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Automorphisms with finite exact uniform rank
by
MIECZYSLAW K. MENTZEN (Torus)

Abstract. The notion of exact uniform rank, BUR, of an automorphism of a probability
Lebesgue space is defined, It is shown that each ergodic automorphism with finite EUR is a finite
extension of some automorphism with rational diserete spectrum, Moreover, for antomorphisms
with finite EUR, the upper bounds of BUR of their factors and ergodic iterations are computed.

Introduction. Automorphisms with finite rank have been studied in [8], [5],
[3], {4] and in other papers. They have zero entropy and enjoy the loosely
Bernoulli property. If T'is an ergodic automorphism of a Lebesgue space X,
then the definition of the rank of T, R(T), uses a sequence of Rokhlin’s towers,
converging to the whole g-algebra of measurable subsets of X. Adding some
extra conditions on the sequence of towers, some authors define the uniform
rank of T, UR(T), and the exact rank of T, ER(T). Joining the two definitions
we will obtain the notion of exact uniform rank of T, EUR(T). One can prove
that if We{R, UR, ER}, then the following statements hold:

(i) W(S) < W(T) whenever § is a factor of T.

(i) W(T™ < in|-W(T) whenever T" is ergodic.
In this paper we will show that for W= EUR, the statement (i) is valid
{(Theorem 1), but (if) fails to be true (Example): we will construct an
automorphism T with EUR(T) = 3 and EUR(T?) = 9. However, we will prove
that EUR(T™) < EUR(T)" whenever T" is ergodic (Theorem 3). It can be
proved that automorphisms with finite exact rank can not be mixing while
there are mixing automorphisms with arbitrary finite uniform rank ([5]). We
will show that each ergodic automorphism with finite exact uniform rank is
a finite extension of some automorphism with rational discrete spectrum
(Theorem 2). In particular, such an automorphism can not be even weakly
mixing. .

Definitions and notations. Let X be a Lebesgue space with a probability
measure p defined on a c-algebra # of measurable subsets of X. In what
follows all equations will be understood modulo null sets.

By a finite semipartition of X we mean any finite family P = (Pgs oo Puv)
of measurable pairwise disjoint subsets of X. Note that in particular P; # P;
whenever i # J.
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14 M. K. Mcntzen

By a finite partition of X we mean each finite semipartition P of X satisfying
Up=X.

1f no confusion can arise we will shorten “finite semipartition™ and “finite
partition” to semipartition and partition respectively. The members of a semipas-
tition are called atoms.

If P, @ are semipartitions then P is called finer than Q, P > Q, if each atom
of Q is a union of some atoms of P. If {P": ve ¥V} is a family of partitions of
X then there exists a unique partition P {possibly infinite) of X satisfying the
following properties (see [10]):

{(a) For each veV, P > P

(b) If Q is another partition satisfying (a) then Q >
The partition P will be denoted by \/uer PP If the family {P"’ ve I} is finite,
{P": eV} ={P!, .. , then we write \/,P" = /1, PP =P v .. v P

Given a semipartition P we say that a measurable set F is measumble with
respect to P, or shortly P-measurable, if B is a union of some atoms of B, [f P is
a partition, then B is P-measurable iff P > (B, X\ B). We say ihat a sequence
P n=1,2,..., of semipartitions converges to &, P"— &, 1f for each measura-
ble set A and for each ¢ > 0 there is a natural number ny such that for all
n>n, we can find a Pmeasurable set B, satislying u(4A A B) <e¢ ([8])

Now assume that T is a measure-theoretic automorphism of the Lebesgue
space (X, #, w); this means that T is an invertible map and T and T7!
preserve the measure . A semipartition B = (P, ..., P,..(} is called a stack for
T or jus.t a stack if P;., = TP,,i=0,...,n—2. The number n and the sct P,
are called the height and the base of P respectively. Atoms of a stack P are
called the levels of P.

After [8] we say that an automorphism T has rank af most v, R(T) < v, if
there exists a sequence P¥, n 2z 1, of semipartitions of X such that

R1  Each P" consists of r pairwise digjoint stacks.
R2 P4

An automorphism T has rank r, R(T)=r, if r is the smallest number
satisfying R(T) < r. If there exists a number r such that R(T) = r then T is
called an automorphism with finite rank.

