∗(K,−) : (K(G),Ab) → Z(G)-Modc .

In Section 2 we prove the following result.

1.6. Proposition. There exists a natural isomorphism of functors from
(K(G),Ab)×Hop

G to Ab∗

I∗G(K,−)(−) → h(C∗(K,−),−) .

Assume now that M : Oop
G → Ab is a coefficient system for the group G.

Then by the definition ([2])

C∗(K,M) = C∗(K,MθG(K)), H∗
G(K,M) = H∗

G(K,MθG(K)) .

If β : M → M ′ is a natural transformation of generic coefficient systems
then the map C∗(K,β) : C∗(K,M) → C∗(K,M ′) is given by the products
of maps

∏
s∈SnK β(G/Gs). This map induces the graded group homomor-

phism H∗(K,β).
The following result is an immediate consequence of 1.6.
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1.7. Corollary. There exists a natural isomorphism of functors from
G-CWop×(Oop

G ,Ab)×Hop
G to Ab∗

I∗G(−,−)(−) → h(C∗(−,−),−) .

Let f : K0 → K be a G-CW-map. For any local coefficient system
L : K(G) → Ab, we shall denote by H∗

G(f, L) the group homomorphism
H∗

G(K,L) → H∗
G(K0, Lf) which is determined by the map (f, idLf ). The

homomorphism H∗
G(f, L) is induced by the Z(G)-module cochain complex

homomorphism C∗(f, L) : C∗(K,L) → C∗(K0, Lf), which can be described
in the following way. Let C∗(K,Z) denote the cellular chain complex of K
and let C∗(f,Z) : C∗(K0,Z) → C∗(K,Z) be the chain map induced by f .
Assume that s0 ∈ SnK0. If C∗(f,Z)(s0) =

∑r
i=1 nisi where si ∈ SnK for

i = 1, . . . , r, then, for any ` ∈ Cn(K,L),

(Cn(f, L)`)(s0) =
r∑

i=1

niλi`(si)

where, for i = 1, . . . , r, λi is the structural map

L(si) → colim
K(s)⊆K(f(K0(s0)))

L(s) = Lf(s0) .

Assume now that M is a generic G-coefficient system. Then f induces
a homomorphism

H∗
G(f,M) : H∗

G(K,M) → H∗
G(K0,M)

which is determined by appropriate Z(G)-module homomorphisms

Cn(f,M) : Cn(K,M) → Cn(K0,M)

such that, for s0 ∈ SnK0 and m ∈ Cn(K,M),

Cn(f,M)(m)(s0) =
r∑

i=1

niµim(si)

where, for i = 1, . . . , r, µi : M(G/Gsi
) →M(G/Gs0) is the map induced by

the inclusion Gs0 ⊆ Gsi
.

We also have a natural transformation of local coefficient systems on K0

ϕ(M,f) : MθG(K)f →MθG(K0)

such that, for every cell s0 of K0, the map

ϕ(M,f)(s0) : colim
K(s)⊆K(f(K0(s0)))

M(G/Gs) →M(G/Gs0)

is induced by the inclusions Gs0 ⊆ Gs. It is easy to check that

H∗
G(K0, ϕ(M,f))H∗

G(f,MθG(K)) = H∗
G(f,M) .
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For a G-map f : K̃ → K we shall denote by P (f) the fiber product
over K/G of f/G : K̃/G → K/G and the projection to the orbit space
π(K) : K → K/G. We shall consider P (f) as a subset of (K̃/G) × K.
The group G acts on P (f) by the action on the second coordinate. There
are two structural maps f1 : P (f) → K and f2 : P (f) → K̃/G such that
π(K)f1 = (f/G)f2. Let φ : K̃ → P (f) be the unique map such that
f = f1φ and π(K̃) = f2φ. Then φ/G is a homeomorphism and (f2φ)/G is
the identity map on K̃/G. Further, Gx = Gf1(x) for any x in P (f). It is
clear that P (f) = K̃ if Gk = Gf(k) for each k in K̃. Assume that f = f ′f ′′,
where f ′ : K ′′ → K and f ′′ : K̃ → K ′′ are G-maps. Then there exist
unique G-maps pf ′′ : P (f) → P (f ′) and πf ′ : P (f ′′) → P (f) such that the
diagrams

K̃ −→ P (f) −→ Kyf ′′
ypf′′

yid

K ′′ −→ P (f ′) −→ K

K̃ −→ P (f ′′) −→ K ′′yid

yπf′

yf ′

K̃ −→ P (f) −→ K

commute. If f is a G-CW-map, then the topology of P (f) is induced from
the topology of the product (K̃/G)×K in the category of k-spaces.

Assume now that K̃ is the product K ′ ×K of two G-sets with diagonal
action of G and that f = pK′ : K ′×K → K is the projection onto the second
coordinate. In this case we shall use the notation PG(K ′,K) = P (pK′). If
K ′ is a G-CW-complex, then K ′ × K is a product in the category of k-
spaces. Since open cells of K ′ ×K are products of open cells of K ′ and K,
PG(K ′,K) has the natural structure of a G-CW-complex whose open cells
are subspaces of the form {((gk′, gk), k) : k ∈ s, k′ ∈ s′} where g is a fixed
element of G, s is an open cell of K and s′ is an open cell of K ′. We shall
denote by S(K) the G-set of all open cells of K. Thus

S(PG(K ′,K)) = PG(S(K ′), S(K)) .

We can extend, in a natural way, the construction above to a functor

PG : G-CW×G-CW → G-CW .

Let P : G-CW×G-CW→ G-CW be the product functor; i.e., P (K ′,K) =
K ′ × K together with the diagonal action of G. There exists a natural
transformation of functors φ : P → PG such that φ(K ′,K) is the map
determined by the projection pK′ : K ′ × K → K and by the projection
K ′×K → (K ′×K)/G to the orbit space. This natural transformation has
the following properties.

1.8. Proposition. (i) Let L be a local coefficient system on K. Then,
for every G-CW-complex K ′, the G-cellular map φ(K ′,K) induces an iso-
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morphism of cohomology groups

H∗
G(PG(K ′,K), L(pK′)1) → H∗

G(K ′ ×K,LpK′) .

(ii) Let M : Oop
G → Ab be a generic G-coefficient system . Then

MθG(K)(pK′)1 = MθG(PG(K ′,K))

and the map φ(K ′,K) induces an isomorphism

H∗
G(PG(K ′,K),M) → H∗

G(K ′ ×K,MθG(K)pK′) .

P r o o f. (i) Set L1 = L(pK′)1. It is clear that LpK′ = L1φ(K ′,K).
Hence it is sufficient to prove that the maps Cn(φ(K ′,K), L1)G are isomor-
phisms and this follows from the fact that φ(K ′,K)/G is a homeomorphism
such that ((pK′)2φ(K ′,K))/G = id(K′×K)/G.

(ii) This assertion is a consequence of the fact that, for every x in
PG(K ′,K), Gx = Gk where k = (pK′)1x.

The category OG can be considered as a full subcategory of the category
G-CW. The restriction of the functor PG to the category OG ×G-CW will
be denoted by δ. It is obvious that δ(G/G,K) = K and that (pG/H)1 is
equal to δ(πG/H , idK) where πG/H : G/H → G/G.

We shall use the notation

H∗
G(δ(G/H,K), L) = H∗

G(δ(G/H,K), Lδ(πG/H , idK)) ,
C∗G(δ(G/H,K), L) = C∗G(δ(G/H,K), Lδ(πG/H , idK)) .

