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Jan Ma l ý and Luděk Za j ı́ č e k (Praha)

Abstract. We investigate Jarńık’s points for a real function f defined in R, i.e. points
x for which lim apy→x |(f(y)− f(x))/(y − x)| = +∞. In 1970, Berman has proved that
the set Jf of all Jarńık’s points for a path f of the one-dimensional Brownian motion is
the whole R almost surely. We give a simple explicit construction of a continuous function
f with Jf = R. The main result of our paper says that for a typical continuous function
f on [0, 1] the set Jf is c-dense in [0, 1].

0. Introduction and notation. For an arbitrary real function f of a
real variable the set of points x where f ′ap(x) = +∞ is of measure zero, and
so is the set of x at which limy→x |(f(y)− f(x))/(y − x)| = +∞. Surpris-
ingly, the “natural joint generalization” of these facts does not hold. In fact,
Jarńık [4] has constructed a continuous function f such that
lim apy→x |(f(y)− f(x))/(y − x)| = +∞ for almost all x and a function
g of Baire class 2 such that lim apy→x |(g(y)− g(x))/(y − x)| = +∞ for
each x.

We shall say that x is a Jarńık point for f if

lim ap
y→x

∣∣∣∣f(y)− f(x)
y − x

∣∣∣∣ = +∞

and the set of all Jarńık points for f will be denoted by Jf . Almost forty
years after Jarńık’s article, in the theory of stochastic processes [1] (cf.
[2]) it was proved that almost every path of the one-dimensional Brownian
motion serves as an example of a continuous function such that Jf = R.
In the first section of our paper we construct a continuous function with
Jf = R as the sum of an explicitly defined trigonometric series. In fact,
our example is slightly stronger, since we show that instead of the difference
quotient |(f(y)− f(x))/(y − x)| it is possible to consider the quotient |f(y)−
f(x)|/ϕ(|y − x|), where ϕ is any prescribed increasing continuous function
on [0,+∞) with ϕ(0) = 0.
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The above fact that for a typical Brownian motion path f we have Jf =
R naturally motivates the following question: What can be said about Jf

for a typical continuous function in C([0, 1]) ? A result of the same article [4]
of Jarńık immediately gives that µJf = 0 for a typical function in C([0, 1]).
Theorem 2 of [10] implies an improvement of this fact: Jf is σ-porous (and
thus also a first category set) for a typical function in C([0, 1]). On the
other hand, the main result of the present paper contained in Section 3 says
that Jf is c-dense in [0, 1] for a typical function in C([0, 1]). The proof is
not easy, it is similar to Saks’ [7] proof of the fact that a typical function in
C([0, 1]) is not a Besicovitch function. It has, similarly to Saks’ proof, two
basic ingredients:

(a) The Banach–Mazur game method which was in fact essentially used
by Saks (cf. note on p. 103 of [9]).

(b) A basic lemma concerning general real functions.

Our basic lemma is proved in Section 2. We believe that it is also of
independent interest since it gives an alternative proof of Theorem 9.7 of [8]
which has a connection with the theory of the Denjoy integral.

In the following µ denotes the Lebesgue measure on the set R of all
real numbers. We denote by C the Banach space C([0, 1]) equipped with
the supremum norm. We say, as usual, that a typical function in C has a
property if the family of functions which do not have this property is a first
category set. If a 6= b are real numbers we denote by co(a, b) the convex hull
of {a, b}, i.e. co(a, b) = [a, b] if a < b and co(a, b) = [b, a] if b < a. Recall
that

Jf =
{
x : lim ap

y→x

∣∣∣∣f(y)− f(x)
y − x

∣∣∣∣ = ∞
}
.

1. A continuous function with Jf = R. Recall that the first proof
of the existence of such a function is probably contained in [1], where it is
shown that a typical Brownian path serves as an example.

For our simple explicit construction we need the folowing easy lemma.

