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Abstract. The body of this paper falls into two independent sections. The first
deals with the existence of cross-sections in Fσ-decompositions. The second deals with
the extensions of the results on accessibility in the plane.

1. Introduction. The composants of an indecomposable metric con-
tinuum X are pairwise disjoint, continuum connected, first category, dense
Fσ-subsets of X. Mazurkiewicz [8] proved that each indecomposable met-
ric continuum has c composants by showing that there exists a Cantor set
which is a partial cross-section for the composants of X.

There are number of useful results concerning the position of composant
in an indecomposable continuum embedded in the plane. Mazurkiewicz [9]
and Krasinkiewicz [3]–[5] have proved that most composants of a planar
indecomposable continuum X are not accessible.

The purpose of this paper is to extend the above results to decomposi-
tions of separable metric spaces with only mild additional conditions.

Let X be a separable metric space and R  X × X an equivalence
relation on X. For x ∈ X let R(x) denote the R-equivalence class of x. For
A ⊂ X let R(A) =

⋃
{R(x) : x ∈ A}.

By a continuum we mean a compact, connected, metric space. A contin-
uum is decomposable if it is the union of two proper subcontinua, otherwise
it is indecomposable. A set A is continuum connected if every pair of points
of A lies in a subcontinuum of A.

2. Cross-section for Fσ-decompositions. In this section X will be
a separable metric space and R =

⋃∞
i=1 Ri  X ×X an equivalence relation

such that each Ri is closed in X ×X.

2.1. Example. Let X be a non-degenerate, indecomposable metric
continuum. Let {Ui}∞i=1 be a countable basis of proper open sets of X.
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Let Ri = {(x, y) ∈ X × X : x and y lie in a component of X − Ui} and
R =

⋃∞
i=1 Ri. If x ∈ X then R(x) is the composant of x, i.e. the union of all

proper subcontinua of X which contain x (see [6]). The sets Ri are closed
in X ×X.

2.2. Example. Let f : X × (−∞,∞) → X be a flow on a space X and
let R be the equivalence relation on X whose equivalence classes are the
orbits of points of X under f . For each positive integer i let

Ri = {(x, f(x, t)) : (x, t) ∈ X × [−i, i]}.

Then Ri is closed and R =
⋃∞

i=1 Ri.

The results of this section, which are valid for arbitrary separable metric
spaces, were first obtained by Cook [1] and by Mazurkiewicz [8] for the case
of indecomposable continua.

2.3. Proposition. If K is a compact subset of a metric separable space
X, then R(K) is an Fσ-subset of X.

P r o o f. Let Li = {y ∈ X : (x, y) ∈ Ri for some x ∈ K}. Let y ∈
Cl(Li) and let {yn}∞n=1 be a sequence in Li converging to y. For each n
let xn ∈ K be such that (xn, yn) ∈ Ri. We may pass to a subsequence by
compactness of K, and we may suppose that {xn}∞n=1 converges to x in K.
Then (x, y) ∈ Ri since Ri is closed in X ×X. So, y ∈ Li and Li is closed.
Clearly, R(K) =

⋃∞
i=1 Li.

2.4. Corollary. If X is of second category and each R-equivalence
class has empty interior in X then the set of R-equivalence classes is un-
countable.

2.5. Corollary. Let each R-equivalence class be dense in X. If K =⋃∞
i=1 Fi, where each Fi is a compact subset of X such that R(Fi) 6= X, then

R(K) is a first category Fσ-set in X.

2.6. Theorem. Let X be of second category and let each R-equivalence
class be dense in X. If K is a compact subset of X such that R(K) = X
then there is a non-empty closed subset L of K such that Cl(R(x)∩L) = L
for each x ∈ X.

P r o o f. Let L =
⋃
{Cl(K ∩R(x)) : x ∈ X}.