Let u(G/H,K) : K → δ(G/H,K) be the map determined by the identity
idK : K → K and by the map u0 : K → (G/H ×K)/G such that, for every
k ∈ K, u0(k) = [(eH, k)]. It is clear that u(G/H,K) is an H-CW-map and
that, for every G-map f : G/H → G/H ′ such that f(eH) = eH ′,

δ(f, idK)u(G/H,K) = u(G/H ′,K) .

The map u(G/H,K) induces, for every local coefficient system L : K(G) →
Ab, a Z(H)-module cochain complex homomorphism

u∗(L,G/H) : C∗(δ(G/H,K), L) → C∗(K,L) .

Let w∗(L,G/H) : C∗(δ(G/H,K), L)G → C∗(K,L)H denote the restriction
of u∗(L,G/H)H to the Z-module C∗(δ(G/H,K), L)G.

1.9. Proposition. There exists a natural equivalence of functors from
(K(G),Ab)×Oop

G to Ab∗

σ∗ : H∗
G(δ(−,K),−) → h(C∗(K,−),−) ,

such that , for each subgroup H of G and each local coefficient system L
on K, σ∗(L,G/H) is induced by the cochain complex homomorphism
w∗(L,G/H).

In the proof of this proposition we shall use the following facts.
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Assume that K is a G-CW-complex and that H is a normal subgroup
of G. Then K/H has a G-CW-complex structure induced from K and the
projection to the orbit space ω : K → K/H is a G-CW-map.

1.10. Lemma. Let L be a local coefficient system on K/H. Then the
image of the Z(G)-module cochain complex monomorphism C∗(K/H,L) →
C∗(K,Lω) is equal to C∗(K,Lω)H .

P r o o f. This follows immediately from the definitions of the cochain
complex of Bredon cohomology and of the homomorphism induced by a
G-CW-map.

Assume now that K is a G-CW-complex. Let K ′′ = K ×K/G K be the
fiber product over K/G of two projections π : K → K/G onto the orbit
space. The group G acts on K ′′ by the action on K × K and K ′′ has a
natural structure of a G×G-CW-complex. The set of cells of K ×K/G K is
S(K)×S(K)/G S(K), where S(K) is the cell set of K. Thus, we can assume
that the cells of K ′′ are indexed by the set {(s, gs) : s ∈ S(K), g ∈ G}. Let
p and p′ be the structural maps from K ′′ to K. We can consider them as
the G×G-CW-projections p′ : K ′′ → K ′′/G× (e), p : K ′′ → K ′′/(e)×G.

1.11. Lemma. Assume that L is a G-local coefficient system on K. Then
there exists an isomorphism j : Lp→ Lp′ of G×G-local coefficient systems
on K ′′ = K ×K/G K such that , for every cell s of K, j(s, s) is the identity
map.

P r o o f. Let (s, s′) be a cell ofK ′′. Then there is g in G such that s′ = gs.
We define j(s, gs) : L(s) → L(gs) to be L([g]), where [g] : K(s) → K(gs) is
multiplication by g.

P r o o f o f P r o p o s i t i o n 1.9. Let K be a G-CW-complex and let H
be a subgroup of G. We shall use the fact that there exists an isomorphism

a : (G/H ×K)/G→ K/H

such that a(G(gH, k)) = Hg−1k whenever g ∈ G and k ∈ K. This implies
that K ′′ = K ×K/G K, with the group action restricted to (e)×G, is equal
to δ(G/(e),K) and that δ(G/H,K) is equal to K ′′/(H × (e)) as (e) × G-
CW-complexes.

Let πG/H : G/H → G/G be the natural projection. Then δ(πG/(e), idK)
= p′ : K ′′ → K ′′/G × (e). Assume that dG/H : G/(e) → G/H is the
projection such that dG/H(g) = gH for g ∈ G. Then δ(dG/H , idK) is the
projection onto the orbit space of H × (e).

Let L be a local coefficient system on K. From Lemmas 1.10 and 1.11
we conclude that there exist Z(G) = Z((e) × G)-isomorphisms of cochain
complexes

C∗(δ(G/H,K), L) ∼= C∗(K ′′, Lp′)H×(e) ∼= C∗(K ′′, Lp)H×(e) .
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Lemma 1.10 also yields a Z(G × (e))-module isomorphism C∗(K,L) ∼=
C∗(K ′′, Lp)(e)×G. Hence we obtain isomorphisms

C∗(δ(G/H,K), L)G ∼= C∗(K ×K/G K,Lp)H×G ∼= C∗(K,L)H .

Let u = u(G/e,K). Since pu = p′u = idK and ju : Lpu → Lp′u is the
identity map it follows that the isomorphisms above are induced by the
maps w∗(L,G/H).

The G-complex δ(G/H,K) will also be denoted by K[G/H]. Thus K[−]
can be considered as a functor from OG to G-CW. If, for each k in K, Gk

is a subgroup of H, then φ(G/H,K) : G/H × K → K[G/H] is a G-CW-
homeomorphism.

As immediate consequences of 1.8 and 1.9 we obtain the following results.

1.12. Corollary. There exists a natural equivalence of functors from
(K(G),Ab)×Oop

G to Ab∗

H∗
G(−×K,−) → h(C∗(K,−),−) ,

where, for every local coefficient system L and every subgroup H of G,

H∗
G(G/H ×K,L) = H∗

G(G/H ×K,LpG/H) .

1.13. Corollary. There exists a natural equivalence of functors from
G-CWop × (Oop

G ,Ab)×Oop
G to Ab∗

H∗
G(−[−],−) → h(C∗(−,−),−) .

1.6 and 1.7 yield the next results.

1.14. Corollary. Let K be a G-CW-complex and let H be a subgroup
of G.

(i) Assume that L is a local coefficient system on K. Then there are
isomorphisms

H∗
G(K[G/H], L) ∼= H∗

G(G/H ×K,L) ∼= H∗
G(K,L[G/H])

which are natural with respect to L in (K(G),Ab) and G/H in OG.
(ii) Let M : Oop

G → Ab be a coefficient system for the group G. Then
there is an isomorphism

z∗(K,M)(G/H) : H∗
G(K[G/H],M) → H∗

G(K,M [G/H])

which is natural with respect to K in G-CW, G/H in OG and M in
(Oop

G ,Ab).

1.15. Corollary. (i) There exists a natural equivalence of functors
H∗G(K,−) and I∗G(K,−) from (K(G),Ab)×Oop

G to Ab∗.
(ii) There exists a natural equivalence z∗ : I∗G → H∗

G(−[−],−), and a nat-
ural transformation φ∗ : I∗G → H∗G of functors from G-CWop × (Oop

G ,Ab)×
Oop

G , which is induced by the maps φ(G/H,K).
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(iii) For a generic coefficient system M : Oop
G → Ab,

H∗G(K,M)(G/H) ∼= H∗
G(G/H ×K,MθG(G/H ×K)) ,

I∗G(K,M)(G/H) ∼= H∗
G(G/H ×K,MθG(K)pG/H)

and the map φ∗(K,M)(G/H) is induced by the natural transformation of
local coefficient systems on G/H ×K

ϕ(M,pG/H) : MθG(K)pG/H →MθG(G/H ×K) .

