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Composant-like decompositions of spaces
by

W. Debski (Katowice) and E. D. Tymchatyn* (Saskatoon)

Abstract. The body of this paper falls into two independent sections. The first
deals with the existence of cross-sections in Fy-decompositions. The second deals with
the extensions of the results on accessibility in the plane.

1. Imtroduction. The composants of an indecomposable metric con-
tinuum X are pairwise disjoint, continuum connected, first category, dense
F,-subsets of X. Mazurkiewicz [8] proved that each indecomposable met-
ric continuum has ¢ composants by showing that there exists a Cantor set
which is a partial cross-section for the composants of X.

There are number of useful results concerning the position of composant
in an indecomposable continuum embedded in the plane. Mazurkiewicz [9]
and Krasinkiewicz [3]-[5] have proved that most composants of a planar
indecomposable continuum X are not accessible.

The purpose of this paper is to extend the above results to decomposi-
tions of separable metric spaces with only mild additional conditions.

Let X be a separable metric space and R & X x X an equivalence
relation on X. For x € X let R(x) denote the R-equivalence class of . For
AcC X let R(A) = J{R(x) : x € A}.

By a continuum we mean a compact, connected, metric space. A contin-
uum is decomposable if it is the union of two proper subcontinua, otherwise
it is indecomposable. A set A is continuum connected if every pair of points
of A lies in a subcontinuum of A.

2. Cross-section for F,-decompositions. In this section X will be
a separable metric space and R = |J;=; R; & X x X an equivalence relation
such that each R; is closed in X x X.

2.1. ExXAMPLE. Let X be a non-degenerate, indecomposable metric
continuum. Let {U;}$2; be a countable basis of proper open sets of X.
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Let R; = {(z,y) € X x X : z and y lie in a component of X — U;} and
R=;2, R;. If z € X then R(x) is the composant of z, i.e. the union of all

proper subcontinua of X which contain x (see [6]). The sets R; are closed
in X x X.

2.2. EXAMPLE. Let f: X x (—00,00) — X be a flow on a space X and
let R be the equivalence relation on X whose equivalence classes are the
orbits of points of X under f. For each positive integer 7 let

R; ={(z, f(z,t)) : (z,t) € X x [—i,i]}.
Then R; is closed and R = J;~, R;.

The results of this section, which are valid for arbitrary separable metric
spaces, were first obtained by Cook [1] and by Mazurkiewicz [8] for the case
of indecomposable continua.

2.3. PrROPOSITION. If K is a compact subset of a metric separable space
X, then R(K) is an F,-subset of X.

Proof. Let L; = {y € X : (z,y) € R; for some z € K}. Let y €
Cl(L;) and let {y,}52, be a sequence in L; converging to y. For each n
let z,, € K be such that (z,,y,) € R;. We may pass to a subsequence by
compactness of K, and we may suppose that {x, }32 ; converges to z in K.
Then (x,y) € R; since R; is closed in X x X. So, y € L; and L; is closed.
Clearly, R(K) = ;2 L;.

2.4. COROLLARY. If X is of second category and each R-equivalence
class has empty interior in X then the set of R-equivalence classes is un-
countable.

2.5. COROLLARY. Let each R-equivalence class be dense in X. If K =
Ui2, Fi, where each F; is a compact subset of X such that R(F;) # X, then
R(K) is a first category F,-set in X.

2.6. THEOREM. Let X be of second category and let each R-equivalence
class be dense in X. If K is a compact subset of X such that R(K) = X
then there is a non-empty closed subset L of K such that Cl(R(x)NL) =L
for each x € X.

Proof. Let L = J{Cl(KNR(z)):ze€ X}

Choose a countable subcover V of the open cover {K — Cl(K N R(z)) :
x € X} of K— L. The set K — Cl(K N R(z)), z € X, is o-compact (being
an open subset of the compact set K) and misses R(x). By Corollary 2.5,
R(K — CI(K N R(x))) is a first category F,-set in X. Hence, R(K — L),
being equal to (J{R(V) : V € V}, is a first category Fi-set in X. Observe
that, since R(K) = X, the set L is non-empty.
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It remains to prove the equality L = CI(R(x)N L) for each x € X. To do
this, let U be an open subset of X having non-empty intersection with L.
By the definition of L, the set U meets each of the sets K N R(z). Hence,
R(UNK) = X and, in consequence, R(U N L) is of second category, since
R(K — L) is of first category. But U N L is o-compact. By Corollary 2.5,
R(UNL) = X. Hence, UNLNR(x) # 0 for each x € X. So CI(LNR(x)) = L
for each z € X.