Choose a countable subcover V of the open cover {K − Cl(K ∩ R(x)) :
x ∈ X} of K − L. The set K − Cl(K ∩ R(x)), x ∈ X, is σ-compact (being
an open subset of the compact set K) and misses R(x). By Corollary 2.5,
R(K − Cl(K ∩ R(x))) is a first category Fσ-set in X. Hence, R(K − L),
being equal to

⋃
{R(V ) : V ∈ V}, is a first category Fσ-set in X. Observe

that, since R(K) = X, the set L is non-empty.
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It remains to prove the equality L = Cl(R(x)∩L) for each x ∈ X. To do
this, let U be an open subset of X having non-empty intersection with L.
By the definition of L, the set U meets each of the sets K ∩ R(x). Hence,
R(U ∩K) = X and, in consequence, R(U ∩ L) is of second category, since
R(K − L) is of first category. But U ∩ L is σ-compact. By Corollary 2.5,
R(U∩L) = X. Hence, U∩L∩R(x) 6= 0 for each x ∈ X. So Cl(L∩R(x)) = L
for each x ∈ X.

2.7. Corollary. Let X be of second category , let each R-equivalence
class be dense in X and let R 6= X ×X. Then there do not exist σ-compact
subsets of X which are full cross-sections for the family of R-equivalence
classes.

P r o o f. Suppose K is σ-compact, i.e. K =
⋃∞

i=1 Fi, where each Fi

is compact, and K is a full cross-section for the family of R-equivalence
classes. Then, by Corollary 2.5, there exists i such that R(Fi) = X. But K
is a full cross-section, hence, K = Fi. So K is compact. This contradicts
Theorem 2.6, since L ⊂ K and R(x) ∩ L 6= 0 for all x implies L = K, but
Cl(R(x) ∩K) 6= K, because R(x) ∩K is a single point.

2.8. Lemma. If the set of R-equivalence classes is uncountable then X
contains a non-empty Gδ-set X ′ = R(X ′) such that each open and non-
empty set in X ′ meets uncountably many R-equivalence classes.

P r o o f. Let U = {U : U is an open set meeting only countably many
R-equivalence classes} and let X ′ = X − R(

⋃
U). Since U has a countable

subcollection covering
⋃
U ,

⋃
U meets only countably many R-equivalence

classes. So if U is an open set meeting X ′ then U meets uncountably many
R-equivalence classes and, in consequence, U ∩X ′ meets uncountably many
R-equivalence classes. Clearly, since, by Proposition 2.3, each R-equivalence
class is an Fσ-set, X ′ is an Gδ-set.

2.9. Theorem (cf. Kuratowski [7]). Suppose X is a topologically com-
plete, separable, metric space and the set of R-equivalence classes is un-
countable. Then X contains a Cantor set L such that L ∩R(x) contains at
most one point for each x ∈ X.

P r o o f. By Lemma 2.8, we may suppose that each non-empty open
subset of X meets uncountably many R-equivalence classes.

Let % be a complete metric for X. We construct for each positive integer
n a family An = {A(d1, . . . , dn) : di ∈ {0, 1}, i = 1, . . . , n} of disjoint,
regularly closed, non-empty subsets of X such that

(1) A(d1, . . . , dn)×A(d′1, . . . , d
′
n) ∩Rm = ∅ if

(d1, . . . , dn) 6= (d′1, . . . , d
′
n) and m ≤ n,

(2) diameterA(d1, . . . , dn) < 2−n,
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(3) A(d1, . . . , dn) ⊂ Int(A(d1, . . . , dn−1)) for n > 1.

Choose x(0) and x(1) in different R-equivalence classes. Clearly (x(0),
x(1)) as well as (x(1), x(0)) do not belong to R1. Since R1 is closed, there
exist disjoint regularly closed neighbourhoods A(0) of x(0) and A(1) of x(1)
satisfying (1) and (2). Let A1 = {A(0), A(1)}.

Suppose A, . . . ,An have been defined. Choose points x(d1, . . . , dn+1)
in different R-equivalence classes such that x(d1, . . . , dn+1) ∈ Int(A(d1, . . .
. . . , dn)). This is possible since each set Int(A(d1, . . . , dn)) meets infinitely
many R-equivalence classes. Clearly, (x(d1, . . . , dn+1), x(d′1, . . . , d

′
n+1)) does

not belong to Rm for any m if (d1, . . . , dn+1) 6= (d′1, . . . , d
′
n+1). Since Rm is

closed there exist disjoint regularly closed neighbourhoods A(d1, . . . , dn+1)
of x(d1, . . . , dn+1) satisfying (1)–(3). Let An+1 = {A(d1, . . . , dn+1) : di ∈
{0, 1}, i = 1, . . . , n + 1}.