P r o o f. (i) follows from 1.6 and 1.12. (ii) is a consequence of 1.7, 1.13
and the fact that the maps φ(G/H,K) form a natural transformation of
functors from OG × G-CW to G-CW. (iii) follows from 1.13 and 1.8(ii)
because

I∗G(K,M)(G/H) ∼= H∗
G(K[G/H],MθG(K[G/H]))

and φ(G/H,K) induces an isomorphism

H∗
G(K[G/H],MθG(K[G/H]))

→ H∗
G(G/H ×K,MθG(K[G/H])φ(G/H,K)) ,

which satisfies the condition

H∗
G(G/H ×K,ϕ(M,φ(G/H,K)))H∗

G(φ(G/H,K),MθG(K[G/H]))
= H∗

G(φ(G/H,K),M) .

The equalities

MθG(K)pG/H = MθG(K[G/H])φ(G/H,K) ,
ϕ(M,pG/H) = ϕ(M,φ(G/H,K))

end the proof.

In Section 2 we shall prove the following result.

1.16. Corollary. The natural transformation of functors φ∗(−,M)(−)
is an isomorphism if and only if M is isomorphic to a constant functor. In
this case, for any G-CW-complex K and any subgroup H of G,

I∗G(K,M)(G/H) = H∗
G((G/H ×K)/G,M(G/G))

= H∗
G(K/H,M(G/G)) .

Let T be a Hecke functor. We shall prove that in this case the coefficient
system H∗G(K,T ) can be extended to a Hecke functor, which will be denoted
by the same symbol. This is a consequence of the following result.

1.17. Proposition. (i) Any functor κ : Hop
G × (Hop

G ,Ab) → (Oop
G ,Ab)

induces a functor

κ∗ : G-CW× (Hop
G ,Ab)×Hop

G → Ab∗
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such that , for every G-CW-complex K, every Hecke functor T , and every
subgroup H of G,

κ∗(K,T )(G/H) = H∗
G(K,κ(G/H, T )) .

(ii) If d : κ → κ1 is a natural transformation of functors from Hop
G ×

(Hop
G ,Ab) to (Oop

G ,Ab), then there exists a natural transformation of func-
tors d∗ : κ∗ → κ∗1 such that , for every G-CW-complex K, every Hecke
functor T , and every subgroup H of G,

d∗(K,T )(G/H) = H∗
G(K,d(G/H, T )) .

The proof is easy and will be omitted. In Section 2 we shall prove the
following result.

1.18. Proposition. There exists a functor Γ : Hop
G × (Hop

G ,Ab) →
(Oop

G ,Ab) and a natural equivalence ψ∗ : Γ ∗ → H∗G of functors from G-CW×
(Hop

G ,Ab) × Oop
G to Ab∗. In particular , for every Hecke functor T , every

G-CW-complex K and every subgroup H of G, there is an isomorphism

ψ∗(K,T )(G/H) : H∗
G(K,Γ (G/H, T )) → H∗G(K,T )(G/H) .

It is clear that using the isomorphism ψ∗ we can extend H∗G(K,T ) to
a Hecke functor. If f : Z(G/H ′) → Z(G/H ′′) is a Z(G)-module homomor-
phism, then

H∗G(K,T )(f) = ψ∗(K,T )(G/H ′)H∗
G(K,Γ (f, idT ))ψ∗(K,T )(G/H ′′)−1 .

Let γ′ : Hop
G × (Hop

G ,Ab) → (Oop
G ,Ab) be the composition of the func-

tor i′′(ι, id) which was defined before 1.1, and the restriction functor i′ :
(Hop

G ,Ab) → (Oop
G ,Ab). Then γ(id, i′) = γ′ where γ is the functor defined

in 1.2, and for every Hecke functor T and every subgroup H of G,

I∗G(K,T )(G/H) = H∗
G(K, γ′(G/H, T )) .

Thus I∗G after restriction to the category G-CW× (Hop
G ,Ab)×Hop

G is equal
to (γ′)∗.

1.19. Proposition. There exists a natural transformation ζ : γ′ → Γ of
functors from Hop

G × (Hop
G ,Ab) to Ab such that ψ∗ζ∗ = φ∗ after restriction

to G-CW× (Hop
G ,Ab)×Oop

G .

Proposition 1.19 will also be proved in Section 2. It implies that if T is
a Hecke functor, then the transformation φ∗(K,T ) : I∗G(K,T ) → H∗G(K,T )
extends to a natural transformation of Hecke functors when H∗G(K,T ) is
extended to a Hecke functor.

We shall need the following well known property of Hecke functors.
Assume that H is a subgroup of G and that H ′ is a subgroup of H.
Consider the Z(G)-homomorphisms a : Z(G/H ′) → Z(G/H) and a′ :
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Z(G/H) → Z(G/H ′) such that for every g in G, a(gH ′) = gH and a′(gH) =∑
[h]∈H/H′ ghH ′.

1.20. Lemma. Let T be a Hecke functor. Then there exist homomor-
phisms

r(H,H ′) : T (G/H) → T (G/H ′) , i(H ′,H) : T (G/H ′) → T (G/H)

such that the composition i(H ′,H)r(H,H ′) is multiplication by |H/H ′|.

P r o o f. We define r(H,H ′) = T (a) and i(H ′,H) = T (a′).

The following facts are immediate consequences of 1.20.

1.21. Corollary. (i) If T (G/H ′) = (0), then |H/H ′|T (G/H) = (0).
(ii) If T (G/H ′) is a p-group and |H/H ′| = pn, then T (G/H) is a p-

group.
(iii) Let Hp be a Sylow p-subgroup of H and let T (G/H)p be the p-torsion

part of T (G/H). Then T (G/H)p is a direct summand in T (G/Hp).
(iv) If T : Hop

G → Z(p)-Mod is a p-local Hecke functor , then T (G/H) is
a direct summand in T (G/Hp).

Assume now that K is a G-CW-complex and that L is a local coeffi-
cient system on K. Then there exists an equivariant cohomology theory
h∗ : G-CWop → Ab∗ such that, for every G-CW-complex K ′, h∗(K ′) =
H∗

G(PG(K ′,K), L1), where L1 = L(pK′)1. The coefficient system of h∗ is
equal to the restriction of I∗G(K,L) to the category Oop

G . The results of [2],
Ch. IV, imply the following fact.

1.22. Corollary. There exists an “Atiyah–Hirzebruch” spectral se-
quence

Hp
G(K ′, Iq

G(K,L)) ⇒ Hp+q
G (PG(K ′,K), L1) .

We shall study this spectral sequence in the case where the natural map
(pK′)1 : PG(K ′,K) → K induces an isomorphism of cohomology groups
H∗

G(K,L) ∼= H∗
G(PG(K ′,K), L1).

1.23. Corollary. Assume that M is a G-generic coefficient system such
that , for every k in K, the map K ′/Gk → pt, where pt is a one-point space,
induces an isomorphism of cohomology groups

M(G/Gk) = H∗(pt,M(G/Gk)) ∼= H∗(K ′/Gk,M(G/Gk)) .

Then there exists a spectral sequence Hp
G(K ′, Iq

G(K,M)) ⇒ Hp+q
G (K,M).

P r o o f. There exists a spectral sequence

Ep,q
2 (K ′) = Hp

G(K,Mq(K ′)) ⇒ Hp+q
G (PG(K ′,K),M) ,
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where theMq areG-generic coefficient systems such that, for every subgroup
H of G,

Mq(K ′)(G/H) = Hq
G(PG(K ′, G/H),M) = Hq

G((K ′ ×G/H)/G×G/H,M)
∼= Hq

G(K ′/H ×G/H,M) ∼= Hq(K ′/H,M(G/H)) .