Lemma 1. Let I be an interval of length p > 0, M ⊂ I and 0 < α < 1.
Suppose that ∣∣∣∣ sin

2πx
p

− sin
2πy
p

∣∣∣∣ ≤ α

for every x, y ∈M . Then

µ(M) ≤ 3p
π

arc cos(1− α) .
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P r o o f. Let J be an interval of the form [kp/4 , (k + 1)p/4], where k is
an integer. Then clearly

µ(M ∩ J) ≤ p

2π
µ{x ∈ [0, π/2] : sinx ≥ 1− α} =

p

2π
arc cos(1− α) .

Since I is contained in a union of 6 intervals of this type, we conclude that

µ(M) ≤ 6
p

2π
arc cos(1− α) .

Theorem 1. Let ϕ : [0,∞) → [0,∞) be an increasing continuous func-
tion with ϕ(0) = 0. Then there exists a continuous function f on R such
that

(1) lim ap
y→x

|f(y)− f(x)|
ϕ(|y − x|)

= ∞ for each x ∈ R .

P r o o f. Put ψ =
√
ϕ. It is easy to see that if

(2) each z ∈ R is a density point for the set {x : |f(x)−f(z)| > ψ(|x−z|)},

then (1) holds. Now find a sequence (an)∞n=1 such that an > 0 and

(3)
∞∑

j=n+1

aj ≤
an

2n
for each natural n .

Further, define inductively a sequence (pn)∞n=1 such that pn > 0,

2ψ((n− 1)pn−1) ≤
an

n
for n = 2, 3, . . . ,(4)

2πpn

n−1∑
i=1

ai

pi
≤ an

n
for n = 2, 3, . . . ,(5)

npn ↘ 0 .(6)

We shall prove that the function

f(x) =
∞∑

n=1

an sin
2πx
pn

satisfies (2). Of course, (3) implies that f is continuous on R. Now write
fn(x) = an sin(2πx/pn), sn(x) =

∑n
j=1 fj(x), rn(x) =

∑∞
j=n+1 fj(x) and

consider an arbitrary z ∈ R. We want to show that z is a dispersion point
for the set S := {x : |f(x) − f(z)| ≤ ψ(|x − z|)}. To this end choose an
arbitrary 0 < h < p1. By (6) there is a unique natural n = n(h) ≥ 2 such
that npn < h ≤ (n− 1)pn−1. First we shall prove that

(7) µ(I ∩ S)/µ(I) ≤ arc cos(1− 3/n) for each interval I ⊂ (z − h, z + h)
of length pn.
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To prove (7), consider arbitrary points x, y ∈ I ∩ S. Using the definition of
S and (4) we have

|f(x)− f(y)| ≤ |f(x)− f(z)|+ |f(y)− f(z)|(8)
≤ ψ(|x− z|) + ψ(|y − z|)
≤ 2ψ((n− 1)pn−1) ≤ an/n .

Using (5), we obtain

|sn−1(x)− sn−1(y)| ≤ |x− y| sup
t∈R

|(sn−1)′(t)|

≤ 2π|x− y|
n−1∑
i=1

ai

pi
≤ 2πpn

n−1∑
i=1

ai

pi
≤ an

n
.

Further, (3) gives

|rn(x)− rn(y)| ≤ 2
∞∑

j=n+1

aj ≤
an

n
.

Since fn = f − rn − sn−1, we have∣∣∣∣ sin
2πx
pn

− sin
2πy
pn

∣∣∣∣ =
1
an
|fn(x)− fn(y)|

≤ 1
an

(|f(x)− f(y)|+ |sn−1(x)− sn−1(y)|+ |rn(x)− rn(y)|) ≤ 3
n
.

Thus by Lemma 1,

µ(I ∩ S) ≤ 3pn

π
arc cos(1− 3/n) ,

which gives (7). Since limh→0+ n(h) = +∞ and npn < h, it is clear that (7)
implies

lim
h→0+

µ(S ∩ (z − h, z + h))
2h

= 0 ,

which completes the proof.

