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A new proof of Kelley’s Theorem
by

Siu-Ah Ng (Hull)

Abstract. Kelley’s Theorem is a purely combinatorial characterization of measure
algebras. We first apply linear programming to exhibit the duality between measures and
this characterization for finite algebras. Then we give a new proof of the Theorem using
methods from nonstandard analysis.

First some notation and definitions. B always denotes a Boolean algebra
of the form (B,0,1,+,-,—) with the induced ordering <. We sometimes
write Y and [] for 4+ and -, especially when the operations are infinitary.
By a measure i on a subalgebra A C B we mean a finitely additive monotone
function p : A — [0,1] so that p(0) = 0 and p(1) = 1. A Boolean algebra
B is called a measure algebra if there is a measure p : B — [0, 1] which is
strictly positive, i.e. u(b) =0 iff b =0. A o-algebra B is called a o-measure
algebra if there is such a o-additive p. Following [K], we define for A C B
the intersection number of A as

a(A) = inf{a(al,...,an) 1 a1,...,a, € A, n <w},

where a(a1,...,a,) = n~'max{|I| : I C {1,...,n}, [[,c;ai # 0}. (The
a;’s are not necessarily distinct.) We also define the measure number of A
as

B(A) = sup{r € [0,1] : there is a measure p on the subalgebra
generated by A such that pu(a) > r for all a € A}.

A o-algebra B is said to be weakly w-distributive if given {b;; : i, j < w} such
that b@j > bijJr]_, then

> b =112 bine

i=0 j=0 n=0 i=0
for some f,, : w — w such that f, < fr,41 (le. Vi, fr(i) < frni1(d)).
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We assume some basic knowledge of nonstandard analysis (cf. e.g. [HL]
and [L]) and work in a N;-saturated nonstandard universe that has the en-
largement property (i.e. every standard set has a hyperfinite extension). We
use nonstandard analysis and the duality theorem for linear programming
to prove the following theorem of J. L. Kelley. See [K] or [F] for a standard
proof.

KELLEY’S THEOREM. (1) A Boolean algebra B is a measure algebra iff
(x)  there are A, C B such that a(A,) >0 and B=J, ., A, U{0}.

(2) A o-algebra B is a o-measure algebra iff B is weakly w-distributive
and also satisfies (x). m

The proof is based on the following lemma, which exhibits the duality
between measures and Kelley’s characterization.

LEMMA. Let A C B such that A is finite. Then o(A) = B(A) and both
the infimum and supremum in the definitions of a and 8 are attained.

Proof. Write A = {aq,...,a,}, and identify the finite Boolean algebra
generated by A as a power set algebra P(X) for some X = {pg,...,p,}.
For i <r, j <mn, define

B 1 ifp; € aj,
Mij = {0 otherwise,
and write M = [m;;], an (r +1) X (n + 1) binary matrix.

CrLAaM 1. (a) a(A) is the minimal o € R such that

X0 a
M| <
T a
for some xog+ ...+ x, > 1, xg,...,x, > 0.
(b) a(A) = alasy,-..,ai) for some a,,...,a; € A.
Proof. Let (ag,...,an,a) € [0,00)""2 be an extreme point in a region

determined by some of the r + 2 hyperplanes
Moo+ ... + MinTy = Tpt1, ¢=0,...,7,
To+...+x, =1,

with the property that « is minimal.

Then this is the minimal o such that M - [zg,...,z,]T < o among all
xo, ..., T, > 0 satisfying xo+ ...+ x, > 1. Since the coefficient of each one
of the z; is either 0 or 1, the extreme point is a rational point of the form

(g, yan, @) = (80/S,...,8,/8, &),

where sg,...,s, € Nand sg + ...+ s, = s.
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Any such rational point (s¢/s, ..., S,/s) is in one-to-one correspondence
with the following sequence from A:

oc=(ap...ap Ay ...a1...ap...ap),

where ag repeats sg times, a; repeats s; times, etc.

Moreover, for the above extreme point, we have @(o) = «, and for any
other sequence 7 from A, we have a(7) > «a. Therefore a(A) = o and (a)
is proved. Since a(A) = a@(o), (b) holds as well.

Cramm 2. (a) B(A) is the mazimal 5 € R such that

Yo B
MT >
Yr ﬁ

Jor someyo+ ... +yr <1, yo,...,yr > 0.
(b) B(A) is attained by some measure on the subalgebra generated by A.

Proof. Similar to Claim 1, the maximal (§ satisfying the matrix in-
equality is given by some rational point (S, ..., [, 3). This corresponds to
the measure that assigns weights (g, ..., 3, to pg,...,p. respectively. Con-
versely, any such weights (o, ..., 3, satisfy the matrix inequality for some
0, thus the claim is proved.