If the sequence P, n=1,2, ..., satisfies R1, R2 and
Ul Foreachn=1,2,....,h =,

of the stacks in P",

then we say that T has uniform rank at most v, UR(T) < r.

Now assume that the sequence P*, n=1, 2, ..., satisfies R1, R2 and

El  Each P", n=1,2,...,is a partition.
E2 There exists §>0 such that Ru(FY)=45 for each n,i, where
P = {TFli=1,..,r k=0,..., K-1}.

Then we say that T has exact rank at most r, ER{T) € r

.=k, where !, ..., i denote the heights
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We say that T has exact uniform rank at most r, EUR(T) <
exists a sequence P*, n =1, 2, ..., of semipartitions of X satisfying R1, R2, Ul
and El. Obviously, EUR(T)<r implies UR(T)<r Observe that if
(F, TF,...,T""'F) and (G, TG,..., T""'G) are disjoint stacks, then the
family (FUG), T(FUG),...,T""HFUG) is a stack as well. Therefore
EUR(T)<r imples ER(T)<r WNote that the reclations UR(T)=r,
EUR(T)=r arc defined analogously to R(T)}=r.

From now on we assume that T is ergodic. For natural pumbers i and
r denote by H®(T) the family of all partitions of X consisting of r pairwise
disjoint stacks each of height h:

PeHNT) if P=(F, .., T"'F,F,,.
and | JP=X.

r, if there

L THUF, L F, . T F)

For such a2 P we define PeH”(T) setting P = (F, TF, ..., T" ' F) where
F=F,u...uF, The partition P is invariant with 1espect to T: TP = P.

Now we can rewriie the definition of exact uniform rank: EUR(T) < r iff
there exist a sequence of natural numbers i(n), n=1, 2, ..., and a sequence
Pre HM(T), n=1,2,...,such that P"— 4.

Let I2(X, ;) denote the Hilbert space of ali complex square integrable
functions on X. Denote by U the unitary operator on L2(X, p) defined by
U {f)=foT We say that T has discrete spectrum if the set of all eigenfunc-
tions of U, is lineurly dense in [*(X, u). T has rational discrete spectrum if
T has discrete spectrum and each eigenvalue of U, is of the form exp(2nip/q),
P, ¢ integers. Automorphisms with discrete spectra are canonical (see [7]): if
T has discrete spectrum and T X'— X’ is isomorphic to T then for each
ergodic T: X — X such that T and T’ :Lre factors of T via maps f and f
respectively, {f7'(x): xeX}={f""'(x): x¥'€X’} as measurable partitions
(p0331b1y infinite) of X. If T is a factor of an ergodic T2 X =X via a map [ and

= card { f "1 (x)} < co then we call T a finite extension of T, or more precisely,
a c-extension of T. In this case if T has discrete spectrum then by the
canonicality property the number ¢ does not depend on T in the class of all
automorphisms isomorphic to T. Observe that if T' admits a T-invariant
partition of cardinality h then exp(2ni/h) is an eigenvalue of U,. Therefore if
P e HMNT), n=1,2,..., then the group {exp(2mit/h(n)): t=1,2, ...,
n=1, 2} is a subgroup of the group of all eigenvalues of Uy.

Resolts. Let T: (X, 4, p)—(X, #, u) be ergodic.

THEOREM 1. If T has finite exact uniform rank and § is a factor of T then
8 has finite exact uniform rank and EUR(S) < EUR(T).

Tueorem 2. If EUR(T) < oo then there exists a factor T, of T with rational
discrete spectrum such that T is a c-extension of T, where ¢ < EUR(T).

From the above two theorems we have
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- COROLLARY 1. If EUR(T) < o then each eigenvalue of Uy is rational.

Indeed, if A = exp{2mix), where o is an irrational number, is an eigenvalue of
U,, then the automorphism §: §' = {z: z complex, |z| = 1} —S"' given by
S(z) = Az is a factor of T. By Theorem 1, EUR(S) € EUR(T) < 0. By
Theorem 2, S has a factor S, with rational discrete spectrum such that § is
a c-extension of S,, where ¢ < EUR(S) < oo. But § has no rational eigenvalues
different from 1. This is a contradiction.

