Composant-like decompositions of spaces

by

W. Dębski (Katowice) and E. D. Tymchatyn* (Saskatoon)

Abstract. The body of this paper falls into two independent sections. The first deals with the existence of cross-sections in F_{σ} -decompositions. The second deals with the extensions of the results on accessibility in the plane.

1. Introduction. The composants of an indecomposable metric continuum X are pairwise disjoint, continuum connected, first category, dense F_{σ} -subsets of X. Mazurkiewicz [8] proved that each indecomposable metric continuum has c composants by showing that there exists a Cantor set which is a partial cross-section for the composants of X.

There are number of useful results concerning the position of composant in an indecomposable continuum embedded in the plane. Mazurkiewicz [9] and Krasinkiewicz [3]–[5] have proved that most composants of a planar indecomposable continuum X are not accessible.

The purpose of this paper is to extend the above results to decompositions of separable metric spaces with only mild additional conditions.

Let X be a separable metric space and $R \subsetneq X \times X$ an equivalence relation on X. For $x \in X$ let R(x) denote the R-equivalence class of x. For $A \subset X$ let $R(A) = \bigcup \{R(x) : x \in A\}.$

By a *continuum* we mean a compact, connected, metric space. A continuum is *decomposable* if it is the union of two proper subcontinua, otherwise it is *indecomposable*. A set A is *continuum connected* if every pair of points of A lies in a subcontinuum of A.

2. Cross-section for F_{σ} -decompositions. In this section X will be a separable metric space and $R = \bigcup_{i=1}^{\infty} R_i \subsetneq X \times X$ an equivalence relation such that each R_i is closed in $X \times X$.

2.1. EXAMPLE. Let X be a non-degenerate, indecomposable metric continuum. Let $\{U_i\}_{i=1}^{\infty}$ be a countable basis of proper open sets of X.

^{*} This research was supported in part by NSERC grant No. A5616.

Let $R_i = \{(x, y) \in X \times X : x \text{ and } y \text{ lie in a component of } X - U_i\}$ and $R = \bigcup_{i=1}^{\infty} R_i$. If $x \in X$ then R(x) is the composant of x, i.e. the union of all proper subcontinua of X which contain x (see [6]). The sets R_i are closed in $X \times X$.

2.2. EXAMPLE. Let $f: X \times (-\infty, \infty) \to X$ be a flow on a space X and let R be the equivalence relation on X whose equivalence classes are the orbits of points of X under f. For each positive integer i let

$$R_{i} = \{ (x, f(x, t)) : (x, t) \in X \times [-i, i] \}.$$

Then R_i is closed and $R = \bigcup_{i=1}^{\infty} R_i$.

The results of this section, which are valid for arbitrary separable metric spaces, were first obtained by Cook [1] and by Mazurkiewicz [8] for the case of indecomposable continua.

2.3. PROPOSITION. If K is a compact subset of a metric separable space X, then R(K) is an F_{σ} -subset of X.

Proof. Let $L_i = \{y \in X : (x, y) \in R_i \text{ for some } x \in K\}$. Let $y \in Cl(L_i)$ and let $\{y_n\}_{n=1}^{\infty}$ be a sequence in L_i converging to y. For each n let $x_n \in K$ be such that $(x_n, y_n) \in R_i$. We may pass to a subsequence by compactness of K, and we may suppose that $\{x_n\}_{n=1}^{\infty}$ converges to x in K. Then $(x, y) \in R_i$ since R_i is closed in $X \times X$. So, $y \in L_i$ and L_i is closed. Clearly, $R(K) = \bigcup_{i=1}^{\infty} L_i$.

2.4. COROLLARY. If X is of second category and each R-equivalence class has empty interior in X then the set of R-equivalence classes is uncountable.

2.5. COROLLARY. Let each R-equivalence class be dense in X. If $K = \bigcup_{i=1}^{\infty} F_i$, where each F_i is a compact subset of X such that $R(F_i) \neq X$, then R(K) is a first category F_{σ} -set in X.

2.6. THEOREM. Let X be of second category and let each R-equivalence class be dense in X. If K is a compact subset of X such that R(K) = Xthen there is a non-empty closed subset L of K such that $Cl(R(x) \cap L) = L$ for each $x \in X$.