The linear programming problems in the above two claims are dual to
each other, so a(A) = #(A) and the lemma is proved. m

COROLLARY. o A) > B(A) for arbitrary A C B.

Proof. a(A) = infa(Ay) = inf 5(Ag) > B(A), where the infimum is
taken over all finite Ay C A. =

Proof of Kelley’s Theorem (1). (=). Let p: B — [0,1] be
a strictly positive measure and let A, = {b € B : u(b) > 27"}. Then
B=U,., AnU{0}. Since 3(A,) > 27", so by the Corollary, a(Ay) > 0.

(<). Suppose B = J,,, An U{0} and a(A,) > 0. Use the enlargement
property and let B’ be a hyperfinite algebra such that B C B’ C *B. Let
B, =B Nn*A,. It follows from {*a:a € A,} C B, C *A, and the transfer
principle that *a(B,) ~ a(A,) > 0 and both are noninfinitesimal. By
transferring the Lemma, *«(B,) = *3(B,), and hence there is an internal
measure v, on the subalgebra generated by B, such that for each b € B,,
Vn(b) > *a(B,,) > 0, noninfinitesimal. For each m < w, there is an internal
measure v on B’ such that v > 27"y, on B, for all n < m. So by N;-
saturation, there is an internal measure v on B’ such that for all n < w,
v>2""y, onB,. Let pu="°v | B,ie Ybe B, ub) ="°v(*b). Then p is a
strictly positive measure on 5. =
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Proof of Kelley’s Theorem (2). (=). Let p: B — [0,1] be
a strictly positive o-measure. By (1), (%) holds. To show the weak w-
distributivity, let {b;;} be such that b;; > b; j+1. For each n and i < w, let
fn(i) = least j such that

M(bz‘j — ﬁ bik> < 1/2mt

k=0
Then (370 big, iy — >imo L= bij) < 1/2". Hence

I1> birw =2 110
n=0i=0 i=0 j=0
(«<). Let B’ be a hyperfinite algebra so that B C B’ C *B. Let v be
the internal measure given by the proof in (1). Then °v(b) > 0 for each
be BBN*A,. Let

D = {be€ B : there is a decreasing sequence {cy, }n<, from B
so that []°_, ¢, = 0 and each *¢,, > b}.

Note that [];_, ¢, is defined for the o-algebra B, while in general, B’ is not
a o-algebra, and {*c, },<, may have nonzero lower bounds in B'.
Define r = sup{°v(b) : b € D}.

CLAIM. 1 is attained by some a' € D. In other words, there are a’ € B’
and decreasing d,, € B so that [[_,d, =0, each *d,, > a’ and r ~ v(d’).

Proof. Choose by, by, ... from D so that °v(b;) — r. For each i, choose
¢in € B (n < w) so that ¢;, decreases to 0 as n — w and each *¢;;, > b;.
By the weak w-distributivity, > 1, H(;:o cij = 1o Xoiio Cifn (i) for some
fn :w — w such that f,, < f,11. The left hand side equals 0. Write
d, = Z;u:o Cif,(i)- Then Hi:o d, = 0. Note also that d,, € B and decreases.
For any n,m, there is a € B’ such that by + ...+ b,, = a < *d,,, so by N;-
saturation, there is an internal a’ € B’ such that b; < o’ < *d,, for all i,n < w
(so in particular ¢’ € D), and °v(a’) > sup,.,, °v(b;). Hence °v(a’) = r. The
claim is proved.

Notice that v(a") % 1. Suppose otherwise; then for each n < w, °v(*d,,)
=1, s0 °v(1—"*d,) = 0, and by the strict positivity of °v | B, it follows that
d, = 1, contradicting [[;/_, d,, = 0.

Now define the internal measure u(b) = v(b—a')/(1—v(a’)), b € B'. For
b € B, write °u(b) = °((*b)). Then °u is a strictly positive o-measure on
B. To show this, it suffices to verify the following.

(1) If 0 # b € B then °u(b) > 0.
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Proof. Let d,, decrease to 0 in B and *d,, > a’ for any n < w, as in the
claim. Since b # 0, b is not a lower bound of {d,, }, therefore b — d,, # 0 for
some n. Then °v(*b — *d,,) > 0, so °v(*b—a’) > 0, so °u(b) > 0.

(ii) °p is o-additive on B.

Proof. Let {¢,}n<w be a sequence decreasing to 0 in B. By enlarge-
ment, this extends to a sequence {c}n<ny in B, where H is an infinite
hyperfinite integer, and for convenience, we omit the “*” from *¢, for fi-
nite n. From the definition of D, ¢y € D for each infinite N. By a’ being
maximal, for any infinite N, v(ex + ') = v(d’), so v(en —a’) = 0. Thus
p(en) = 0 for any infinite N. Therefore °u(c,) — 0. m
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