COROLLARY 2. EUR(T) = 1 if and only if T has rational discrete spectrum.

TurorEM 3. If EUR(T) < cv then for each nonzero integer n, EUR(T")
< EUR(T)" whenever T" is ergodic.

Proofs. We start with some definitions to obtain a characterization of the
finite exact uniform rank property in the language of the names of points
(Lemma 1).

If ¢ is a natural number then we will dencte by N, the set {0, 1,...,t—1}.
We will call blocks the elements of the set N} = | J,»Ni. If B is a block,
B=byb,...by—y, then for 0<p<g<n—1 we define B[p, gl =48,...b,
B[p] = B[p, p]. If B, Ce N? then we define d(B, C) = n""card{0 < k < nwl
B{k] = C[k]}. Then d is a metric on N7 (usually wrltten d).

Let r and k be natural numbers. Assume that B,, ..., B, are blocks, B/e N¥,
i=1,...,r. For natural » we define '

A"By, ..., B) = {BeN™: B[kh, (k+1)h—11{B,, ..., B}, k=0, ...,n—1},

If T is an ergodic automorphism of a Lebesgue space (X, #, ) and
P=(P,, ..., P,—y) is a partition of X, then for xe X and for natural n we
define a block NI (x, P)e N7 setting

Ni(x,P)[k]=j iff T*xeP;, k=0,1,...,n~1.
We call this block the (P, T)-n name of x. For xeX we also define

dp(x, A"(By, ..., B) = min{d(N%(x, P), B): BeA"(B,, ..., B)}.
If ¢ >0 then let
E{((P, T),(By,.... B)) = {xe X: dy(x, 4"(B,, ..., B)) < ¢},
Eam((P: 1), (Bl: teey Br)) = U m Ei((P: T), (B]:v ceey Br))
w=1 k=n
. If P and Q are partitions of X, P=(P,, ..., Pyy), Q= (Qy, ..., Cu. 1)
then we define the distance d between P and Q by
n=1
d(P, Q) = min{ } u(P; A Qo) ses,}
=0
where S, _de'l;otes the group of all permutations of N,. If R-= (Ry, ..., Ry 1)
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with n < m then we define
D(P, R) = min{d(P, R): R <R, card(R) = n}.

Now assume that T is an ergodic automorphism of a Lebesgue space
(X, 42, n.

Lemua 1. EUR(T) < r if and only if for each & > 0 and for any partition
Q=(Q¢s.... Qi-1) of X there are a natural number h, blocks By, ..., B,e N*
and a partition Re H;(T), R=(Ry, ..., Ry-1), such that Ry <= E%((Q, T),
By, ... B)

Proof. Assume that EUR(T)<r, Take ¢> 0. Let Q =(Qg, ..., @,—1) be
a partition of X, Put § = ¢/2. Then for some h there is a partition P e H!(T)
such that D(Q,P) < §. Let P = (P, ..., P,_,) be a partition of X such that
P < P and d(Q, P) = D(Q, P). Observe that if B is a base of some stack in the
partition P then almost all points in B have the same (P, T)-h names. Let
B; = Nf(x, P) for x from the base of the ith stack of P.

o

If d(Q, P)= = o,u(QiAP) then 4 =Y123Q, AP, Obyviously u(4) < é.
Let R=P = (P, ..., P,_,). By the Birkhoff Ergodlc Theorem,
lm 1
=3 70T ' (x) < 25
mi=%

for ae. xeP, and for m large enough (m 3> N,). Therefore d(NZL(x, P),
Na(x, Q) <28 for m>N,. Observe that NJ(x,P)ed"(B,...,B,) for
xeRy=P, and n3x= 1. Therefore do(x, A"(By, ..., B)) <26 =¢ for xeR,
whenever nh # N,. This implies x€ E5,((Q, T), (B, ..., B)) and the “if” part
of the proof is complete.