It follows from the assumptions that H∗
G(K,Mq(K ′)) = (0) for each natural

number q > 0, and that there is a natural transformation of functors v(K ′) :
M∗(K ′) → M0(K ′) which induces an isomorphism H∗

G(K,M∗(K ′)) ∼=
H∗

G(K,M0(K ′)).
Let M∗ = M∗(pt). Then Mq = (0) whenever q > 0, and the map v(pt) :

M∗ →M0 is a natural equivalence of functors. The natural map fK′ : K ′ →
pt induces a morphism of spectral sequences E∗,∗∗ (pt) → E∗,∗∗ (K ′). Since
(pK′)1 = (ppt)1PG(fK′ , idK) it follows that (pK′)1 induces an isomorphism
of cohomology groups Hp

G(K,M) ∼= Hp
G(PG(K ′,K),M). We can now apply

1.22.

We shall need the following notation. Assume that F is a G-set of
subgroups of G, i.e. a set of subgroups closed under conjugation by elements
of G. Then we shall denote by Fp the set of all Sylow p-subgroups of groups
in F . If F, F0 are G-sets of subgroups of G then the G-set {H ∩ H0 :
H ∈ F,H0 ∈ F0} will be denoted by F F0. We shall denote by F ∪ F0

the ordinary union of the sets F and F0. We shall also use the notation
F ′ = F ∪ {G}. If K is a G-CW-complex, then F (K) = {Gk : k ∈ K}.

Assume now that R is a commutative ring. We say that a CW-complex
K0 is R-acyclic if the map Π : K0 → G/G induces an R-module isomor-
phism H∗(K0, R) → R of the ordinary cellular homology groups with R
as coefficients. This is equivalent to the condition that, as R-modules,
H∗(K0, R) is isomorphic to H∗(K0, R) and to R.

1.24. Lemma. (i) Let M : Oop
G → R-Mod be a generic G-coefficient

system. Assume that for every subgroup H ∈ F (K)′ the CW-complex KH

is R-acyclic. Then Π induces an isomorphism M(G/G) ∼= H∗
G(K,M).

(ii) Assume that , for every subgroup H ∈ F (K)′, Π induces an iso-
morphism h∗(K,R)(G/H) → R, where hn(K,R)(G/H) = Hn(C∗(K,R)H).
Then, for every Hecke functor T : Hop

G → R-Mod, Π induces an isomor-
phism T (G/G) ∼= H∗

G(K,T ).

This result will be proved in Section 2.

1.25. Lemma. Let F be a G-set of subgroups of G and let K be a G-CW-
complex. Assume that one of the following conditions holds.

(i) The CW-complex KH is R-acyclic whenever H belongs to F (K)′ F
= (F (K) F ) ∪ F .
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(ii) There exists a prime number p such that |G/Gp| is an invertible
element of R and the CW-complex KH is R-acyclic whenever H belongs to
F (K)′ Fp.

Then for every H in F , the CW-complex K/H is R-acyclic and Π in-
duces an isomorphism h∗(K,R)(G/H) → R.

P r o o f. It is sufficient to prove that Π induces an isomorphism

h∗(K,R)(G/H) → R ,

because, for each natural number n, there is an isomorphism

b : Hn(C∗(K/H,R)) → Hn(C∗(K,R)H) .

If (i) holds, then from 1.24(i) it follows that Π induces an isomorphism
R→ H0(HomR(C∗(K,R)H , R)) and that, for each n > 0,

Hn(HomR(C∗(K,R)H , R)) = (0) .

This implies that h∗(Π,R) is an isomorphism.
Assume now that (ii) holds. Let H ∈ F and let Hp be a Sylow p-

subgroup of H. Condition (i) of this lemma holds for F = Fp, hence Π
induces an isomorphism h∗(K,R)(G/Hp) → R. For each n, hn(K,R) is a
Hecke functor and hn(Π,R) is a natural transformation of Hecke functors.
The result now follows from 1.20 and from the assumption that |H/Hp| is
an invertible element of R.

1.26. Corollary. Let K and K ′ be G-CW-complexes. Assume that one
of the conditions of 1.25 holds for K ′ and the family F = F (K). Then, for
any coefficient system M : Oop

G → R-Mod, there exists a spectral sequence

Hp
G(K ′, Iq

G(K,M)) ⇒ Hp+q
G (K,M) .

P r o o f. Lemma 1.25 implies that K ′/H is R-acyclic for each H in F .
Thus, by the Universal Coefficient Theorem for cohomology,

H∗(K/H,M(G/H)) = H0(K/H,M(G/H)) = M(G/H)

for each H in F . Now we can apply 1.23.

As an immediate consequence of 1.26 we obtain the following fact.

1.27. Corollary. Let p be a prime and let K be a G-CW-complex such
that , for each k in K, the Sylow p-subgroups of Gk are equal to (e). Assume
that |G/Gp|−1 ∈ R . Then there exists a spectral sequence

Hp(G,Hq
G(K,M [G/(e)])) ⇒ Hp+q

G (K,M) .

P r o o f. In this case we may consider K ′ equal to a universal free G-CW-
complex EG. The Bredon cohomology groups of this complex with respect
to any coefficient system M ′ are equal to the cohomology groups of G with
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coefficients in the Z(G)-module M ′(G/(e)). (See Example 1 on p. I-25 of
[2].)

The following result shows that in many cases the spectral sequence
described in 1.26 trivializes.

1.28. Corollary. Let R be a commutative ring and let K ′ be a G-CW-
complex. Assume that one of the following conditions holds.

(i) There exists a prime number p such that K ′H is R-acyclic whenever
H ∈ (F (K ′)′)p F (K ′)′ and |G/Gp| is an invertible element of R.

(ii) For every prime number p, K ′H is Z/p-acyclic whenever H ∈
(F (K ′)′)p F (K ′)′, K is Z-acyclic and R = Z.

(iii) The CW-complex K ′ is finite-dimensional , Z-acyclic and R = Z.
(iv) The CW-complex K ′ is finite-dimensional , Z/p-acyclic and

R = Z/p.

Then, for any Hecke functor T : Hop
G → R-Mod,

T (G/G) = H0
G(K ′, T ) = H∗

G(K ′, T ) .

P r o o f. If (i) holds, then the result follows from 1.24(ii) and from 1.25.
Assume that (ii) holds. Lemma 1.25 implies that, for each prime p and
each H ∈ F (K ′)′, h∗(Π,Z/p)(G/H) is an isomorphism. Assume that H ∈
F (K ′)′. From the fact that hn(K ′,Z) is a Hecke functor and from 1.21(i) it
follows that

|H|Cokerh0(Π,Z)(G/H) = |H|Kerh0(π,Z)(G/H) = (0) ,

and |H|hn(K ′,Z)(G/H) = (0) for each n > 0, because Hn(K ′,Z) = (0).
Hence h∗(Π,Z)(G/H) is an isomorphism and we can apply 1.24(ii). The
statements (iii) and (iv) are consequences of the Smith theory ([3], Ch. III.
5.2). In this case Z/p-acyclicity of K ′ implies Z/p-acyclicity of K ′H , for
every p-subgroup H of G.