By induction, the family {An}∞n=1 is defined. Let L =
⋂∞

n=1(
⋃
An).

Since X is complete, L is a Cantor set. Since R =
⋃∞

i=1 Ri, the assumption
that x and y are points of L lying in one R-equivalence class implies that x
and y are in the same element of An for large n. Hence, x = y.

2.10. Corollary. Suppose X is a topologically complete, separable
metric space such that the set of R-equivalence classes is uncountable. Then
the set of R-equivalence classes has cardinality c.

2.11. Corollary. Suppose X is a topologically complete metric space
and each R-equivalence class is a proper , dense set in X. Then the set of
R-equivalence classes has cardinality c.

3. External R-equivalence classes in the plane. Throughout this
section X will be a subset of the 2-sphere S2 and R will be an equivalence
relation on X such that each R-equivalence class is continuum connected.
The results of this section were proved by Krasinkiewicz for the case of
indecomposable continua in the plane.

We say R(x) is an external R-equivalence class if there exists a continuum
L ⊂ S2 with L ∩ R(x) 6= ∅, L 6⊂ Cl(X) and L ∩ R(y) = ∅ for some y ∈ X.
If R(x) is not external then it is said to be internal .

The following lemma for separable spaces is well known and easy to prove
(Whyburn [12], p. 43, Th. (1.5)).

3.1. Lemma. Let A be an uncountable family of disjoint closed connected
sets in a connected space Y such that each of them disconnects Y . Then
there exists A,B, C ∈ A such that A separates B from C in Y .

The following lemma is based on one in [9].

3.2. Lemma. Let K ⊂ S2 be a continuum and let U and V be disjoint
open discs meeting K such that U ∩ K is contained in no component of
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K − V . Then there exists a continuum in K −U which disconnects S2 −U
and meets V .

P r o o f. Let K − V = P ∪ Q, where P and Q are disjoint closed sets
which both meet U . Let F = P ∩Bd(U) and G = Q∩Bd(U). Since K is a
continuum, both sets F and G are non-empty and there exists a component
C of K − (F ∪ G) such that F ∩ Cl(C) 6= ∅ 6= G ∩ Cl(C). Since C 6⊂ U ,
we have C ⊂ K − Cl(U). Let p ∈ F ∩ Cl(C) and q ∈ G ∩ Cl(C) and let
L be a continuum in Cl(C) irreducible from p to q. Since p and q lie in
different components of K−V , the continuum L meets V . By a theorem of
Janiszewski [6, §61, Th. 2] the continuum L disconnects S2 − U .

3.3. Lemma. Let X ⊂ S2 and let R  X ×X be an equivalence relation
on X such that each R-equivalence class is continuum connected. For all but
countably many R-equivalence classes R(x) and for all open disjoint discs U
and V which meet X, if U ∩R(x) is contained in no continuum component
of R(x) − V then there exists a continuum K ⊂ R(x) − U such that K
separates two points of V ∩X in S2 − U .

P r o o f. Consider the family {U1, U2, . . .} of all open discs the centres of
which lie in a certain countable dense subset of S2 and whose diameters are
rational.

Let Un and Um be disjoint discs meeting X. We shall show first that
for all but countably many R-equivalence classes R(x), if K ⊂ R(x)−Un is
a continuum disconnecting S2 − Un and meeting Um then K separates two
points of Um ∩X in S2 − Un.

Suppose to the contrary that there exists an uncountable family K of
subcontinua of S2−Un, disconnecting S2−Un and meeting the set Um ∩X
but separating no two points of this set in S2−Un and such that any two el-
ements of K are contained in different R-equivalence classes. By Lemma 3.1,
there exist L,M,N ∈ K such that L separates M from N in S2−Un. Since
M and N meet Um∩X, L separates two points of Um∩X in S2−Un, which
is a contradiction.

So, for all but countably many R-equivalence classes R(x) and for any
two disjoint discs Un and Um meeting X, if K ⊂ R(x)− Un is a continuum
disconnecting S2−Un and meeting Um ∩X then K separates two points of
Um ∩X in S2 − Un.