Assume now that ¢ > 0 and Q = (Q,, ..., @;—,) is a partition of X. We will
construct a partition P e H*(T) satisfying D(Q, P) < e, where A is given by the
assumptions of our lemma for ¢ and Q. Let F,, ..., F, be disjoint sets given by

F,={xeRy dy(x, AMB,, ..., B)) =d(Ni(x,Q), B) and x¢F, .. . UF,_,},
i=1,...,r.
Then F,u...uF, = R, and consequently | Ji-,{JiZ§ T*F,= X. Obviously

the sets T*F, k=0, ..., h—1,i=1, ..., r, are pairwise disjoint. Thus we have

defined a partition P = {T*F;: k=0,...,h—1,i=1,...,r}e H(T). We in-
tend to show that D(P, Q) <e.

If xeF,; then for »n large enough and for some sequence i, ..., i,
(*) d( nh( X, Q) B BizB!J Bin) < &.

Indeed, since F; = Ry = E5,(Q, T), (B, ..., B)). d(Nk(x, Q), B, B,,...B,) < ¢

for nlarge enough and for some sequence i, iy, ..., i,. By the definition of F,,
d{N%(x, Q), B,B,,... B, ) < d(N&(x, Q), B,B,,...B,). This forces () to be
true, .

2 — Studin Mathematica 100.1
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We detme a partition P <P, P =(P,, ..., P,-,), seiting
TR, P, i BkI=j.
Let xe F,. Fix n. Let U, = N 4(x, Q) W, = Niy(x, P). Then W, = BB, ... B,

for some sequence iy, .-., By the definition of the sets F, j = l . 7, the
inequality (x) is true for ig_, ey b By (%), d(U,, W) <& Let A = (P AQ).
Then

N1

pid) = fim ~ 3 7,0T"59 < limsupd(U,, W) < s,
N0 N k=0 n

which completes the proof.

Assume that EUR(T) <r and By, ..., B,, Ry, h are given by Lemma 1 for
a fixed partition Q and & > 0. For xeR, and for n large enough define

M,(x) = {DeA"(B,, ..., B): d(D, Nj(x, Q) <&}
From Lemma 1 and from the Birkhofl Ergodic Theorem we have
LemmMa 2. There are numbers ., ..., o, [0, 1] such that for almost all xe R,
and for n large enough (n > n,) there exists a D,e M, (x) satisfying
In~tcard{0 <t <n—1: D,[th, (t+ Nh—1] = B} —~o| < &.

Proof. We define F,, ..., F, in the same way as in the proof of Lemma 1.
Let o, = hu(F), i=1,...,r. Take xcR,. Let D be an infinite sequence of
symbols from N, given by

D[th, t+1)h—1] =B, iff T*eF,i=0,1,.
Then for n large enough

d(NZ,(x, Q), D[0, nh—1]) = dg{x, A"(By, ..., B)) < ¢

since xeR, < E5((Q, T), (B, ..., B)).
From the Birkhoff Ergodic Theorem

p"leard{0 <t g n—1: TPxeF}—ul <e
for n > n,. Therefore
|n~*card{0 <t < n—1: Dth, ¢+ 1)h—1] = B} —q
él.n'lcard{OQtsn%—l: D[th, {t+1)h~1]= B}
—nleard{0 <t gn—1: T"xeF}|
+in teard{0 <t g n—1: ThxeF}—o <s,

which completes the proof.
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Proof of Theorem 1. Let §: (Y, o/, m)—(Y, o, m) be a factor of T. Let
J: X—Y be a measurable map satisfying pof *=m and foT =Sof.
Assume that EUR(T)=r <. Let Q=(Q,,..., Q;—1) be aun arbitrary
partition of ¥. Set Q =/ Q) = (f "*@o). .../ " Qi-1) = pr ..s Gros)
Then Q is a partition of X and for each xe X and for each n the (Q, T)-n name
of x is equal to the (Q, S)-n name of f(x). Take & > 0. By Lemma 1, there are
blocks By, ..., B, of symbols from N,, all of the same length, say h, and
a partition R=(R,,..., R,~1)eH{(T) such that R,c E¥2**D((Q, T),
(B,,..., B). Then f (R)EH (8) where & divides 2. Let h = sh. We divide each
block By, i =1, ..., r, into s segments of length k. Let C3, ..., C%, C}, ..., C2t
be the obtained blocks, this meaning that B,=C?C}...Ci™%, i=1,...,r
Then

f(Ry) « EZCTD((Q, 5), (€3, ..., C:71).