R e m a r k 1. If we put

an = 1/(n!)2 and pn = 1/((n+ 2)!)5 ,

then the conditions (3)–(6) are satisfied for ϕ(t) = t. Consequently, the sum
of the trigonometric series

f(x) =
∞∑

n=1

1
(n!)2

sin(2π((n+ 2)!)5x)

is a continuous function with Jf = R.
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2. The basic lemma. In Section 3 we shall need Corollary 1 below
which estimates the increment of a continuous function on an interval. But
we shall start with a more general Lemma 2 which estimates a measure
of an image of a set and deals with general measurable functions. The
reason is that Lemma 2 is closely connected with a result of [8] concerning
the condition (D) for functions, and consequently may be of independent
interest.

Lemma 2. Let f be a measurable function defined on a closed interval
I ⊂ R, let M ⊂ I be a measurable set , K > 0 and p > 0. Suppose that for
each x ∈M there exists a closed interval Ix, x ∈ Ix ⊂ I, such that

(9) µ

{
y ∈ Ix :

∣∣∣∣f(y)− f(x)
y − x

∣∣∣∣ < K

}
≥ pµIx .

Then

µ∗f(M) ≤ 4K
p
µI .

P r o o f. For each x ∈M choose an interval Ix as above and set

Jx = (f(x)−KµIx, f(x) +KµIx) .

We may assume that µ∗f(M) > 0. Choose β ∈ (0, µ∗f(M)). Find a
compact set E ⊂

⋃
x∈M Jx such that µE > β and a finite set F ⊂ M such

that the subfamily (Jx)x∈F still covers E. By an easy covering argument
(see e.g. Lemma 2 of [3]) we can find a set T ⊂ F such that the system
(Jx)x∈T is pairwise disjoint and∑

x∈T

µJx = µ
( ⋃

x∈T

Jx
)
≥ 1

2
β .

On the other hand, µJx = 2KµIx and by (9), µf−1(Jx) ≥ pµIx. Thus

µI ≥
∑
x∈T

µf−1(Jx) ≥ pβ

4K
.

Letting β → µ∗f(M) we obtain the desired inequality.

R e m a r k 2. Suppose that the assumption of Lemma 2 is strengthened
in the following sense: for each x ∈M and δ > 0 there exists an interval Ix

(depending also on δ), x ∈ Ix ⊂ I ∩ (x− δ, x+ δ), for which (9) holds. Then
we can assert that

(10) µ∗f(M) ≤ 4K
p
µM .

In fact, it is sufficient for each ε > 0 to cover M by a pairwise disjoint count-
able family of closed intervals (Hα)α∈A such that Hα ⊂ I and µ(

⋃
α∈AHα)

< µM + ε and use Lemma 2 on each Hα. This gives a quite different proof
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of Theorem 9.7 of Saks [8] (for measurable functions). Finally, note that
under this strengthened assumption the inequality (10) can be improved to
µ∗f(M) ≤ (2K/p)µM (cf. Lemma 9.2 of [8]). We can obtain an indepen-
dent proof repeating the arguments of the proof of Lemma 2 and using the
Vitali covering theorem.

In the sequel we shall need the following immediate corollary of Lemma 2.
In fact, in our application B = ∅, but we prefer a more general formulation
since we believe it is of some independent interest.

Corollary 1. Let f be a continuous function on a closed interval [a, b]
and let c > 0, p > 0 and a countable set B ⊂ [a, b] be given. Suppose that
for each z ∈ [a, b] \B there exists x ∈ [a, b] \ {z} such that

µ{y ∈ co(x, z) : |f(y)− f(z)| < 1
4cp|y − z|} ≥ p|x− z| .

Then f(b)− f(a) ≤ c(b− a).

3. Jarńık’s points for typical continuous functions. The following
lemma is an easy consequence of Corollary 1.

Lemma 3. Let f be a continuous function on a closed interval [a, b] and
let p > 0, τ > 0 and a countable set B ⊂ [a, b] be given. Suppose that
|f(b) − f(a)| ≥ τ |b − a|. Then there exists z ∈ [a, b] \ B such that for each
x ∈ [a, b], x 6= z, we have

µ{y ∈ co(x, z) : |f(y)− f(z)| < 1
6τp|x− z|} < p|x− z| .