Proof. Let $L = \bigcup \{ \operatorname{Cl}(K \cap R(x)) : x \in X \}.$

Choose a countable subcover \mathcal{V} of the open cover $\{K - \operatorname{Cl}(K \cap R(x)) : x \in X\}$ of K - L. The set $K - \operatorname{Cl}(K \cap R(x)), x \in X$, is σ -compact (being an open subset of the compact set K) and misses R(x). By Corollary 2.5, $R(K - \operatorname{Cl}(K \cap R(x)))$ is a first category F_{σ} -set in X. Hence, R(K - L), being equal to $\bigcup \{R(V) : V \in \mathcal{V}\}$, is a first category F_{σ} -set in X. Observe that, since R(K) = X, the set L is non-empty. It remains to prove the equality $L = \operatorname{Cl}(R(x) \cap L)$ for each $x \in X$. To do this, let U be an open subset of X having non-empty intersection with L. By the definition of L, the set U meets each of the sets $K \cap R(x)$. Hence, $R(U \cap K) = X$ and, in consequence, $R(U \cap L)$ is of second category, since R(K - L) is of first category. But $U \cap L$ is σ -compact. By Corollary 2.5, $R(U \cap L) = X$. Hence, $U \cap L \cap R(x) \neq 0$ for each $x \in X$. So $\operatorname{Cl}(L \cap R(x)) = L$ for each $x \in X$.

2.7. COROLLARY. Let X be of second category, let each R-equivalence class be dense in X and let $R \neq X \times X$. Then there do not exist σ -compact subsets of X which are full cross-sections for the family of R-equivalence classes.

Proof. Suppose K is σ -compact, i.e. $K = \bigcup_{i=1}^{\infty} F_i$, where each F_i is compact, and K is a full cross-section for the family of R-equivalence classes. Then, by Corollary 2.5, there exists i such that $R(F_i) = X$. But K is a full cross-section, hence, $K = F_i$. So K is compact. This contradicts Theorem 2.6, since $L \subset K$ and $R(x) \cap L \neq 0$ for all x implies L = K, but $Cl(R(x) \cap K) \neq K$, because $R(x) \cap K$ is a single point.

2.8. LEMMA. If the set of R-equivalence classes is uncountable then X contains a non-empty G_{δ} -set X' = R(X') such that each open and non-empty set in X' meets uncountably many R-equivalence classes.

Proof. Let $\mathcal{U} = \{U : U \text{ is an open set meeting only countably many } R$ -equivalence classes} and let $X' = X - R(\bigcup \mathcal{U})$. Since \mathcal{U} has a countable subcollection covering $\bigcup \mathcal{U}, \bigcup \mathcal{U}$ meets only countably many R-equivalence classes. So if U is an open set meeting X' then U meets uncountably many R-equivalence classes and, in consequence, $U \cap X'$ meets uncountably many R-equivalence classes. Clearly, since, by Proposition 2.3, each R-equivalence class is an F_{σ} -set, X' is an G_{δ} -set.

2.9. THEOREM (cf. Kuratowski [7]). Suppose X is a topologically complete, separable, metric space and the set of R-equivalence classes is uncountable. Then X contains a Cantor set L such that $L \cap R(x)$ contains at most one point for each $x \in X$.

Proof. By Lemma 2.8, we may suppose that each non-empty open subset of X meets uncountably many R-equivalence classes.

Let ρ be a complete metric for X. We construct for each positive integer n a family $\mathcal{A}_n = \{A(d_1, \ldots, d_n) : d_i \in \{0, 1\}, i = 1, \ldots, n\}$ of disjoint, regularly closed, non-empty subsets of X such that

- (1) $A(d_1, \ldots, d_n) \times A(d'_1, \ldots, d'_n) \cap R_m = \emptyset$ if $(d_1, \ldots, d_n) \neq (d'_1, \ldots, d'_n)$ and $m \le n$,
- (2) diameter $A(d_1,\ldots,d_n) < 2^{-n}$,

(3) $A(d_1,\ldots,d_n) \subset \operatorname{Int}(A(d_1,\ldots,d_{n-1})) \text{ for } n > 1.$

Choose x(0) and x(1) in different *R*-equivalence classes. Clearly (x(0), x(1)) as well as (x(1), x(0)) do not belong to R_1 . Since R_1 is closed, there exist disjoint regularly closed neighbourhoods A(0) of x(0) and A(1) of x(1) satisfying (1) and (2). Let $\mathcal{A}_1 = \{A(0), A(1)\}$.