2.7. COROLLARY. Let X be of second category, let each R-equivalence
class be dense in X and let R # X x X. Then there do not exist o-compact
subsets of X which are full cross-sections for the family of R-equivalence
classes.

Proof. Suppose K is o-compact, i.e. K = (J;o, F;, where each F;
is compact, and K is a full cross-section for the family of R-equivalence
classes. Then, by Corollary 2.5, there exists ¢ such that R(F;) = X. But K
is a full cross-section, hence, K = F;. So K is compact. This contradicts
Theorem 2.6, since L C K and R(z) N L # 0 for all z implies L = K, but
Cl(R(x) N K) # K, because R(x) N K is a single point.

2.8. LEMMA. If the set of R-equivalence classes is uncountable then X
contains a non-empty Gs-set X' = R(X') such that each open and non-
empty set in X' meets uncountably many R-equivalence classes.

Proof. Let Y = {U : U is an open set meeting only countably many
R-equivalence classes} and let X' = X — R(|JU). Since U has a countable
subcollection covering | JU, |JU meets only countably many R-equivalence
classes. So if U is an open set meeting X’ then U meets uncountably many
R-equivalence classes and, in consequence, U N X’ meets uncountably many
R-equivalence classes. Clearly, since, by Proposition 2.3, each R-equivalence
class is an F,-set, X’ is an Gs-set.

2.9. THEOREM (cf. Kuratowski [7]). Suppose X is a topologically com-
plete, separable, metric space and the set of R-equivalence classes is un-
countable. Then X contains a Cantor set L such that L N R(x) contains at
most one point for each x € X.

Proof. By Lemma 2.8, we may suppose that each non-empty open
subset of X meets uncountably many R-equivalence classes.

Let o be a complete metric for X. We construct for each positive integer
n a family A, = {A(d1,...,d,) : d; € {0,1},i = 1,...,n} of disjoint,
regularly closed, non-empty subsets of X such that

(1)  A(di,...,dn) x A(d},...,d})) "Ry =0 if
(diy...,dy) # (d},...,d),) and m <mn,

(2)  diameter A(dy,...,d,) <27",
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(3) A(dl,,dn) CInt(A(dl,...,dn_l)) for n > 1.

Choose x(0) and z(1) in different R-equivalence classes. Clearly (x(0),
z(1)) as well as (x(1),2(0)) do not belong to R;. Since R; is closed, there
exist disjoint regularly closed neighbourhoods A(0) of z:(0) and A(1) of x(1)
satisfying (1) and (2). Let A; = {A(0), A(1)}.

Suppose A, ..., A, have been defined. Choose points z(dy,...,dp+1)
in different R-equivalence classes such that x(dy,...,dy+1) € Int(A(dy, ...

..,dy)). This is possible since each set Int(A(dy,...,d,)) meets infinitely
many R-equivalence classes. Clearly, (z(dy,...,dnt1), 2(d}, ..., d;,,)) does
not belong to Ry, for any m if (d,...,dny1) # (d},...,d;, ). Since Ry, is
closed there exist disjoint regularly closed neighbourhoods A(dy,...,dn+1)
of x(dy,...,dn+1) satisfying (1)—(3). Let A,41 = {A(d1,...,dnt1) 2 d; €
{0,1},i=1,...,n+1}.

By induction, the family {4, }5°, is defined. Let L = (2, (UAn)-
Since X is complete, L is a Cantor set. Since R = |J;~; R;, the assumption
that  and y are points of L lying in one R-equivalence class implies that x
and y are in the same element of A4,, for large n. Hence, z = y.

2.10. COROLLARY. Suppose X is a topologically complete, separable
metric space such that the set of R-equivalence classes is uncountable. Then
the set of R-equivalence classes has cardinality c.

2.11. COROLLARY. Suppose X is a topologically complete metric space
and each R-equivalence class is a proper, dense set in X. Then the set of
R-equivalence classes has cardinality c.

3. External R-equivalence classes in the plane. Throughout this
section X will be a subset of the 2-sphere S? and R will be an equivalence
relation on X such that each R-equivalence class is continuum connected.
The results of this section were proved by Krasinkiewicz for the case of
indecomposable continua in the plane.

We say R(z) is an ezternal R-equivalence class if there exists a continuum
L C 8% with LNR(z) #0, L ¢ CI(X) and LN R(y) = 0 for some y € X.
If R(z) is not external then it is said to be internal.

The following lemma for separable spaces is well known and easy to prove
(Whyburn [12], p. 43, Th. (1.5)).