The following lemma has a quite easy proof which is omitted.

Lemma 4. Let f be a measurable real function, z ∈ R, and let an ↗ z,
bn ↘ z be such that for all n ∈ N

µ

{
y ∈ co(x, z) :

∣∣∣∣f(y)− f(z)
y − z

∣∣∣∣ < n

}
≤ 1
n
|x− z| ,

whenever x ∈ [an, an+1] or x ∈ [bn+1, bn]. Then

lim ap
y→z

∣∣∣∣f(y)− f(z)
y − z

∣∣∣∣ = +∞.

Lemma 5. Let f , g be continuous functions on an interval [c−3ξ, c+3ξ],
ξ > 0, and let m ≥ 2 be a real number. Suppose that

f ′(x) = 3(m− 1) if ξ < |x− c| < 3ξ ,

f ′(x) = 300m2 if |x− c| < ξ
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and ‖g − f‖ ≤ ξ. Then there is z ∈ [c − ξ, c + ξ] such that for each x ∈
[c− 3ξ, c+ 3ξ] we have

µ{y ∈ co(x, z) : |g(y)− g(z)| ≤ 4m|y − z|} ≤ |x− z|
4m

.

P r o o f. We have

f(c+ 3ξ)− f(c− 3ξ) ≥ 2ξ(300m2 + 6) ,

and thus
g(c+ 3ξ)− g(c− 3ξ) ≥ 600m2ξ + 12ξ − 2ξ > 600m2ξ

> 96m2µ((c− 3ξ, c+ 3ξ)) .

By Lemma 3 there is z ∈ [c−3ξ, c+3ξ] such that for each x ∈ [c−3ξ, c+3ξ]
we have

µ

{
y ∈ co(x, z) : |g(y)− g(z)| ≤ 96m2

6 · 4m
|y − z|

}
≤ |x− z|

4m
.

It remains to show that |z − c| ≤ ξ. Assume the contrary, e.g. that z ∈
(c+ ξ, c+ 3ξ] (the case z ∈ [c− 3ξ, c− ξ) is symmetrical). We can obviously
find an interval L ⊂ [c + ξ, c + 3ξ] of length 1

2ξ, e.g. one of the intervals of
the form

[c+ kξ/2, c+ (k + 1)ξ/2] , k ∈ {2, 3, 4, 5} ,
such that dist(z, L) > 1

2ξ. If y ∈ L, then

|g(y)− g(z)| ≤ |f(y)− f(z)|+ 2ξ ≤ 3(m− 1)|y − z|+ 4|y − z|
≤ 4m|y − z| .

Let x be the endpoint of L for which L ⊂ co(x, z). Then

µ{y ∈ co(x, z) : |g(y)− g(z)| ≤ 4m|y − z|} ≥ µL >
|x− z|

4m
.

This is a contradiction which shows that |z − c| ≤ ξ.

One of the main tools of the present paper is the Banach–Mazur game
(see [5], [6]). It is the following infinite game between two players.

Let P be a metric space and Q ⊂ P a subset. In the first step the first
player chooses an open ball B(g1, δ1). In the second step the second player
chooses an open ball B(f1, ε1) ⊂ B(g1, δ1), in the third step the first player
chooses an open ball B(g2, δ2) ⊂ B(f1, ε1), and so on. If

⋂∞
i=1B(fi, εi) ⊂ Q,

then the second player wins. In the opposite case the first player wins. We
need the following theorem, essentially due to Banach.

Theorem BM. The second player has a winning strategy in the Banach–
Mazur game iff Q is a residual subset of P .
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This theorem is proved in [6] in the case P = (0, 1); the proof in the
general situation ([5]) is essentially the same.