Suppose $\mathcal{A}, \ldots, \mathcal{A}_n$ have been defined. Choose points $x(d_1, \ldots, d_{n+1})$ in different *R*-equivalence classes such that $x(d_1, \ldots, d_{n+1}) \in \text{Int}(\mathcal{A}(d_1, \ldots, d_{n+1}))$. This is possible since each set $\text{Int}(\mathcal{A}(d_1, \ldots, d_n))$ meets infinitely many *R*-equivalence classes. Clearly, $(x(d_1, \ldots, d_{n+1}), x(d'_1, \ldots, d'_{n+1}))$ does not belong to \mathcal{R}_m for any *m* if $(d_1, \ldots, d_{n+1}) \neq (d'_1, \ldots, d'_{n+1})$. Since \mathcal{R}_m is closed there exist disjoint regularly closed neighbourhoods $\mathcal{A}(d_1, \ldots, d_{n+1})$ of $x(d_1, \ldots, d_{n+1})$ satisfying (1)–(3). Let $\mathcal{A}_{n+1} = {\mathcal{A}(d_1, \ldots, d_{n+1}) : d_i \in {0, 1}, i = 1, \ldots, n+1}.$

By induction, the family $\{\mathcal{A}_n\}_{n=1}^{\infty}$ is defined. Let $L = \bigcap_{n=1}^{\infty} (\bigcup \mathcal{A}_n)$. Since X is complete, L is a Cantor set. Since $R = \bigcup_{i=1}^{\infty} R_i$, the assumption that x and y are points of L lying in one R-equivalence class implies that x and y are in the same element of \mathcal{A}_n for large n. Hence, x = y.

2.10. COROLLARY. Suppose X is a topologically complete, separable metric space such that the set of R-equivalence classes is uncountable. Then the set of R-equivalence classes has cardinality c.

2.11. COROLLARY. Suppose X is a topologically complete metric space and each R-equivalence class is a proper, dense set in X. Then the set of R-equivalence classes has cardinality c.

3. External *R*-equivalence classes in the plane. Throughout this section *X* will be a subset of the 2-sphere S^2 and *R* will be an equivalence relation on *X* such that each *R*-equivalence class is continuum connected. The results of this section were proved by Krasinkiewicz for the case of indecomposable continua in the plane.

We say R(x) is an *external* R-equivalence class if there exists a continuum $L \subset S^2$ with $L \cap R(x) \neq \emptyset$, $L \not\subset Cl(X)$ and $L \cap R(y) = \emptyset$ for some $y \in X$. If R(x) is not external then it is said to be *internal*.

The following lemma for separable spaces is well known and easy to prove (Whyburn [12], p. 43, Th. (1.5)).

3.1. LEMMA. Let \mathcal{A} be an uncountable family of disjoint closed connected sets in a connected space Y such that each of them disconnects Y. Then there exists $A, B, C \in \mathcal{A}$ such that A separates B from C in Y.

The following lemma is based on one in [9].

3.2. LEMMA. Let $K \subset S^2$ be a continuum and let U and V be disjoint open discs meeting K such that $U \cap K$ is contained in no component of K-V. Then there exists a continuum in K-U which disconnects S^2-U and meets V.

Proof. Let $K - V = P \cup Q$, where P and Q are disjoint closed sets which both meet U. Let $F = P \cap Bd(U)$ and $G = Q \cap Bd(U)$. Since K is a continuum, both sets F and G are non-empty and there exists a component C of $K - (F \cup G)$ such that $F \cap Cl(C) \neq \emptyset \neq G \cap Cl(C)$. Since $C \not\subset U$, we have $C \subset K - Cl(U)$. Let $p \in F \cap Cl(C)$ and $q \in G \cap Cl(C)$ and let L be a continuum in Cl(C) irreducible from p to q. Since p and q lie in different components of K - V, the continuum L meets V. By a theorem of Janiszewski [6, §61, Th. 2] the continuum L disconnects $S^2 - U$.

3.3. LEMMA. Let $X \subset S^2$ and let $R \subsetneq X \times X$ be an equivalence relation on X such that each R-equivalence class is continuum connected. For all but countably many R-equivalence classes R(x) and for all open disjoint discs U and V which meet X, if $U \cap R(x)$ is contained in no continuum component of R(x) - V then there exists a continuum $K \subset R(x) - U$ such that K separates two points of $V \cap X$ in $S^2 - U$.