Now, let R(x) be an R-equivalence class as above. Let U and V be
disjoint open discs meeting X such that U ∩X is contained in no continuum
component of R(x) − V . Let a, b ∈ U ∩ X be points lying in different
continuum components of R(x) − V . Let n be a positive integer such that
a, b ∈ Un ⊂ U . Such an n exists since the diameters of Un run over all
positive rationals and their centres run over a dense subset of S2. Let
K ⊂ R(x) be a continuum joining a and b. Then a and b lie in different
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components of K−V . By Lemma 3.2, there exists a continuum L ⊂ K−Un

which disconnects S2 − Un and meets V . Let m be a positive integer such
that Um ⊂ V and Um ∩ L 6= ∅. Hence, by the choice of R(x), L separates
two points of Um∩X in S2−Un. So, the continuum L separates two points
of V ∩ X in S2 − Un. Hence the compact set L − U separates two points
of V ∩ X in S2 − U . Then a component of L − U separates two points of
V ∩X in S2 − U , since S2 is locally connected and unicoherent (see [6]).

3.4. Theorem. Let A,B,C and D be continua in S2 such that A∩B = ∅
and C ∩D = ∅. If A∩C is contained in a component of S2 − (B ∩D) then
B ∩D is contained in a component of S2 − (A ∪ C).

P r o o f. Since the sphere is locally arcwise connected we may assume
that A ∩ C is connected. Since neither A nor C separates two points of
B ∩ D neither does A ∪ C by the first theorem of Janiszewski [6], p. 507,
Th. 7.

3.5. Lemma. Let X ⊂ S2 and R ⊆ X × X be an equivalence relation
on X such that each R-equivalence class is continuum connected. Let P be
a non-empty open set in X such that each R-equivalence class is of first
category and dense in P , and such that for uncountably many R-equivalence
classes R(x) and for each open non-empty subset U of P each continuum
component of R(x)− U has empty interior with respect to R(x) ∩ P . Then
the union E of external R-equivalence classes of X is of first category in P .
Moreover , E is an Fσ-set if P is of second category.

P r o o f. Let {U1, U2, . . .} be a basis of open discs for the topology on S2.
If i and k are positive integers such that Ui ∩ P 6= ∅, Ui ∩ X ⊂ P ,

Cl(Uk) ∩ Cl(X) = ∅ and Ui ∩ Uk = ∅, then define Li,k to be the union
of sets L ∩ X, where L runs over all those subcontinua of S2 − Ui such
that L ∩ Cl(Uk) 6= ∅ and R(L ∩ X) 6= X. If i and k do not satisfy the
above-mentioned conditions, define Li,k to be the empty set.

Clearly, Li,k ⊂ E for all i and k. Now, let R(x) be an external
R-equivalence class of X and let L be a continuum in S2 such that L∩R(x) 6=
∅, L 6⊂ Cl(X) and R(L∩X) 6= X. Let K be a continuum in R(x) such that
x ∈ K and K ∩ L 6= ∅. Since L 6⊂ Cl(X), there exists y ∈ L− Cl(X). Since
P 6⊂ R(L∩X), there exists z ∈ P −R(L∩X). Clearly, z 6∈ K. Since L and
K are closed, there exist positive integers i and k such that z ∈ Ui, y ∈ Uk,
Ui ∩X ⊂ P , Ui ∩ (K ∪ L) = ∅, Cl(Uk) ∩ Cl(X) = ∅ and Ui ∩ Uk = ∅. Then
x ∈ (K ∪ L) ∩X ⊂ Li,k. So, E =

⋃∞
i,k=1 Li,k.

To prove that E is of first category in P , it suffices to prove that Li,k is
nowhere dense in P . Assume Li,k 6= ∅.