3.1. LEMMA. Let A be an uncountable family of disjoint closed connected
sets in a connected space Y such that each of them disconnects Y. Then
there exists A, B,C € A such that A separates B from C in'Y .

The following lemma is based on one in [9)].

3.2. LEMMA. Let K C S? be a continuum and let U and V be disjoint
open discs meeting K such that U N K is contained in no component of
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K — V. Then there exists a continuum in K — U which disconnects S? — U
and meets V.

Proof. Let K —V = PU(Q, where P and Q) are disjoint closed sets
which both meet U. Let F = PNBd(U) and G = Q NBd(U). Since K is a
continuum, both sets F' and G are non-empty and there exists a component
C of K — (FUQG) such that FNCI(C) # 0 # GnNCIC). Since C ¢ U,
we have C C K — Cl(U). Let p € FNCIC) and ¢ € GN CI(C) and let
L be a continuum in CIl(C) irreducible from p to ¢. Since p and ¢ lie in
different components of K — V', the continuum L meets V. By a theorem of
Janiszewski [6, §61, Th. 2] the continuum L disconnects S% — U.

3.3. LEMMA. Let X C S? and let R G X x X be an equivalence relation
on X such that each R-equivalence class is continuum connected. For all but
countably many R-equivalence classes R(x) and for all open disjoint discs U
and V' which meet X, if U N R(x) is contained in no continuum component
of R(x) —V then there exists a continuum K C R(x) — U such that K
separates two points of VN X in S2 —U.

Proof. Consider the family {Uy, Us, ...} of all open discs the centres of
which lie in a certain countable dense subset of S? and whose diameters are
rational.

Let U,, and U,, be disjoint discs meeting X. We shall show first that
for all but countably many R-equivalence classes R(x), if K C R(x) — U, is
a continuum disconnecting S? — U,, and meeting U,, then K separates two
points of U,, N X in S% — U,.

Suppose to the contrary that there exists an uncountable family K of
subcontinua of S? — U,,, disconnecting S? — U,, and meeting the set U,, N X
but separating no two points of this set in S? — U,, and such that any two el-
ements of IC are contained in different R-equivalence classes. By Lemma 3.1,
there exist L, M, N € K such that L separates M from N in S? — U, Since
M and N meet U,,, N X, L separates two points of U,,, N X in S? —U,,, which
is a contradiction.

So, for all but countably many R-equivalence classes R(x) and for any
two disjoint discs U,, and U,, meeting X, if K C R(z) — U, is a continuum
disconnecting S? — U,, and meeting U,, N X then K separates two points of
UpNXin S? —U,.

Now, let R(x) be an R-equivalence class as above. Let U and V be
disjoint open discs meeting X such that U N X is contained in no continuum
component of R(z) — V. Let a,b € U N X be points lying in different
continuum components of R(x) — V. Let n be a positive integer such that
a,b € U, C U. Such an n exists since the diameters of U, run over all
positive rationals and their centres run over a dense subset of S2. Let
K C R(z) be a continuum joining a and b. Then a and b lie in different
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components of K —V. By Lemma 3.2, there exists a continuum L C K —U,
which disconnects S? — U,, and meets V. Let m be a positive integer such
that U,, C V and U,, N L # (. Hence, by the choice of R(z), L separates
two points of U,, N X in S? —U,,. So, the continuum L separates two points
of VN X in S? — U,,. Hence the compact set L — U separates two points
of VN X in S?2 — U. Then a component of L — U separates two points of
VN X in S? — U, since S? is locally connected and unicoherent (see [6]).

3.4. THEOREM. Let A, B,C and D be continua in S? such that ANB = ()
and CND = 0. If ANC is contained in a component of S*> — (BN D) then
BN D is contained in a component of S? — (AU C).

Proof. Since the sphere is locally arcwise connected we may assume
that A N C is connected. Since neither A nor C' separates two points of
B N D neither does AU C' by the first theorem of Janiszewski [6], p. 507,
Th. 7.

3.5. LEMMA. Let X C 5% and R C X x X be an equivalence relation
on X such that each R-equivalence class is continuum connected. Let P be
a non-empty open set in X such that each R-equivalence class is of first
category and dense in P, and such that for uncountably many R-equivalence
classes R(x) and for each open non-empty subset U of P each continuum
component of R(x) — U has empty interior with respect to R(x) N P. Then
the union E of external R-equivalence classes of X is of first category in P.
Moreover, E is an F,-set if P is of second category.

Proof. Let {Uy,Us, ...} be a basis of open discs for the topology on S2.