Theorem 2. For a typical f ∈ C, the set Jf of points x for which

lim ap
y→x

∣∣∣∣f(y)− f(x)
y − x

∣∣∣∣ = +∞

is c-dense in (0, 1).

P r o o f. Obviously it is sufficient to prove that for each fixed interval
(a, b) ⊂ (0, 1) with rational endpoints the set Jf ∩ (a, b) has cardinality c for
a typical f ∈ C. Put Q = {f : card(Jf ∩ (a, b)) = c}. By Theorem BM it
is sufficient to find a winning strategy for the second player in the Banach–
Mazur game for P = C and Q. We shall describe such a strategy. Put
Sn = {0, 1}n and S = {0, 1}N , where N is the set of all natural numbers.
By our strategy the second player will construct in his nth move not only
the functions fn ∈ C and εn > 0, but also 2n points (zs)s∈Sn

such that
the following conditions hold (where we have put Is = [zs − 3εn, zs + 3εn],
Ls = [zs − 2εn, zs + 2εn], qn = 300(n+ 1)2):

(11) B(fn, εn) ⊂ B(gn, δn),

(12) {Is : s ∈ Sn} are pairwise disjoint subintervals of (a, b),

(13) for each s ∈ Sn, f ′n(x) = 3n if εn < |x− zs| < 3εn and f ′n(x) = qn if
|x− zs| < εn;

if n ≥ 2, then for any t = (s1, . . . , sn) ∈ Sn and s = (s1, . . . , sn−1),

(14) It ⊂ Ls,

(15) for each z ∈ Lt, x ∈ Is\It and f ∈ B(fn, εn) we have

µ{y ∈ co(x, z) : |f(y)− f(z)| ≤ n|y − z|} ≤ 1
n
|x− z| .

If we show that the second player can play according to this strategy in all
moves, we will be over. In fact, (14) and (11) imply that

⋂∞
n=1B(fn, εn)

consists of a single function f and, for each s = (s1, s2, . . .) ∈ S, the set⋂∞
n=1 I(s1,...,sn) consists of one point zs ∈ (a, b). Lemma 4 (putting [an, bn] =

I(s1,...,sn)), (15) and (14) easily imply that zs ∈ Jf . Since (12) implies that
zs1 6= zs2 for s1 6= s2, we have f ∈ Q. Thus suppose that a natural number
m is fixed, the second player has played m − 1 moves and the first player
has played m moves such that the conditions (11)–(15) hold for each n < m.
We know further for m > 1 that B(gm, δm) ⊂ B(fm−1, εm−1). Our task is
to construct fm, εm and {zs}s∈Sm

such that (11)–(15) hold for n = m.
If m = 1, then (14) and (15) are trivially satisfied for n = m and the

construction of f1, ε1, z(0) and z(1) such that (11)–(13) are satisfied for n = 1
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is quite easy. Assume m > 1. By Lemma 5, for every s ∈ Sm−1 there is
cs ∈ [zs − εm−1, zs + εm−1] such that for each x ∈ Is we have

(16) µ{y ∈ co(x, cs) : |gm(y)− gm(cs)| ≤ 4m|y − cs|} ≤
|x− cs|

4m
.

Find εm > 0 such that

(17) (4mqm + 7)qmεm < 1
4δm,

(18) for every x, z ∈ [0, 1], if |x − z| ≤ (4mqm + 7)εm, then |gm(x) −
gm(z)| < 1

4δm.

Define

Es = [cs − (4mqm + 7)εm, cs + (4mqm + 7)εm] .

Observe that δm ≤ εm and therefore by (17) we have Es ⊂ Ls. We define
fm(x) = gm(x) if x ∈ [0, 1] \

⋃
s∈Sn−1

Es. If s ∈ Sm−1, then we define fm on
Es by the following conditions:

(19) f is linear on [cs − (4mqm + 7)εm, cs − (4mqm + 6)εm] and on [cs +
(4mqm + 6)εm, cs + (4mqm + 7)εm],

(20) fm(x) = gm(x) if x ∈ {cs, cs − (4mqm + 7)εm, cs + (4mqm + 7)εm},

f ′m(x) = qm if 3εm < |x− cs| < 5εm ,(21)
f ′m(x) = 3m if either |x− cs| < 3εm

or 5εm < |x− cs| < (4mqm + 6)εm .