For a G-set F of subgroups of G, we shall denote by O(F ) the full
subcategory of OG whose objects are the G-orbits G/H where H belongs
to F . The following result can be considered as a special case of one of the
results of [8], which says that every p-local Mackey functor is acyclic on the
category O(F ) in the case where F contains the Sylow p-subgroups of G
and F F ⊆ F .

1.29. Corollary. Let F be a G-set of subgroups of G such that F F
⊆ F , F ′ Fp ⊆ F and Fp = (F ′)p, i.e. all Sylow p-subgroups of G belong to
Fp. Assume that |G/Gp|−1 ∈ R. Then, for any Hecke functor T : Hop

G →
R-Mod,

T (G/G) = lim
O(F )

∗ T = lim
O(F )

0 T .
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P r o o f. Let Fm be the set of maximal subgroups of F . Assume that
Fm = {H0, . . . ,Hn}. Define EF = ∗s

i=0E(G/Hi) where E(G/H) =
∗∞i=0G/H. It is well known that EF has a structure of a G-CW-complex
such that, for every H ∈ F , EFH is R-acyclic and F (EF ) ⊆ F , and that
([10], [13]) H∗

G(EF, T ) = lim∗
O(F ) T . Now, it is sufficient to apply 1.28.

2. Hecke structure on categories associated to G-posets. In
this section, we shall prove the results which were stated and not proved in
Section 1. Some of these will be considered as special cases of more general
facts concerning categories associated to G-posets which will be presented
in this section.

Let W be a G-poset, i.e. W is a poset and G acts on W in such a way
that, for any g in G and any w, w′ in W , w ⊆ w′ implies that gw ⊆ gw′.

The category W [G] is defined as follows. Its objects are the elements of
W ; for any w, w′ in W

MorW [G](w′, w) = {g ∈ G : gw′ ⊆ w} ,

and the composition of morphisms is the multiplication in G. Let Gw =
{g ∈ G : gw = w}. Then Gw = MorW [G](w,w) and MorW [G](w′, w) is a left
Gw-set and a right Gw′ -set.

By Sub-G we shall denote the G-poset of all subgroups of G. The group
G acts on W [G] by conjugation. Assume that d : W → Sub-G is a G -poset
map such that, for every w in W , dw is a subgroup of Gw. Such G-poset
maps will be called admissible. By Wd[G] we shall denote the category
whose objects are the elements of W and whose morphism sets are obtained
from the morphism sets of W [G] in such a way that, for any w, w′ in W ,

MorWd[G](w′, w) = MorW [G](w′, w)/dw .

The composition of morphisms in Wd[G] is induced by the composition of
morphisms in W [G]. This definition is correct because if gw′ ⊆ w, then
g(dw′)g−1 ⊆ dw so we have the inclusion gdw′ ⊆ (dw)g of subsets of G.
The morphism w′ → w of Wd[G] which is defined by an element g of G such
that gw′ ⊆ w will be denoted by [g].

If H is a subgroup of G then any G-poset can be considered as an H-
poset. Assume that d : W → Sub-G is an admissible G-poset map. Then
dH : W → Sub-H will denote the admissible H-poset map such that, for
every w in W , dHw = H ∩ dw. The category WdH

[H] will be denoted by
Wd[H] and will be considered as a subcategory of Wd[G].

If H = (e), where e is the neutral element of G, then we obtain the
category associated to the poset W . We shall use the notation Wd[(e)] = W .
If V is a G-subposet of W , then the restriction of d to V will also be denoted
by d.



20 J. S lomińska

Now we present the main examples of categories described above.

2.1. Example. Let W = Sub-G and let d = id : Sub-G→ Sub-G. Then
Wd[G] = OG. The category Wd[H] will be denoted by OG,H . Its objects are
the G-orbits G/H ′ and its morphisms are those G-maps f : G/H ′ → G/H ′′

which are defined by the elements h of H satisfying the condition h−1H ′h ⊆
H ′′ in such a way that f(gH ′) = ghH ′′.

2.2. Example. Assume that K is a G-CW-complex. Let V ′ be the
G-poset of all finite subcomplexes of K and let W ′ = V ′op be the G-poset
opposite to V ′. For every finite subcomplex K ′ of K, we define

d(K ′) = GK′ = {g ∈ G : gk = k whenever k ∈ K ′} .
Then W ′

d[H]op = KH for any subgroup H of G. If V is the G-poset of all
subcomplexes of K which have the form K(s), where s is a cell of K, then
Wd[H]op = K(H), where W = V op.

Let θd(G) : Wd[G] → OG be the covariant functor such that, for any w
in W , θd(G)(w) = G/dw and, for any morphism [g] : w′ → w of Wd[G],
θd(G)([g]) = [g]. Assume that

κd(G) : Hop
G × (Wd[G]op,Ab) → (Wd[G]op,Ab)

is the functor (ιiθd(G))′′(ι, id) which was defined before Proposition 1.1. For
any subgroup H of G and any contravariant functor from Wd[G] to Ab,

κd(G)(G/H,M)(w) = HomZ(G)(Z(G/H ×G/dw),Z)⊗M(w) .

In Example 2.1, κd(G) is the functor γ defined in 1.2. In Example 2.2,
we obtain the functor γK described in 1.4. We shall also use the notation
κd(G)(G/H,M) = M [G/H].

Assume now thatM andN are contravariant functors fromWd[G] to Ab.
For any subgroup H of G, let λ(H,G) : Wd[H] → Wd[G] be the inclusion
functor.

The Z-module of all natural transformations of Nλ(H,G) to Mλ(H,G)
will be denoted by HomWd[H](N,M). The group G acts on the Z-module
HomW (N,M), where W = Wd[(e)], in such a way that for any % : N → M
in HomW (N,M), and for w ∈W and g ∈ G,

(g%)(w) = M([g]−1)%(g−1w)N([g]) ,

where [g] : g−1w → w.

2.3. Proposition. The image of the group monomorphism

µ : HomWd[H](N,M) → HomW (N,M)

is equal to HomW (N,M)H .

P r o o f. It is obvious that the image of µ is contained in HomW (N,M)H .
Let τ be a natural transformation from Nλ(e,H) to Mλ(e,H). Assume
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that, for every w in W and h in H,

M([h])τ(w) = τ(h−1w)N([h]) ,

where [h] : h−1w → w is an isomorphism of Wd[H]. Let [h′] : w′ → w be an
arbitrary morphism of Wd[H]. Then [h′] is the composition of the morphism
[e] : w′ → h′−1w of W = Wd[e] and the isomorphism [h′] : h′−1w → w of
Wd[H]. Hence M([h′])τ(w) = τ(w′)N([h′]), which ends the proof.

We shall need the following facts, which can be obtained immediately
from the results of Auslander [1] and Mitchell [9]. Let C be a small category.
Consider two functors P : C → Ab and Q : Cop → Ab. Their tensor product
over C, P ⊗C Q, is defined as the coequalizer of the diagram∐

B,B′∈Ob C

∐
f∈MorC(B,B′)

P (B)⊗Q(B′)
t

⇒
t′

∐
B′′∈Ob C

P (B′′)⊗Q(B′′) ,

where t(p⊗q) = p⊗Q(f)q and t′(p⊗q) = P (f)p⊗q whenever p ∈ P (B) and
q ∈ Q(B′). Thus P ⊗CQ is the coend of the functor P : C×Cop → Ab such
that P(B,B′) = P (B)⊗Q(B′). If M and N are contravariant functors from
C to Ab then we denote by HomC(M,N) the abelian group of all additive
natural transformations from M to N . This group can also be considered
as the end of an appropriate functor.