If 4 and k are positive integers such that U; " P # 0, U; N X C P,
Cl(U) N CYX) = 0 and U; N Uy, = 0, then define L;j to be the union
of sets L N X, where L runs over all those subcontinua of S? — U; such
that L N Cl(Ux) # 0 and R(LN X) # X. If ¢ and k do not satisfy the
above-mentioned conditions, define L; j, to be the empty set.

Clearly, L;, C FE for all i and k. Now, let R(x) be an external
R-equivalence class of X and let L be a continuum in S? such that LNR(x) #
0, L ¢ CI(X) and R(LNX) # X. Let K be a continuum in R(z) such that
zx € K and KNL#(. Since L ¢ C1(X), there exists y € L — CI(X). Since
P ¢ R(LNX), there exists z € P— R(LNX). Clearly, z ¢ K. Since L and
K are closed, there exist positive integers ¢ and k such that z € U;, y € Uy,
UNXCP,UNKUL)=0, Cl{U,) NCL(X) =0 and U; N Uy, = (. Then
T e (KU L) NnNXc Li,k- So, E = U;'),Olczl Li,k-

To prove that E is of first category in P, it suffices to prove that L, j is
nowhere dense in P. Assume L; j # 0.

Let U be an open disc such that CI(U) C U; and UN P # (. Let V be
an open disc such that VNP 40, VNX C P, VNU =0 and VNU; = 0.
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We shall show that V' N X is not contained in Cl(L; x).

Let R(z) be an R-equivalence class guaranteed by Lemma 3.3 and let
K C R(z)—U be a continuum which separates two points of VNP in S2—-U.
Let z; be a point of V N P which K separates in S? — U from U, and let
W be an open disc such that x1 € W C V — K. By Lemma 3.3, there exist
y € X — R(z) and a continuum L C R(y) — U which separates two points of
W NP in S? —U. Let x5 be a point of W N P which L separates in S? — U
from Uy and let G be an open disc such that xo € G C W — L. Then there
exists a continuum M C R(z) — U which separates two points of GN P in
S? — U, clearly, L separates M from K in S? — U. Let x3 be a point of
G N P which M separates in S? — U from U}, and let C' be a component of
(82 —U) — M to which x3 belongs. It suffices to prove that C' N L; ; = 0.

Suppose I is a continuum in S? — U joining C1(Uy) and C'N X such that
R(INX) # X. Clearly I meets K, L and M. Let z € X — R(I N X).
Then R(z) # R(z). Let J be a continuum contained in R(x) and containing
both continua K and M. Hence, J NI has points in two components of
S2 — (LUCI(U)). By Theorem 3.4, LNCI(U) has points in two components
of §2 — (I UJ). Since R(z) is dense in P it has points in two components of
S2 — (I'uJ) also. But R(z) is connected and disjoint from I U.J, which is a
contradiction. Hence, L, is nowhere dense in P and E is of first category
in P.

Now, assume that P is of second category. To prove E is an F,-set
it suffices to prove L;j is closed. Let x € Cl(L;x). Let {z,}32; be a
sequence in L; ; which converges to x € X. For each n let L,, C S% —U;
be a continuum such that =, € L,, L, N Cl(Ug) # 0 and R(L, N X) #
X. The sequence L, has a convergent subsequence with respect to the
Hausdorff metric. We may suppose L., is such a subsequence. It converges
to a continuum L C S? — U;. Then z € L and L N Cl(Uy,) # 0.

It remains to prove that L misses some R-equivalence class. Let y €
U; such that R(y) is an internal equivalence class and R(y) satisfies the
conclusion of Lemma 3.3. Let {U,,}32; be the basic neighbourhoods of y
such that each U,; C U;. Just suppose L meets R(y).

For each R(z) # R(y) and for each positive integer j let A(z,j) be the
union of the continua in R(z) — U,, which meet L. Let Q; =
U.ex—ny A(z,4). Then X - R(y) = U=, Q.

Since X — R(y) is of second category in X, there exists an integer m and
a basic neighbourhood U,. C Cl(U,.) C §% — CI(U,,,,) such that Q,, is dense
inU.NX#Pand U, NX C P.

By Lemma 3.3 there is a continuum B C R(y) — U,,, such that B
separates two points of U, N X in S? — U, . Since Q,, is dense U, N X,
B separates two points a and b of Q,, in S? — U, . By the definition of
A(a,m) there is a continuum K, in R(a) — Uy, from a to L and there is a
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continuum Kj in R(b)—U,,, from bto L. Since K, and K}, miss B, it follows
that B separates two points of L in S? — U, . Since the sequence {L,}5° ,
converges to L, there is a positive integer p such that B separates two points
of L, in S? — U,,, . This is a contradiction since L, misses every internal
R-equivalence class of X. Thus, L misses each internal R-equivalence class,
x € Ly and L; j is closed.

