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A new proof of Kelley’s Theorem

by

Siu-Ah Ng (Hull)

Abstract. Kelley’s Theorem is a purely combinatorial characterization of measure
algebras. We first apply linear programming to exhibit the duality between measures and
this characterization for finite algebras. Then we give a new proof of the Theorem using
methods from nonstandard analysis.

First some notation and definitions. B always denotes a Boolean algebra
of the form (B, 0, 1,+, ·,−) with the induced ordering ≤. We sometimes
write

∑
and

∏
for + and ·, especially when the operations are infinitary.

By a measure µ on a subalgebra A ⊆ B we mean a finitely additive monotone
function µ : A → [0, 1] so that µ(0) = 0 and µ(1) = 1. A Boolean algebra
B is called a measure algebra if there is a measure µ : B → [0, 1] which is
strictly positive, i.e. µ(b) = 0 iff b = 0. A σ-algebra B is called a σ-measure
algebra if there is such a σ-additive µ. Following [K], we define for A ⊆ B
the intersection number of A as

α(A) = inf{α̂(a1, . . . , an) : a1, . . . , an ∈ A, n < ω} ,

where α̂(a1, . . . , an) = n−1 max{|I| : I ⊆ {1, . . . , n},
∏

i∈I ai 6= 0}. (The
ai’s are not necessarily distinct.) We also define the measure number of A
as

β(A) = sup{r ∈ [0, 1] : there is a measure µ on the subalgebra
generated by A such that µ(a) ≥ r for all a ∈ A} .

A σ-algebra B is said to be weakly ω-distributive if given {bij : i, j < ω} such
that bi,j ≥ bij+1, then

ω∑
i=0

ω∏
j=0

bij =
ω∏

n=0

ω∑
i=0

bifn(i)

for some fn : ω → ω such that fn ≤ fn+1 (i.e. ∀i, fn(i) ≤ fn+1(i)).
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We assume some basic knowledge of nonstandard analysis (cf. e.g. [HL]
and [L]) and work in a ℵ1-saturated nonstandard universe that has the en-
largement property (i.e. every standard set has a hyperfinite extension). We
use nonstandard analysis and the duality theorem for linear programming
to prove the following theorem of J. L. Kelley. See [K] or [F] for a standard
proof.

Kelley’s Theorem. (1) A Boolean algebra B is a measure algebra iff

(∗) there are An ⊂ B such that α(An) > 0 and B =
⋃

n<ω An ∪ {0} .

(2) A σ-algebra B is a σ-measure algebra iff B is weakly ω-distributive
and also satisfies (∗).

The proof is based on the following lemma, which exhibits the duality
between measures and Kelley’s characterization.

Lemma. Let A ⊆ B such that A is finite. Then α(A) = β(A) and both
the infimum and supremum in the definitions of α and β are attained.

P r o o f. Write A = {a0, . . . , an}, and identify the finite Boolean algebra
generated by A as a power set algebra P(X) for some X = {p0, . . . , pr}.

For i ≤ r, j ≤ n, define

mij =
{

1 if pi ∈ aj ,
0 otherwise,

and write M = [mij ], an (r + 1)× (n + 1) binary matrix.

Claim 1. (a) α(A) is the minimal α ∈ R such that

M ·

 x0
...

xn

 ≤
α

...
α


for some x0 + . . . + xn ≥ 1, x0, . . . , xn ≥ 0.

(b) α(A) = α̂(ai0 , . . . , ail
) for some ai0 , . . . , ail

∈ A.

P r o o f. Let (α0, . . . , αn, α) ∈ [0,∞)n+2 be an extreme point in a region
determined by some of the r + 2 hyperplanes

mi0x0 + . . . + minxn = xn+1, i = 0, . . . , r ,

x0 + . . . + xn = 1 ,

with the property that α is minimal.
Then this is the minimal α such that M · [x0, . . . , xn]T ≤ α among all

x0, . . . , xn ≥ 0 satisfying x0 + . . . + xn ≥ 1. Since the coefficient of each one
of the xi is either 0 or 1, the extreme point is a rational point of the form

(α0, . . . , αn, α) = (s0/s, . . . , sn/s, α) ,

where s0, . . . , sn ∈ N and s0 + . . . + sn = s.
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Any such rational point (s0/s, . . . , sn/s) is in one-to-one correspondence
with the following sequence from A:

σ = (a0 . . . a0 a1 . . . a1 . . . an . . . an) ,

where a0 repeats s0 times, a1 repeats s1 times, etc.
Moreover, for the above extreme point, we have α̂(σ) = α, and for any

other sequence τ from A, we have α̂(τ) ≥ α. Therefore α(A) = α and (a)
is proved. Since α(A) = α̂(σ), (b) holds as well.

Claim 2. (a) β(A) is the maximal β ∈ R such that

MT ·

 y0
...
yr

 ≥
β

...
β


for some y0 + . . . + yr ≤ 1, y0, . . . , yr ≥ 0.

(b) β(A) is attained by some measure on the subalgebra generated by A.

P r o o f. Similar to Claim 1, the maximal β satisfying the matrix in-
equality is given by some rational point (β0, . . . , βr, β). This corresponds to
the measure that assigns weights β0, . . . , βr to p0, . . . , pr respectively. Con-
versely, any such weights β0, . . . , βr satisfy the matrix inequality for some
β, thus the claim is proved.

The linear programming problems in the above two claims are dual to
each other, so α(A) = β(A) and the lemma is proved.

Corollary. α(A) ≥ β(A) for arbitrary A ⊆ B.

P r o o f. α(A) = inf α(A0) = inf β(A0) ≥ β(A), where the infimum is
taken over all finite A0 ⊆ A.