If t = (s1, . . . , sm) ∈ Sm and s = (s1, . . . , sm−1), we set

zt =
{
cs + 4εm if sm = 1 ,
cs − 4εm if sm = 0 .

We want to prove (11)–(15) for n = m. Since the graphs of gm|Es

and consequently also of fm|Es
lie by (17)–(21) obviously in the rectangle

Es×[g(cs)− 1
4 δm, g(cs)+

1
4δm] the property (11) holds. Recall that Es ⊂ Ls

for each s ∈ Sm−1 and thus (12) and (14) are proved. The property (13)
follows from (21).

It remains to prove (15). Fix t = (s1, . . . , sm) ∈ Sm and set s =
(s1, . . . , sm−1). Write

Ms = {y ∈ Is : |gm(y)− gm(cs)| ≤ 4m|y − cs|} ,
Ts = {x ∈ [0, 1] : (4mqm + 6)εm < |x− cs| < (4mqm + 7)εm} .

Suppose that z ∈ Lt, x ∈ Is \ It and f is a continuous function on [0, 1] with
‖f − fm‖ < εm. Define

Z = {y ∈ co(x, z) : |f(y)− f(z)| ≤ m|y − z|} .
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We want to obtain

(22) µZ ≤ 1
m
|x− z| .

First consider y such that |y− z| > εm/m and |y− cs| ≤ (4mqm + 6)εm.
Notice that the slope of fm between y and z is estimated from below by 3m.
Hence

|f(y)− f(z)| ≥ |fm(y)− fm(z)| − 2εm

> 3m|y − z| − 2m|y − z| = m|y − z| .
Consequently y /∈ Z.

Further, consider y ∈ Is \ (Ms ∪ Es). Then we have

|y − z| ≥ |y − cs| − |z − cs| ≥ (4mqm + 7)εm − 6εm > 4mqmεm

and
|fm(z)− fm(cs)| ≤ 6εmqm ≤ 4mqmεm < |y − z|.

Since gm(y) = fm(y) and gm(cs) = fm(cs) we obtain

|f(y)− f(z)| ≥ |fm(y)− fm(z)| − 2εm

≥ |gm(y)− gm(cs)| − |fm(cs)− fm(z)| − 2εm

≥ |gm(y)− gm(cs)| − |y − z| − |y − z| .
Using y /∈Ms, we further obtain

|gm(y)− gm(cs)| > 4m|y − cs| ≥ 4m|y − z| − 4m|z − cs|
≥ 4m|y − z| − 24mεm > 4m|y − z| − |y − z|

and consequently

|f(y)− f(z)| > 4m|y − z| − 3|y − z| > m|y − z| .
Thus y /∈ Z. To prove (22), we distinguish two cases.

(i) If |x− cs| < (4mqm + 6)εm, then we have proved that either Z ⊂
[z − εm/m, z] or Z ⊂ [z, z + εm/m]. Consequently,

µZ ≤ εm/m ≤ |x− z|/m .

(ii) If |x− cs| ≥ (4mqm + 6)εm, then |x− z| ≥ 4mqmεm and we have
proved that

Z ⊂ ([z − εm/m, z + εm/m] ∪ Ts ∪Ms) ∩ co(x, z)
⊂ [z − εm/m, z + εm/m] ∪ Ts ∪ co(cs, z) ∪ (Ms ∩ co(x, cs)) .

Using (16) we have

µZ ≤ 2εm

m
+ 2εm + 6εm +

|x− cs|
4m

≤ 10εm +
|x− z|

4m
+

6εm

4m
≤ |x− z|

m
.



Approximate differentiation: Jarńık points 97
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