Let B be an object of C. Then the representable functor Z(MorC(−, B))
is a projective object in the category (Cop,Ab) of contravariant functors
from C to Ab. For any functor N : Cop → Ab there is a group isomorphism

HomC(Z(MorC(−, B)), N) = N(B) ,

which is natural in B.
Assume that C′ is a subcategory of C and that M is a contravariant

functor from C′ to Ab. Then C⊗C′ M and HomC′(C,M) are contravariant
functors from C to Ab such that, for any functor N : Cop → Ab,

HomC(C⊗C′ M,N) = HomC′(M,N) ,
HomC(N,HomC′(C,M)) = HomC′(N,M) .

For any object B of C we have

(C⊗C′ M)(B) = Z(MorC(B,−))⊗C′ M ,

(HomC′(C,M))(B) = HomC′(Z(MorC(−, B),M) .

It is obvious that C⊗C′ M (resp. HomC′(C,M)) is a left (resp. right) Kan
extension of the functor M along the inclusion C′ → C. It follows from the
definition that (C⊗C′M)(B) is the coend of the functor P : C′×C′op → Ab
such that

P(B′, B′′) = Z(MorC(B,B′))⊗M(B′′)
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and that HomC′(C,M)(B) is the end of the functor P ′ : C′ × C′op → Ab
such that

P ′(B′, B′′) = Hom(Z(MorC(B′, B)),M(B′′)) .

Assume now that C = Wd[G] and C′ = W . For any functor M :
Wd[G]op → Ab, we can consider HomW (Wd[G],M) as a contravariant func-
tor from Wd[G] to Z(G)-Mod. The action of G on HomW (Wd[G],M)(w) is
given by the action of G on the group of natural transformations

HomW (Z(MorWd[G](−, w)),M) .

Let ϑ : Z(G)-Mod → (Hop
G ,Ab) be the composite of ι : HG → Z(G)-Mod and

the Yoneda functor Z(G)-Mod → (Z(G)-Modop,Ab). We define a functor

νd(G) : Hop
G × (Wd[G]op,Ab) → (Wd[G]op,Ab)

in such a way that

νd(G)(G/H,M)(w) = ϑ(HomW (Wd[G],M)(w))(G/H) .

2.4. Corollary. Let H be a subgroup of G and let M be a contravariant
functor from Wd[G]op to Ab. Then

νd(G)(G/H,M) = HomW (Wd[G],M)H = HomWd[H](Wd[G],M) .

P r o o f. Let w ∈W . Then Proposition 2.3 implies that

HomW (Wd[G],M)(w)H = HomW (Z(MorWd[G](−, w)),M)H

= HomWd[H](Z(MorWd[G](−, w)),M) .

2.5. Proposition. (i) There exists a natural equivalence of functors t :
κd(G) → νd(G).

(ii) For any functors N,M : Wd[G]op → Ab there exists an isomorphism

HomWd[G](N,M [G/H]) → HomW (N,M)H ,

which is natural in N and M . This equivalence is also natural with respect
to G/H in HG.

P r o o f. (i) It follows immediately from the definition that, for any
w in W ,

Z(MorWd[G](−, w)) =
∐

[g]∈G/dw

Z(MorW (−, gw)) .

Assume that [g] ∈ G/dw and that w′ ⊆ gw. Then the morphism w′ ⊆ gw
of W corresponds to the morphism [g−1] : w′ → w of Wd[G]. Hence

νd(G)(G/H,M)(w) =
( ∏

[g]∈G/dw

M(gw)
)H

.
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The group G acts on
∏

[g]∈G/dw M(gw) in such a way that, for any g′ ∈ G,
we have

g′
( ∏

[g]∈G/dw

m(gw)
)

=
∏

[g]∈G/dw

M([(g′)−1])m((g′)−1gw) ,

where, for every g ∈ G, [g′−1] : gw → (g′)−1gw.
Let ξ ⊗m be an element of κd(G)(G/H,M)(w) such that ξ : Z(G/H ×

G/dw) → Z is a Z(G)-module homomorphism and m belongs to M(w). We
define

t(G/H,M)(w)(ξ ⊗m) =
∏

[g]∈G/dw

ξ(H, gdw)M([g−1])m,

where [g−1] : gw → w. It is easy to check that this definition is cor-
rect and that t is a natural equivalence of functors. For example, let
n : Z(G/H1) → Z(G/H) be the Z(G)-module homomorphism such that
n(H1) =

∑
[g′]∈G/H n([g′])g′H. Then

ξ(n⊗ id)(H1, gdw) =
∑

[g′]∈G/H

n([g′])ξ(g′H, gdw)

and νd(G)(n , idM )(w) is equal to the operation by
∑

[g′]∈G/H n([g′])(g′).
Thus

(t(G/H1,M)κd(n , idM ))(w)(ξ ⊗m) = t(G/H1,M)(w)(ξ(n⊗ id)⊗m)

=
∏

[g]∈G/dw

∑
[g′]∈G/H

n([g′])ξ(g′H, gdw)M([g−1])m

=
∏

[g]∈G/dw

∑
[g′]∈G/H

n([g′])ξ(H, (g′)−1gdw)M([g−1])m

=
∑

[g′]∈G/H

n([g′])
∏

[g]∈G/dw

M([(g′)−1])ξ(H, (g′)−1gH)M([g−1g′])m

= νd(G)(n , idM )(w)
∏

[g]∈G/dw

ξ(H, gdw)M([g−1])m

= νd(G)(n , idM )t(G/H,M))(w)(ξ ⊗m) .

This proves that t(G/H,M) is a natural transformation with respect to
G/H in HG.

(ii) follows from (i), 2.3 and 2.4.

Assume now that C = C∗ is a chain complex of contravariant
functors from Wd[G] to Ab. For any functor M : Wd[G]op → Ab, we
denote by Hn(C,M) the nth cohomology group of the cochain complex
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HomWd[G](C∗,M). As an immediate consequence of 2.5(ii), we obtain the
following result, which will be used in the proof of Proposition 1.6.

2.6. Corollary. There exists an isomorphism of contravariant functors
from HG to Ab∗

H∗(C,M [−]) → h(HomW (C∗,M),−) ,

which is natural in M and C.

We shall now give another description of the cochain complex of Bredon
cohomology. In the case of cohomology with a generic coefficient system
this was done by Bredon in [2], Ch. I.9. Let K be a G-CW-complex. Then
c∗(K) denotes the chain complex of functors from Oop

G to Ab such that, for
any subgroup H of G, c∗(K)(G/H) is equal to the ordinary cellular chain
complex of KH with Z as coefficients. If n is a natural number, then

cn(K) = Z(MapG(−, SnK)) =
∐

[s]∈(SnK)/G

Z(MorOG
(−, G/Gs)) ,

where SnK is the G-set of n-cells of K and MapG(−,−) denotes the set of
G-maps. For any generic coefficient system M there is an isomorphism of
cochain complexes

C∗(K,M)G = HomOG
(c∗(K),M) .

Let λ′ denote the inclusion OG,(e) → OG. One can easily check that

cn(K)λ′ =
∐

s∈SnK

Z(MorOG,(e)(−, G/Gs)) =
∐

s∈SnK

Z(MorSub-G(−, Gs))

and that, for any generic coefficient system M , there is a Z(G)-module
cochain complex isomorphism

C∗(K,M) = HomOG,(e)(c∗(K),M) .