P r o o f o f K e l l e y ’ s T h e o r e m (1). (⇒). Let µ : B → [0, 1] be
a strictly positive measure and let An = {b ∈ B : µ(b) ≥ 2−n}. Then
B =

⋃
n<ω An ∪ {0}. Since β(An) ≥ 2−n, so by the Corollary, α(An) > 0.

(⇐). Suppose B =
⋃

n<ω An ∪{0} and α(An) > 0. Use the enlargement
property and let B′ be a hyperfinite algebra such that B ⊆ B′ ⊆ ∗B. Let
Bn = B′ ∩ ∗An. It follows from {∗a : a ∈ An} ⊆ Bn ⊆ ∗An and the transfer
principle that ∗α(Bn) ≈ α(An) > 0 and both are noninfinitesimal. By
transferring the Lemma, ∗α(Bn) = ∗β(Bn), and hence there is an internal
measure νn on the subalgebra generated by Bn such that for each b ∈ Bn,
νn(b) ≥ ∗α(Bn) > 0, noninfinitesimal. For each m < ω, there is an internal
measure ν on B′ such that ν ≥ 2−nνn on Bn for all n < m. So by ℵ1-
saturation, there is an internal measure ν on B′ such that for all n < ω,
ν ≥ 2−nνn on Bn. Let µ = ◦ν � B, i.e. ∀b ∈ B, µ(b) = ◦ν(∗b). Then µ is a
strictly positive measure on B.
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P r o o f o f K e l l e y ’ s T h e o r e m (2). (⇒). Let µ : B → [0, 1] be
a strictly positive σ-measure. By (1), (∗) holds. To show the weak ω-
distributivity, let {bij} be such that bij ≥ bi,j+1. For each n and i < ω, let
fn(i) = least j such that

µ
(
bij −

ω∏
k=0

bik

)
≤ 1/2n+i+1 .

Then µ(
∑ω

i=0 bifn(i) −
∑ω

i=0

∏ω
j=0 bij) ≤ 1/2n. Hence

ω∏
n=0

ω∑
i=0

bifn(i) =
ω∑

i=0

ω∏
j=0

bij .

(⇐). Let B′ be a hyperfinite algebra so that B ⊆ B′ ⊆ ∗B. Let ν be
the internal measure given by the proof in (1). Then ◦ν(b) > 0 for each
b ∈ B′ ∩ ∗An. Let

D = {b ∈ B′ : there is a decreasing sequence {cn}n<ω from B
so that

∏ω
n=0 cn = 0 and each ∗cn ≥ b} .

Note that
∏ω

n=0 cn is defined for the σ-algebra B, while in general, B′ is not
a σ-algebra, and {∗cn}n<ω may have nonzero lower bounds in B′.

Define r = sup{◦ν(b) : b ∈ D}.

Claim. r is attained by some a′ ∈ D. In other words, there are a′ ∈ B′
and decreasing dn ∈ B so that

∏ω
n=0 dn = 0, each ∗dn ≥ a′ and r ≈ ν(a′).

P r o o f. Choose b0, b1, . . . from D so that ◦ν(bi) → r. For each i, choose
cin ∈ B (n < ω) so that cin decreases to 0 as n → ω and each ∗cin ≥ bi.
By the weak ω-distributivity,

∑ω
i=0

∏ω
j=0 cij =

∏ω
n=0

∑ω
i=0 cifn(i) for some

fn : ω → ω such that fn ≤ fn+1. The left hand side equals 0. Write
dn =

∑ω
i=0 cifn(i). Then

∏ω
n=0 dn = 0. Note also that dn ∈ B and decreases.

For any n, m, there is a ∈ B′ such that b0 + . . . + bm = a ≤ ∗dn, so by ℵ1-
saturation, there is an internal a′ ∈ B′ such that bi ≤ a′ ≤ ∗dn for all i, n < ω
(so in particular a′ ∈ D), and ◦ν(a′) ≥ supi<ω

◦ν(bi). Hence ◦ν(a′) = r. The
claim is proved.

Notice that ν(a′) 6≈ 1. Suppose otherwise; then for each n < ω, ◦ν(∗dn)
= 1, so ◦ν(1− ∗dn) = 0, and by the strict positivity of ◦ν � B, it follows that
dn = 1, contradicting

∏ω
n=0 dn = 0.

Now define the internal measure µ(b) = ν(b−a′)/(1−ν(a′)), b ∈ B′. For
b ∈ B, write ◦µ(b) = ◦(µ(∗b)). Then ◦µ is a strictly positive σ-measure on
B. To show this, it suffices to verify the following.

(i) If 0 6= b ∈ B then ◦µ(b) > 0.
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P r o o f. Let dn decrease to 0 in B and ∗dn ≥ a′ for any n < ω, as in the
claim. Since b 6= 0, b is not a lower bound of {dn}, therefore b− dn 6= 0 for
some n. Then ◦ν(∗b− ∗dn) > 0, so ◦ν(∗b− a′) > 0, so ◦µ(b) > 0.

(ii) ◦µ is σ-additive on B.

P r o o f. Let {cn}n<ω be a sequence decreasing to 0 in B. By enlarge-
ment, this extends to a sequence {cn}n<H in B′, where H is an infinite
hyperfinite integer, and for convenience, we omit the “∗” from ∗cn for fi-
nite n. From the definition of D, cN ∈ D for each infinite N. By a′ being
maximal, for any infinite N, ν(cN + a′) ≈ ν(a′), so ν(cN − a′) ≈ 0. Thus
µ(cN) ≈ 0 for any infinite N. Therefore ◦µ(cn) → 0.
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