We will prove that there exists a z, 0 <t < 51, such that
(1) F(Rg) = ES((Q, 8), (€1, ..., CY).

Assume that oy, ..., «, are the numbers from Lemma 2 for §, e/2(r+ 1), &,
Ry. By, ..., B,. Let

&) = min{d(CH, C): j=1,...,r} i=1,..,r kt=0,...,5—1,

where k+t is taken modulo s.

Take x,€R,. Since f(T ¥ Rg) = f(R,) for each k=0, ..., s—1, there are
Xy, ..., X—1 ERg such that f(x) = f{T"xg), k=0,...,5—1, Obviously the
Q-names of x, are equal to the Q—names of T¥(x,), k = O .s—1.Fornlarge
enough and for each k=0, ...,5—1 we can find a block D"eA"(Bl, .o B}
such that
(2 d(D¥, N5, (%, Q) < e/2(r+1).

Denote by f¥n the number of occurrences of the block B, in Dhi=1,..., ¥,
k=10,..., s—1. By Lemma 2 we can assume that |f¥—oa,| < &/2(r+1) (we can
find a common &, for all x from a set 4; = R, with u(4;) > 1/h—§ for
arbitrary é > 0). By (2), for k=0, ...,s—1,

S db pen

(=0 i=1i
—— 20r+1.
" < gf2(r+1)

This imphes
1 s—1 s—1

A ¥ di( (6) ) < sef2(r+1).

S =0 k=0 i=1

Thus there exists a ¢ such that
s—=1 r

Y ¥ OBk < sef2(r+1)

k=0 i=1
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or
ls L or
I &) < 20+ 1)
k=0 i=

Since |pE—o) < &/2(r+1),

Z Z d¥( t)ﬁ"—-kzo 2 df (1)

8 k=0 i=

s—=1 r
lz Y dF OB —o! < raf2(r+1).

S k=0 i=1

Therefore

(3)

5 3

k=0 i=]

(B, < /2.

szlv—l

Now we are in a position to prove (1) for ¢ described - above.
Let g: {0,...,5—1}x{1,...,r}=-»{L, ..., r} be a function satisfying

df(t) = d(CF, Chi).

Take yef(R,). Then for n large enough there is a block D, e A"(B,, ..
such that

. B)

d(No(y, Q), D) < 8/2(r+1).
We define a block DeA™(CY, ..., C!) in the following way:
If - D,[mh+(k+6)h, mh+(k+t+Dh—1] = CEF!,
then D{mh+{k+t)h, mh+E+t+1DA~1] = Cly
where k+t and k+¢+1 are taken modulo s. Then
@) d(N5a0, Q) D) < d(N%i(y, Q), D) +d(D, D) < §/2(r+ 1)+d(D, D,)
By the définition of D we have
kz i di (t)yy,nh { s=1
Q0 i=

e =1 T T

5 pwp im1

where p;n is just the number of occurrences of the block B, in D,. By Lemma
2 we can assume that |yi—~ai| < ¢/2(r+1). Then by (3)

d(D, D)) =

d(D, D)) < Z Zd"(t}(at+a/2(r+1))

le—

%; =ild!‘(t)nci+(s/2(r+1)) Z Zd"(t

S k=0 i=1

< e/2+(s/2(r+ O)r = 2r+1)e/2(r +1).

icm

Finite exact uniform rank 21

Putting this into (4) we obtain
d(N3z(v, Q), D) < g/2(r+ 1)+ (2r + 1)g/2(r+ 1) =

and the proof of (1) is complete.
By virtue of Lemma 1 and (1), EUR({S) < r

Proof of Theorem 2. Assume that P*, n=1,2,...,1is a sequence of
partitions of X such that P"— 4. We define an infinite - partition Q of X setting
Q=\/2,P" Let X =X/Q, this meaning that X = {Aeé& AeQ}. Let
m: X — X be the natural factor map. Denote by % the image via 7 of the family
{Be#: Bis Q-measurable}. Putm = pon~,§ = nTrn L. Then (X, €, m, S) is
a factor of (X, #, u, T). Obviously S has rational discrete spectrum. By the
results of [10] there exist a Lebesgue space (V, #, v) and a measurable family

f={f yeX} of automorphisms of (V, #,v) such that the automorphism

8, XwvoXx V given by S,(y, 1) =
prove that card(V) < r = EUR(T).
Let U: XX x V,UcT=3§,0U, be an 1somorphism. Define R” = U(P"),
n=1,2,...Then R"— U(Q) =% ®# and R"e H}™(S,). Since § is a canonical
factor of T (see [7]), U(P" =R", n =1,2,... Moreover, if R"=(B,, ...
.s Bymy-1), then By = Bk xV, k= h(n)—l where (By, ..., Bym-1) is
a partition of X, n=1,2,.
Assume that we can ﬁnd r-|-1 pairwise disjoint subsets A, ...