Let U be an open disc such that Cl(U) ⊂ Ui and U ∩ P 6= ∅. Let V be
an open disc such that V ∩ P 6= ∅, V ∩X ⊂ P , V ∩ U = ∅ and V ∩ Uk = ∅.
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We shall show that V ∩X is not contained in Cl(Li,k).
Let R(x) be an R-equivalence class guaranteed by Lemma 3.3 and let

K ⊂ R(x)−U be a continuum which separates two points of V ∩P in S2−U .
Let x1 be a point of V ∩ P which K separates in S2 − U from Uk and let
W be an open disc such that x1 ∈ W ⊂ V −K. By Lemma 3.3, there exist
y ∈ X −R(x) and a continuum L ⊂ R(y)−U which separates two points of
W ∩ P in S2 −U . Let x2 be a point of W ∩ P which L separates in S2 −U
from Uk and let G be an open disc such that x2 ∈ G ⊂ W − L. Then there
exists a continuum M ⊂ R(x) − U which separates two points of G ∩ P in
S2 − U ; clearly, L separates M from K in S2 − U . Let x3 be a point of
G ∩ P which M separates in S2 − U from Uk and let C be a component of
(S2 − U)−M to which x3 belongs. It suffices to prove that C ∩ Li,k = ∅.

Suppose I is a continuum in S2−U joining Cl(Uk) and C ∩X such that
R(I ∩ X) 6= X. Clearly I meets K, L and M . Let z ∈ X − R(I ∩ X).
Then R(z) 6= R(x). Let J be a continuum contained in R(x) and containing
both continua K and M . Hence, J ∩ I has points in two components of
S2− (L∪Cl(U)). By Theorem 3.4, L∩Cl(U) has points in two components
of S2− (I ∪J). Since R(z) is dense in P it has points in two components of
S2− (I ∪ J) also. But R(z) is connected and disjoint from I ∪ J , which is a
contradiction. Hence, Li,k is nowhere dense in P and E is of first category
in P .

Now, assume that P is of second category. To prove E is an Fσ-set
it suffices to prove Li,k is closed. Let x ∈ Cl(Li,k). Let {xn}∞n=1 be a
sequence in Li,k which converges to x ∈ X. For each n let Ln ⊂ S2 − Ui

be a continuum such that xn ∈ Ln, Ln ∩ Cl(Uk) 6= ∅ and R(Ln ∩ X) 6=
X. The sequence Ln has a convergent subsequence with respect to the
Hausdorff metric. We may suppose Ln is such a subsequence. It converges
to a continuum L ⊂ S2 − Ui. Then x ∈ L and L ∩ Cl(Uk) 6= ∅.

It remains to prove that L misses some R-equivalence class. Let y ∈
Ui such that R(y) is an internal equivalence class and R(y) satisfies the
conclusion of Lemma 3.3. Let {Unj

}∞j=1 be the basic neighbourhoods of y
such that each Unj

⊂ Ui. Just suppose L meets R(y).
For each R(z) 6= R(y) and for each positive integer j let A(z, j) be the

union of the continua in R(z) − Unj
which meet L. Let Qj =⋃

z∈X−R(y) A(z, j). Then X −R(y) =
⋃∞

j=1 Qj .
Since X−R(y) is of second category in X, there exists an integer m and

a basic neighbourhood Ur ⊂ Cl(Ur) ⊂ S2 −Cl(Unm) such that Qm is dense
in Ur ∩X 6= ∅ and Ur ∩X ⊂ P .

By Lemma 3.3 there is a continuum B ⊂ R(y) − Unm
such that B

separates two points of Ur ∩ X in S2 − Unm . Since Qm is dense Ur ∩ X,
B separates two points a and b of Qm in S2 − Unm . By the definition of
A(a,m) there is a continuum Ka in R(a)− Unm

from a to L and there is a
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continuum Kb in R(b)−Unm
from b to L. Since Ka and Kb miss B, it follows

that B separates two points of L in S2 −Unm
. Since the sequence {Ln}∞n=1

converges to L, there is a positive integer p such that B separates two points
of Lp in S2 − Unm

. This is a contradiction since Lp misses every internal
R-equivalence class of X. Thus, L misses each internal R-equivalence class,
x ∈ Li,k and Li,k is closed.

3.6. Theorem. Let X ⊂ S2 and let R  X × X be an equivalence
relation on X such that each R-equivalence class R(x) is a continuum con-
nected first category set in X, and for each open non-empty set U in X each
continuum component of R(x) − U has empty interior in R(x). Then the
union E of external R-equivalence classes of X is a first category set in X.
Moreover , E is an Fσ-set in X if X is of second category.