Proof. Consider the family $\{U_1, U_2, \ldots\}$ of all open discs the centres of which lie in a certain countable dense subset of S^2 and whose diameters are rational.

Let U_n and U_m be disjoint discs meeting X. We shall show first that for all but countably many R-equivalence classes R(x), if $K \subset R(x) - U_n$ is a continuum disconnecting $S^2 - U_n$ and meeting U_m then K separates two points of $U_m \cap X$ in $S^2 - U_n$.

Suppose to the contrary that there exists an uncountable family \mathcal{K} of subcontinua of $S^2 - U_n$, disconnecting $S^2 - U_n$ and meeting the set $U_m \cap X$ but separating no two points of this set in $S^2 - U_n$ and such that any two elements of \mathcal{K} are contained in different *R*-equivalence classes. By Lemma 3.1, there exist $L, M, N \in \mathcal{K}$ such that L separates M from N in $S^2 - U_n$. Since M and N meet $U_m \cap X$, L separates two points of $U_m \cap X$ in $S^2 - U_n$, which is a contradiction.

So, for all but countably many *R*-equivalence classes R(x) and for any two disjoint discs U_n and U_m meeting X, if $K \subset R(x) - U_n$ is a continuum disconnecting $S^2 - U_n$ and meeting $U_m \cap X$ then K separates two points of $U_m \cap X$ in $S^2 - U_n$.

Now, let R(x) be an R-equivalence class as above. Let U and V be disjoint open discs meeting X such that $U \cap X$ is contained in no continuum component of R(x) - V. Let $a, b \in U \cap X$ be points lying in different continuum components of R(x) - V. Let n be a positive integer such that $a, b \in U_n \subset U$. Such an n exists since the diameters of U_n run over all positive rationals and their centres run over a dense subset of S^2 . Let $K \subset R(x)$ be a continuum joining a and b. Then a and b lie in different

components of K-V. By Lemma 3.2, there exists a continuum $L \subset K-U_n$ which disconnects $S^2 - U_n$ and meets V. Let m be a positive integer such that $U_m \subset V$ and $U_m \cap L \neq \emptyset$. Hence, by the choice of R(x), L separates two points of $U_m \cap X$ in $S^2 - U_n$. So, the continuum L separates two points of $V \cap X$ in $S^2 - U_n$. Hence the compact set L - U separates two points of $V \cap X$ in $S^2 - U$. Then a component of L - U separates two points of $V \cap X$ in $S^2 - U$, since S^2 is locally connected and unicoherent (see [6]).

3.4. THEOREM. Let A, B, C and D be continua in S^2 such that $A \cap B = \emptyset$ and $C \cap D = \emptyset$. If $A \cap C$ is contained in a component of $S^2 - (B \cap D)$ then $B \cap D$ is contained in a component of $S^2 - (A \cup C)$.

Proof. Since the sphere is locally arcwise connected we may assume that $A \cap C$ is connected. Since neither A nor C separates two points of $B \cap D$ neither does $A \cup C$ by the first theorem of Janiszewski [6], p. 507, Th. 7.

3.5. LEMMA. Let $X \,\subset S^2$ and $R \subseteq X \times X$ be an equivalence relation on X such that each R-equivalence class is continuum connected. Let P be a non-empty open set in X such that each R-equivalence class is of first category and dense in P, and such that for uncountably many R-equivalence classes R(x) and for each open non-empty subset U of P each continuum component of R(x) - U has empty interior with respect to $R(x) \cap P$. Then the union E of external R-equivalence classes of X is of first category in P. Moreover, E is an F_{σ} -set if P is of second category.

Proof. Let $\{U_1, U_2, \ldots\}$ be a basis of open discs for the topology on S^2 . If *i* and *k* are positive integers such that $U_i \cap P \neq \emptyset$, $U_i \cap X \subset P$, $\operatorname{Cl}(U_k) \cap \operatorname{Cl}(X) = \emptyset$ and $U_i \cap U_k = \emptyset$, then define $L_{i,k}$ to be the union of sets $L \cap X$, where *L* runs over all those subcontinua of $S^2 - U_i$ such that $L \cap \operatorname{Cl}(U_k) \neq \emptyset$ and $R(L \cap X) \neq X$. If *i* and *k* do not satisfy the above-mentioned conditions, define $L_{i,k}$ to be the empty set.