It follows from 2.3 that, for any subgroup H of G,

C∗(K,M)H = HomOG,H
(c∗(K),M) .

We shall denote by c∗(K) the chain complex of functors from KG to
Ab such that, for any finite subcomplex K ′ of K, c∗(K)(K ′) is the ordinary
cellular chain complex C∗(K ′,Z). If f is a morphism of KG then c∗(K)(f) =
C∗(f,Z). The restriction of c∗(K) to the category K(G) will be denoted by
the same symbol. If s is a cell of K then c∗(K)(s) = C∗(K(s),Z). Let
λ : K(e) → K(G) denote the natural inclusion. It is easy to see that

cn(K)λ =
∐

s∈SnK

Z(MorK(e)(s,−))
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and that, for any local coefficient system L, there is an isomorphism of
Z(G)-module cochain complexes

C∗(K,L) = HomK(e)(c∗(K), L) .

Thus, for any subgroup H of G and any local coefficient system L : K(G) →
Ab, there is an isomorphism of cochain complexes

C∗(K,L)H = HomK(H)(c∗(K), L) .

P r o o f o f P r o p o s i t i o n 1.6. This is an immediate consequence of
2.6 in the case where Wd[G]op = K(G), M = L and C∗ = c∗(K).

As an immediate consequence of 2.5, we obtain the following result.

2.7. Corollary. Assume that H is a subgroup of G.

(i) Let M be a G-generic coefficient system. Then there is an isomor-
phism M [G/H] → HomOG,H

(OG,M).
(ii) Let K be a G-CW-complex and let L be a local coefficient system on

K. Then there is an isomorphism L[G/H] → HomK(H)(K(G), L).

Corollary 1.13 yields the next result.

2.8. Corollary. Let K be a G-CW-complex and let H be a subgroup
of G. Then there exists a natural equivalence of chain complexes of G-
coefficient systems

υ∗(G/H) : OG ⊗OG,H
c∗(K) → c∗(K[G/H]) .

P r o o f. This follows from the fact that, for any G-generic coefficient
system M , there is an isomorphism

HomOG
(c∗(K[G/H]),M) → HomOG,H

(c∗(K),M) .

Consider the H-CW-map u = u(G/H,K) : K → K[G/H] described before
Proposition 1.9. It follows from the proof of 1.9 that this map induces an
isomorphism of cochain complexes

w∗ = w∗(G/H,M) : C∗(K[G/H],M)G → C∗(K,M)H .

For every subgroup J of G, the map u induces a map uJ : KJ → K[G/H]J .
Thus u induces an OG,H -map from c∗(K) to c∗(K[G/H]) and υ∗(G/H) is
the adjoint of this map.

The following fact will be used in the proof of 1.16. We shall use the
notation of 1.14 and 1.15. For any two subgroups H, H ′ of G, we shall
denote by p(H,H ′) theG-mapG/(H∩H ′) → G/H ′ induced by the inclusion
H ∩H ′ ⊆ H ′.

2.9. Proposition. Let K be a G-CW-complex and let M be a generic
coefficient system for G. Assume that H is a subgroup of G and that , for
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every k in K, the map M(p(H,Gk)) : M(G/Gk) → M(G/(H ∩ Gk)) is an
isomorphism. Then the map

φ∗(K,M)(G/H)z∗(K,M)(G/H) : H∗
G(K[G/H],M) → H∗

G(G/H ×K,M)

is an isomorphism.

P r o o f. The G-set S(G/H ×K) of all cells of G/H ×K is equal to the
G-set G/H × S(K). If s is a cell of K and g is an element of G then

MθG(K)pG/H(gH, s) = M(G/Gs) ,

MθG(G/H×K)(gH, s) = M(G/(gHg−1∩Gs)) = M(G/g(H ∩Gg−1s)g−1) ,

and ϕ(M,pG/H)(gH, s) is the composition of three isomorphisms:

M(G/Gs) →M(G/g−1Gsg) →M(G/(H∩g−1Gsg)) →M(G/gHg−1∩Gs) .

Now, the result follows from 1.15(iii).

P r o o f o f C o r o l l a r y 1.16. This result follows from 2.9 and from
the facts that the functor M is isomorphic to H0

G(−,M) = H0
G(G/G,M)

and that the functor I0
G(G/G,M) is constant because (G/G)[G/H] = G/G

whenever H is a subgroup of G.

We shall now compare our constructions with the Illman transfer, which
was defined in [7]. We shall denote by OG,H(K) the full subcategory of OG,H

whose objects are of the formG/Gk, where k ∈ K. Let λH : OG,H(K) → OG

be the natural inclusion and let ωH : OG,H(K) → OH be the functor such
that ωH(G/H ′) = H/H ∩ H ′. Assume that M is a generic G-coefficient
system, N is a generic H-coefficient system and that there exists a natural
transformation of functors Ω : NωH →MλH . Then there exists the Illman
transfer

τ∗(K,Ω) : H∗
H(K,N) → H∗

G(K,M) .
Immediately from the definition and from 1.6, it follows that τ∗(K,Ω) is
the composition of the map determined by Ω∗ : C∗(K,N)H → C∗(K,M)H ,
which is induced by Ω, and i(H,G) : I∗G(K,M)(G/H) → H∗

G(K,M), which
was described in 1.20.

2.10. Example. Let M be a generic G-coefficient system and let H
be a subgroup of G. Assume that M satisfies the assumptions of 2.9. Let
IH : OH → OG be the natural functor such that, for every subgroup H ′ of
H, IH(H/H ′) = G/H ′. Consider the map Ω : MIHωH →MλH such that,
for every k in K, Ω(G/Gk) = M(p(H,Gk))−1. Then there exists the Illman
transfer

τ∗(K,Ω) : H∗
H(K,MIH) = H∗

G(G/H ×K,M) → H∗
G(K,M)

and the composition

τ∗φ∗(K,M)(G/H) : I∗G(K,M)(G/H) → I∗G(K,M)(G/G)
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is the map i(H,G) from 1.20.

A G-generic coefficient system M is naturally equivalent to the restric-
tion of the functor H0

G(−,M) to the category OG. Hence Corollary 1.15
implies that the functor γ(i , id), where γ is the functor described in 1.2, is
naturally equivalent to a functor γ0 : Oop

G × (Oop
G ,Ab) → (Oop

G ,Ab), defined
in such a way that

γ0(G/H,M)(G/H1) = HomOG
(Z(MapG(−, G/H1[G/H])),M)

whenever H, H1 are subgroups of G and M is a G-generic coefficient system.
Recall that

G/H1[G/H] = ((G/H ×G/H1)/G)×G/H1 .

The “classical” uniqueness theorem ([2], IV. 4, 5) implies that there exists
an isomorphism of cohomology theories

r∗(−,M)(G/H) : H∗
G(−, γ0(G/H,M)) → H∗

G(−[G/H],M)

which is natural with respect to M in (Oop
G ,Ab) and G/H in OG.

Let Γ0 : Oop
G × (Oop

G ,Ab) → (Oop
G ,Ab) be the functor such that, for any

subgroup H of G and for any G-generic coefficient system M , Γ0(G/H,M)
is the restriction of the functor H0(G/H ×−,M) to OG. Then

Γ0(G/H,M)(G/H1) = HomOG
(Z(MapG(−, G/H ×G/H1)),M)

and there is an isomorphism of cohomology theories

r∗0(−,M)(G/H) : H∗
G(−, Γ0(G/H,M)) → H∗G(−,M)(G/H)

which is natural with respect to M in (Oop
G ,Ab) and G/H in OG.