P r o o f. We can restrict our considerations to the case in which the set of
R-equivalence classes is uncountable since otherwise the theorem is obvious.
Let P be X in Lemma 3.5. It suffices to prove that each R(x) is dense in
X. But if U ⊂ X is open and non-empty then each continuum component
of R(x)− U has empty interior in R(x). Hence, R(x) ∩ U 6= ∅.

A point y of a set Y is said to be a terminal point if for each pair of
continua K and L in Y with y ∈ K ∩ L we have either K ⊂ L or L ⊂ K.

3.7. Lemma. Let U and V be disjoint open non-empty sets in the
continuum connected space Y such that for each continuum K in Y , U−K 6=
∅ and V −K 6= ∅. Suppose y ∈ Y − (U ∪V ) is a terminal point of Y . Then
U is contained in no continuum component of Y − V .

P r o o f. Let a ∈ U and let A be a continuum joining a and y. Let
b ∈ V − A and let B be a continuum joining b and y. Then A ⊂ B since
b ∈ B − A and y is a terminal point in Y . Let c ∈ U − B. Now, let C be
any continuum joining a and c. Then A ∪ C is a continuum joining c and
y. So B ⊂ A∪C. Since b ∈ B −A ⊂ C, C meets the set V . Hence, a and c
are two points of U which lie in different continuum components of Y − V .

A continuum K is said to be a triod if K−L has at least three components
for some subcontinuum L of K. It is a well-known theorem of Moore (cf. [10])
that the 2-sphere does not contain an uncountable collection of pairwise
disjoint triods.

3.8. Theorem. Let X ⊂ S2 be such that each non-empty open subset of
X is of second category. Let R  X × X be an equivalence relation on X
such that each R-equivalence class is continuum connected , of first category
and dense in X. Then the union of external R-equivalence classes of X is
a first category Fσ-set in X.
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P r o o f. By Theorem 3.6 it suffices to prove that for each open, non-
empty set U in X and each R-equivalence class R(x) each continuum com-
ponent of R(x)− U has empty interior in R(x).

Just suppose there exist disjoint discs U and V each of which meets X
and there exists an R-equivalence class R(x) such that R(x)∩V is contained
in a continuum component of R(x)−U . If y ∈ X−R(x) then no continuum
K ⊂ R(y) − U separates some two points of X ∩ V in S2 − U ; otherwise,
since R(x) is dense in X, the continuum K would separate some two points
of R(x)∩ V in S2 −U and such two points would lie in different continuum
components of R(x)−U . Hence, by Lemma 3.3, for all but countably many
R-equivalence classes R(y), V ∩R(y) is contained in a continuum component
of R(y)− U .

Let X ′ = {y ∈ X−U : R(y)∩V is contained in the continuum component
of y in R(y) − U}. Let R′ = R|X ′ × X ′. Then each R′-equivalence class
is continuum connected, dense in V ∩ X ′ and of first category in V ∩ X ′.
Also V ∩X ′ is of second category, since V −X ′ is contained in the sum of
countably many R-equivalence classes. Each R′-equivalence class is external
since it meets the boundary of the disc U which is disjoint from X ′.

We shall show that in uncountably many R′-equivalence classes there
exist terminal points outside of V . If a ∈ R′(y) ∩ Bd(U) is not a terminal
point then there exist continua K and L contained in R′(y) such that K 6⊂ L,
L 6⊂ K and a ∈ K∩L. Let M be the interval joining the point a and the mid-
dle point in the radius of U beginning at the point a. The union K ∪L∪M
is a triod. Such triods for different R′-equivalence classes are disjoint. Since
on the plane each family of disjoint triods is countable, for all but count-
ably many R′-equivalence classes, and in consequence for uncountably many
R′-equivalence classes R′(x), there exists a terminal point of R′(x) in Bd(U).

Observe that if K is a continuum in an R′-equivalence class R′(y) then
the interior of K in R′(y) is disjoint from V ; otherwise, since R′(y) is dense
in V ∩X ′, K and hence R′(y) would have interior in V ∩X ′, which would
contradict the fact that each R′-equivalence class is dense in V ∩X ′.

Taking X ′ in place of X, V ∩ X ′ in place of P and R′ in place of R
we see, using Lemma 3.7, that the assumptions of Lemma 3.5 are satisfied.
Hence, the sum of R′-equivalence classes, i.e. the set X ′, is of first category,
which is a contradiction.
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