Clearly, $L_{i,k} \subset E$ for all i and k. Now, let R(x) be an external R-equivalence class of X and let L be a continuum in S^2 such that $L \cap R(x) \neq \emptyset$, $L \not\subset \operatorname{Cl}(X)$ and $R(L \cap X) \neq X$. Let K be a continuum in R(x) such that $x \in K$ and $K \cap L \neq \emptyset$. Since $L \not\subset \operatorname{Cl}(X)$, there exists $y \in L - \operatorname{Cl}(X)$. Since $P \not\subset R(L \cap X)$, there exists $z \in P - R(L \cap X)$. Clearly, $z \notin K$. Since L and K are closed, there exist positive integers i and k such that $z \in U_i, y \in U_k$, $U_i \cap X \subset P, U_i \cap (K \cup L) = \emptyset$, $\operatorname{Cl}(U_k) \cap \operatorname{Cl}(X) = \emptyset$ and $U_i \cap U_k = \emptyset$. Then $x \in (K \cup L) \cap X \subset L_{i,k}$. So, $E = \bigcup_{i,k=1}^{\infty} L_{i,k}$.

To prove that E is of first category in P, it suffices to prove that $L_{i,k}$ is nowhere dense in P. Assume $L_{i,k} \neq \emptyset$.

Let U be an open disc such that $\operatorname{Cl}(U) \subset U_i$ and $U \cap P \neq \emptyset$. Let V be an open disc such that $V \cap P \neq \emptyset$, $V \cap X \subset P$, $V \cap U = \emptyset$ and $V \cap U_k = \emptyset$. We shall show that $V \cap X$ is not contained in $Cl(L_{i,k})$.

Let R(x) be an R-equivalence class guaranteed by Lemma 3.3 and let $K \subset R(x) - U$ be a continuum which separates two points of $V \cap P$ in $S^2 - U$. Let x_1 be a point of $V \cap P$ which K separates in $S^2 - U$ from U_k and let W be an open disc such that $x_1 \in W \subset V - K$. By Lemma 3.3, there exist $y \in X - R(x)$ and a continuum $L \subset R(y) - U$ which separates two points of $W \cap P$ in $S^2 - U$. Let x_2 be a point of $W \cap P$ which L separates in $S^2 - U$ from U_k and let G be an open disc such that $x_2 \in G \subset W - L$. Then there exists a continuum $M \subset R(x) - U$ which separates two points of $G \cap P$ in $S^2 - U$; clearly, L separates M from K in $S^2 - U$. Let x_3 be a point of $G \cap P$ which M separates in $S^2 - U$ from U_k and let C be a component of $(S^2 - U) - M$ to which x_3 belongs. It suffices to prove that $C \cap L_{i,k} = \emptyset$.

Suppose I is a continuum in $S^2 - U$ joining $\operatorname{Cl}(U_k)$ and $C \cap X$ such that $R(I \cap X) \neq X$. Clearly I meets K, L and M. Let $z \in X - R(I \cap X)$. Then $R(z) \neq R(x)$. Let J be a continuum contained in R(x) and containing both continua K and M. Hence, $J \cap I$ has points in two components of $S^2 - (L \cup \operatorname{Cl}(U))$. By Theorem 3.4, $L \cap \operatorname{Cl}(U)$ has points in two components of $S^2 - (I \cup J)$. Since R(z) is dense in P it has points in two components of $S^2 - (I \cup J)$ also. But R(z) is connected and disjoint from $I \cup J$, which is a contradiction. Hence, $L_{i,k}$ is nowhere dense in P and E is of first category in P.

Now, assume that P is of second category. To prove E is an F_{σ} -set it suffices to prove $L_{i,k}$ is closed. Let $x \in \operatorname{Cl}(L_{i,k})$. Let $\{x_n\}_{n=1}^{\infty}$ be a sequence in $L_{i,k}$ which converges to $x \in X$. For each n let $L_n \subset S^2 - U_i$ be a continuum such that $x_n \in L_n$, $L_n \cap \operatorname{Cl}(U_k) \neq \emptyset$ and $R(L_n \cap X) \neq X$. The sequence L_n has a convergent subsequence with respect to the Hausdorff metric. We may suppose L_n is such a subsequence. It converges to a continuum $L \subset S^2 - U_i$. Then $x \in L$ and $L \cap \operatorname{Cl}(U_k) \neq \emptyset$.