The G-map φ(G/H,G/H1) determines a natural transformation of func-
tors φ0 : γ0 → Γ0. As a consequence of 1.14 and 1.15 we obtain the following
result.

2.11. Corollary. Let φ∗0 : H∗
G(−, γ0(−,−)) → H∗

G(−, Γ0(−,−)) be the
natural transformation which is induced by φ0. Then φ∗(z∗)−1r∗ = r∗0φ

∗
0

where φ∗, z∗ are the natural transformations described in 1.15.

P r o o f. This follows from the fact that, by [2], Ch. IV.4, 5,

r∗0(K,M)(G/H)φ∗0(K,M)(G/H) = H∗(φ(G/H,K),M)r∗(K,M)(G/H)

whenever H is a subgroup of G, K is a G-CW-complex and M is a generic
G-coefficient system.

We shall now prove Propositions 1.18 and 1.19. Let K be a G-CW-
complex. Then we have the Hecke functor chain complex c̃∗(K) : Hop

G → Abc

such that, for any subgroup H of G,

c̃∗(K)(G/H) = HomZ(G)(Z(G/H), C∗(K,Z)) = C∗(K,Z)H .
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From the fact that c∗(K) is a direct sum of representable Oop
G functors and

c̃∗(K) is the direct sum of the analogous representable Hop
G functors it follows

that c̃∗(K) is the left Kan extension of c∗(K). Assume that T is a Hecke
functor. Then there is an isomorphism of cochain complexes

HomOG
(c∗(K), T i) → HomHG

(c̃∗(K), T ) ,

which is natural in K and T . This isomorphism follows from the formal
properties of left Kan extensions. If X is a finite G-set, then

H∗
G(X,T ) = H0

G(X,T ) ∼= HomHG
(HomZ(G)(ι(−),Z(X)), T ) .

P r o o f o f P r o p o s i t i o n 1.18. Assume that T is a Hecke functor. Let
T ′ be the contravariant functor from Z(G)-Modop to Ab such that

T ′(A) = HomHG
(HomZ(G)(ι(−), A), T ) ,

T ′(f) = HomHG
(HomZ(G)(ι(−), f), idT ) ,

whenever A is a Z(G)-module and f is a Z(G)-module homomorphism. This
means that T ′ is a right Kan extension of T along the functor ι. It is obvious
that T ′ι = T . We define Γ by

Γ (G/H, T )(G/H1) = T ′(Z(G/H)⊗ Z(G/H1)) ,
Γ (G/H, T )(f) = T ′(id⊗Z(f)) ,

whenever H, H1 are subgroups of G and T is a Hecke functor. If f ′′ :
Z(G/H) → Z(G/H ′′) is a Z(G)-module homomorphism and if % : T → T0

is a natural transformation of Hecke functors, then

Γ (f ′′, %)(G/H1) = %′(f ′′ ⊗ id) .

(One can simply observe that the category HG can be defined either in terms
of just the orbits G/H or in terms of finite G-sets. The two definitions give
the same category of additive functors into Ab. With the definition in terms
of finite G-sets, one can define Γ (G/H, T ) to be T (G/H × (−)).)

It follows from the definition that there is an isomorphism

H∗
G(G/H ×G/H1, T ) = H0

G(G/H ×G/H1, T ) ∼= H∗
G(G/H1, Γ (G/H, T )) ,

which is natural with respect to G/H and G/H1 in OG and T in (Hop
G ,Ab).

Thus there exists an isomorphism of cohomology theories

ψ∗(G/H, T ) : H∗
G(−, Γ (G/H, T )) → H∗

G(G/H × (−), T ) ,

which is natural with respect to G/H in OG and T in (Hop
G ,Ab).

P r o o f o f P r o p o s i t i o n 1.19. Consider the functors D1, D2 : HG ×
OG → Z(G)-Mod defined by

D1(G/H,G/H1) = Z(G/H)⊗ Z(G/H1) ∼= Z(G/H ×G/H1) ,
D2(G/H,G/H1) = ((Z(G/H)⊗ Z(G/H1))⊗Z(G) Z)⊗ Z(G/H1)



Hecke structure on Bredon cohomology 29

∼= Z((G/H ×G/H1)/G)⊗ Z(G/H1) ∼= Z(G/H1[G/H]) .

If f ′′ : Z(G/H) → Z(G/H ′′) is a Z(G)-module homomorphism and f0 :
G/H1 → G/H2 is a G-map, then D1(f ′′, f0) = f ′′⊗Z(f0) and D2(f ′′, f0) =
((f ′′ ⊗ Z(f0))⊗ id)⊗ Z(f0). The Z(G)-module homomorphisms

Z(φ(G/H,G/H1)) : Z(G/H ×G/H1) → Z(G/H1[G/H])

induce a natural transformation ζ0 : D1 → D2 of functors from HG×OG to
Z(G)-Mod. It follows from the definitions that there are isomorphisms

γ′(G/H, T )(G/H1) ∼= HomZ(G)(Z(G/H ×G/H1),Z)⊗ T (G/H1)
∼= HomHG

(HomZ(G)(ι(−), D2(G/H,G/H1)), T )

which are natural with respect to G/H in HG, G/H1 in OG and T in
(Hop

G ,Ab). Let ζ be the natural transformation from γ′ to Γ induced by
ζ0. Then ζ determines a natural transformation ζ∗ : I∗G → Γ ∗ such that
ψ∗ζ∗ = φ∗.

Now, we shall prove Lemma 1.24. Let K be a G-CW-complex. Assume
that F is a G-set of subgroups of G which contains the group G and all
subgroups of the form Gk where k ∈ K. It is well known that, for any
generic coefficient system M and for any Hecke functor T ,

HomOG
(c∗(K),M) = HomO(F )(c∗(K),M) ,

HomHG
(c̃∗(K), T ) = HomH(F )(c̃∗(K), T ) ,

where H(F ) is the full subcategory of HG whose objects are all orbits G/H
such that H ∈ F . The statement (i) of 1.24 is a well known consequence
of the existence of the spectral sequence which is described in [2], Ch. I.10.
The statement (ii) can be proved in a similar way.

P r o o f o f L e m m a 1.24(ii). For any natural number n, the functor
c̃n(K,R) = c̃n(K)⊗R is a projective object in the category (H(F ), R-Mod),
because it is a sum of representable functors tensored with R. Thus there
exists a spectral sequence

Extp
H(F )(h̃q(K,R), T ) ⇒ Hp+q

G (K,T ) ,

where Extp
H(F ) is the nth derived functor of the functor HomH(F ) of natural

transformations of functors from H(F )op to R-Mod and h̃q(K,R) is the qth
homology functor of the chain complex c̃∗(K,R). For any subgroup H of G

h̃q(K,R)(G/H) = Hq(HomZ(G)(Z(G/H), C∗(K,R))) = Hq(C∗(K,R)H) .

It follows from the assumptions that h̃q(K,R) = (0) for q > 0 and

h̃0(K,R) = h̃0(G/G,R) = MorH(F )(−, G/G)⊗R
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is a projective object in the category of additive functors (H(F )op, R-Mod).
Hence H∗

G(K,T ) = HomH(F )(MorH(F )(−, G/G)⊗R, T ) = T (G/G).

Other applications of the Hecke structure on the Bredon cohomology
theory will be presented in [11] and [12].
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