3.6. THEOREM. Let X C S? and let R ¢ X x X be an equivalence
relation on X such that each R-equivalence class R(x) is a continuum con-
nected first category set in X, and for each open non-empty set U in X each
continuum component of R(x) — U has empty interior in R(z). Then the
union E of external R-equivalence classes of X is a first category set in X.
Moreover, E is an Fy-set in X if X is of second category.

Proof. We can restrict our considerations to the case in which the set of
R-equivalence classes is uncountable since otherwise the theorem is obvious.
Let P be X in Lemma 3.5. It suffices to prove that each R(x) is dense in
X. But if U C X is open and non-empty then each continuum component
of R(z) — U has empty interior in R(z). Hence, R(x) N U # 0.

A point y of a set Y is said to be a terminal point if for each pair of
continua K and L in Y with y € K N L we have either K C L or L C K.

3.7. LEMMA. Let U and V be disjoint open non-empty sets in the
continuum connected space Y such that for each continuum K in Y, U—K #
0 andV — K # 0. Suppose y € Y —(UUV) is a terminal point of Y. Then
U is contained in no continuum component of ¥ — V.

Proof. Let a € U and let A be a continuum joining a and y. Let
beV — A and let B be a continuum joining b and y. Then A C B since
be B— A and y is a terminal point in Y. Let ¢ € U — B. Now, let C be
any continuum joining ¢ and ¢. Then A U C' is a continuum joining ¢ and
y. So BC AUC. Since b € B— A C C, C meets the set V. Hence, a and ¢
are two points of U which lie in different continuum components of ¥ — V.

A continuum K is said to be a triod if K—L has at least three components
for some subcontinuum L of K. It is a well-known theorem of Moore (cf. [10])
that the 2-sphere does not contain an uncountable collection of pairwise
disjoint triods.

3.8. THEOREM. Let X C S? be such that each non-empty open subset of
X is of second category. Let R & X x X be an equivalence relation on X
such that each R-equivalence class is continuum connected, of first category
and dense in X. Then the union of external R-equivalence classes of X 1is
a first category F,-set in X.
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Proof. By Theorem 3.6 it suffices to prove that for each open, non-
empty set U in X and each R-equivalence class R(z) each continuum com-
ponent of R(z) — U has empty interior in R(x).

Just suppose there exist disjoint discs U and V each of which meets X
and there exists an R-equivalence class R(x) such that R(z)NV is contained
in a continuum component of R(z) —U. If y € X — R(x) then no continuum
K C R(y) — U separates some two points of X NV in S? — U; otherwise,
since R(x) is dense in X, the continuum K would separate some two points
of R(z)NV in §% — U and such two points would lie in different continuum
components of R(z)—U. Hence, by Lemma 3.3, for all but countably many
R-equivalence classes R(y), VN R(y) is contained in a continuum component
of R(y) — U.

Let X' = {y € X—U : R(y)NV is contained in the continuum component
of yin R(y) — U}. Let " = R|X’ x X’. Then each R’-equivalence class
is continuum connected, dense in V' N X’ and of first category in V N X’.
Also V N X’ is of second category, since V — X’ is contained in the sum of
countably many R-equivalence classes. Each R’-equivalence class is external
since it meets the boundary of the disc U which is disjoint from X’.

We shall show that in uncountably many R’-equivalence classes there
exist terminal points outside of V. If a € R'(y) N Bd(U) is not a terminal
point then there exist continua K and L contained in R'(y) such that K ¢ L,
L ¢ K anda € KNL. Let M be the interval joining the point a and the mid-
dle point in the radius of U beginning at the point a. The union K UL UM
is a triod. Such triods for different R’-equivalence classes are disjoint. Since
on the plane each family of disjoint triods is countable, for all but count-
ably many R’-equivalence classes, and in consequence for uncountably many
R’-equivalence classes R'(z), there exists a terminal point of R'(z) in Bd(U).

Observe that if K is a continuum in an R'-equivalence class R'(y) then
the interior of K in R/(y) is disjoint from V; otherwise, since R’'(y) is dense
in VN X', K and hence R'(y) would have interior in V' N X', which would
contradict the fact that each R’-equivalence class is dense in V' N X".

Taking X’ in place of X, V N X’ in place of P and R’ in place of R
we see, using Lemma 3.7, that the assumptions of Lemma 3.5 are satisfied.
Hence, the sum of R’-equivalence classes, i.e. the set X', is of first category,
which is a contradiction.
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