It remains to prove that L misses some R-equivalence class. Let $y \in U_i$ such that R(y) is an internal equivalence class and R(y) satisfies the conclusion of Lemma 3.3. Let $\{U_{n_j}\}_{j=1}^{\infty}$ be the basic neighbourhoods of y such that each $U_{n_j} \subset U_i$. Just suppose L meets R(y).

For each $R(z) \neq R(y)$ and for each positive integer j let A(z, j) be the union of the continua in $R(z) - U_{n_j}$ which meet L. Let $Q_j = \bigcup_{z \in X - R(y)} A(z, j)$. Then $X - R(y) = \bigcup_{j=1}^{\infty} Q_j$.

Since X - R(y) is of second category in X, there exists an integer m and a basic neighbourhood $U_r \subset \operatorname{Cl}(U_r) \subset S^2 - \operatorname{Cl}(U_{n_m})$ such that Q_m is dense in $U_r \cap X \neq \emptyset$ and $U_r \cap X \subset P$.

By Lemma 3.3 there is a continuum $B \subset R(y) - U_{n_m}$ such that B separates two points of $U_r \cap X$ in $S^2 - U_{n_m}$. Since Q_m is dense $U_r \cap X$, B separates two points a and b of Q_m in $S^2 - U_{n_m}$. By the definition of A(a,m) there is a continuum K_a in $R(a) - U_{n_m}$ from a to L and there is a

continuum K_b in $R(b) - U_{n_m}$ from b to L. Since K_a and K_b miss B, it follows that B separates two points of L in $S^2 - U_{n_m}$. Since the sequence $\{L_n\}_{n=1}^{\infty}$ converges to L, there is a positive integer p such that B separates two points of L_p in $S^2 - U_{n_m}$. This is a contradiction since L_p misses every internal R-equivalence class of X. Thus, L misses each internal R-equivalence class, $x \in L_{i,k}$ and $L_{i,k}$ is closed.

3.6. THEOREM. Let $X \subset S^2$ and let $R \subsetneq X \times X$ be an equivalence relation on X such that each R-equivalence class R(x) is a continuum connected first category set in X, and for each open non-empty set U in X each continuum component of R(x) - U has empty interior in R(x). Then the union E of external R-equivalence classes of X is a first category set in X. Moreover, E is an F_{σ} -set in X if X is of second category.

Proof. We can restrict our considerations to the case in which the set of R-equivalence classes is uncountable since otherwise the theorem is obvious. Let P be X in Lemma 3.5. It suffices to prove that each R(x) is dense in X. But if $U \subset X$ is open and non-empty then each continuum component of R(x) - U has empty interior in R(x). Hence, $R(x) \cap U \neq \emptyset$.

A point y of a set Y is said to be a *terminal point* if for each pair of continua K and L in Y with $y \in K \cap L$ we have either $K \subset L$ or $L \subset K$.

3.7. LEMMA. Let U and V be disjoint open non-empty sets in the continuum connected space Y such that for each continuum K in Y, $U-K \neq \emptyset$ and $V - K \neq \emptyset$. Suppose $y \in Y - (U \cup V)$ is a terminal point of Y. Then U is contained in no continuum component of Y - V.

Proof. Let $a \in U$ and let A be a continuum joining a and y. Let $b \in V - A$ and let B be a continuum joining b and y. Then $A \subset B$ since $b \in B - A$ and y is a terminal point in Y. Let $c \in U - B$. Now, let C be any continuum joining a and c. Then $A \cup C$ is a continuum joining c and y. So $B \subset A \cup C$. Since $b \in B - A \subset C$, C meets the set V. Hence, a and c are two points of U which lie in different continuum components of Y - V.

A continuum K is said to be a *triod* if K-L has at least three components for some subcontinuum L of K. It is a well-known theorem of Moore (cf. [10]) that the 2-sphere does not contain an uncountable collection of pairwise disjoint triods.

3.8. THEOREM. Let $X \subset S^2$ be such that each non-empty open subset of X is of second category. Let $R \subsetneq X \times X$ be an equivalence relation on X such that each R-equivalence class is continuum connected, of first category and dense in X. Then the union of external R-equivalence classes of X is a first category F_{σ} -set in X.

Proof. By Theorem 3.6 it suffices to prove that for each open, nonempty set U in X and each R-equivalence class R(x) each continuum component of R(x) - U has empty interior in R(x).

Just suppose there exist disjoint discs U and V each of which meets Xand there exists an R-equivalence class R(x) such that $R(x) \cap V$ is contained in a continuum component of R(x) - U. If $y \in X - R(x)$ then no continuum $K \subset R(y) - U$ separates some two points of $X \cap V$ in $S^2 - U$; otherwise, since R(x) is dense in X, the continuum K would separate some two points of $R(x) \cap V$ in $S^2 - U$ and such two points would lie in different continuum components of R(x) - U. Hence, by Lemma 3.3, for all but countably many R-equivalence classes $R(y), V \cap R(y)$ is contained in a continuum component of R(y) - U.

Let $X' = \{y \in X - U : R(y) \cap V \text{ is contained in the continuum component} of y in <math>R(y) - U\}$. Let $R' = R|X' \times X'$. Then each R'-equivalence class is continuum connected, dense in $V \cap X'$ and of first category in $V \cap X'$. Also $V \cap X'$ is of second category, since V - X' is contained in the sum of countably many R-equivalence classes. Each R'-equivalence class is external since it meets the boundary of the disc U which is disjoint from X'.

We shall show that in uncountably many R'-equivalence classes there exist terminal points outside of V. If $a \in R'(y) \cap Bd(U)$ is not a terminal point then there exist continua K and L contained in R'(y) such that $K \not\subset L$, $L \not\subset K$ and $a \in K \cap L$. Let M be the interval joining the point a and the middle point in the radius of U beginning at the point a. The union $K \cup L \cup M$ is a triod. Such triods for different R'-equivalence classes are disjoint. Since on the plane each family of disjoint triods is countable, for all but countably many R'-equivalence classes, and in consequence for uncountably many R'-equivalence classes R'(x), there exists a terminal point of R'(x) in Bd(U).

Observe that if K is a continuum in an R'-equivalence class R'(y) then the interior of K in R'(y) is disjoint from V; otherwise, since R'(y) is dense in $V \cap X'$, K and hence R'(y) would have interior in $V \cap X'$, which would contradict the fact that each R'-equivalence class is dense in $V \cap X'$.

Taking X' in place of X, $V \cap X'$ in place of P and R' in place of R we see, using Lemma 3.7, that the assumptions of Lemma 3.5 are satisfied. Hence, the sum of R'-equivalence classes, i.e. the set X', is of first category, which is a contradiction.

References

- [1] H. Cook, Subsets of indecomposable continua, Colloq. Math. 13 (1964), 37–43.
- [2] W. Dębski and E. D. Tymchatyn, External equivalence in decompositions of spaces, Proc. Amer. Math. Soc. 100 (1987), 781-784.

- [3] J. Krasinkiewicz, On the composants of indecomposable plane continua, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 20 (1972), 935–940.
- [4] —, Concerning the accessibility of composants of indecomposable plane continua, ibid. 21 (1973), 621–628.
- [5] —, On internal composants of indecomposable plane continua, Fund. Math. 84 (1974), 255–263.
- [6] K. Kuratowski, Topology, Vol. 2, Academic Press, New York 1969.
- [7] —, Applications of the Baire-category method to the problem of independent sets, Fund. Math. 81 (1973), 65–72.
- [8] S. Mazurkiewicz, Sur les continus indécomposables, ibid. 10 (1927), 305-310.
- [9] —, Sur les points accessibles des continus indécomposables, ibid. 14 (1929), 107–115.
- [10] R. L. Moore, Concerning triodic continua in the plane, ibid. 13 (1929), 261–263.
- [11] J. T. Rogers, Jr., Borel transversals and ergodic measures on indecomposable continua, to appear.
- [12] G. T. Whyburn, Analytic Topology, AMS Colloq. Publ. 28, Providence 1942.

INSTITUTE OF MATHEMATICS	DEPARTMENT OF MATHEMATICS
SILESIAN UNIVERSITY	UNIVERSITY OF SASKATCHEWAN
BANKOWA 14	SASKATOON, SASKATCHEWAN
40-007 KATOWICE, POLAND	CANADA S7N OWO

Received 11 February 1991