(Sy, f (v)) is isomorphic to T. We will

y Ar+1 of the

space ¥ such that v(4)}>0, i=1,...,r+1. Set M=mxv. Let
a=min{(X xA4): i=1,...,r+1} =min{w(4): i=1,...,7+1}. Then
o > 0 and for some n there are disjoint R"-measurable subsets W,, ..., W, of

X %V satisfying m{W,A(X x 4)) < aii(X x 4) (since R"—+% ® F). Then

(*) Foreachk=20,..., h(n)—1 there exists a t(k), 1 < (k) < r+1, such that
B, Wy, = @ whenever B, is the kth level of the partition R".

Indeed, B, is a union of r members of R” and each of them can be included in at

most one of the sets W, ..., W.,.
From () we have i
r+1 . r+1 .
2> T AIWAR X A) > T (R x ANT)

iy £ 1
ret b -1 rl Rmy—1 R

=Y ¥ A(BAXxA)\W) = Z Z (B, A (X x A) W)
i=1 k=0
hi{n}—1 . h(m—1

2 Y Al X A B W) = Y Ai(X % AN By
k=0 k=0
An)—1 . Rim—1 . 1

= Y WBxAgw) = Y mBYv(dg) = h(H) —a=ua
k=0 k=0 h{n).

This contradiction completes the proof,
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Proof of Theorem 3. Assume that T" is ergodic. We can assume that
n>0.8etr=EUR(T). Let Q =(Qy, ..., Q,-) be a partition of X. Take & > 0.
Then there exists a partition P of X such that PeH!(T) for some h and
D(Q, P) < &. Let P < P be a partition of X satisfying d(Q, P) = D(Q, P). Then
almost all points from the base of each stack in P have the same (P, T)-h
names. Denote the names by B,, ..., B,, BjeN!, i=1,..., r. Lel o/ be the set
of all (P, T)-hn names of points from the base of the partition P. Obviously
card(=/) < r". For Aes/ we define a block B,eN! by B,[i]= Alni],
i=0,...,h—1. Let &, ={BeN! B=B, for some Aes/} Clearly
card(s7,) < r". Take xe X, Assume that x belongs to the base of P. We will
prove that xe E%((Q, T™), ##,). From the assumption of this theorem and from
the proof of Lemma 1, xeE5%{(Q, T), (By, ..., B,)). It follows that there is
a number m,, such that for m = m, we can find a block A€ A™(B,, ..., B,) such
that d(N7.4(x, Q), A) < & It is easy to see that AeA™(&/). Let Be A™(o7),
Bli}= A[in], i=0,...,mh—1. Then d(Npix, Q), B)< nd(Nmulx. Q), 4)
< ng. Therefore xe E%((Q, T), ##,). By Lemma 1, EUR(T") < card(«,) = 1",

Example. Now we give an example of an automorphism T such that
EUR(T) =3 and EUR(T?) = 9. This automorphism comes [rom substitutions
of constant length. For definition and basic properties of such systems we refer
to {9, 1, 2].

‘ Assume that y is a primitive pure substitution of constant length p, where
p is a prime number, defined on the set N, = {0, 1, ..., r—1}. Denote by T the
shift on N¥ and by X (y) the minimal (for T) y-invariant subset of NZ, Let p be
the unique T-invariant probability measure on X(v). In what follows we will
use the Jetters T and u for the shift and for the T-invariant probability measure
for any substitution. Therefore we will write EUR(y) instead of EUR(T). Let x,
be a fixed point of y. Denote by L(y) the number L from Lemma 9 in [6].
Assume that L{y) = 1. Using Lemma 1 from the present paper and Lemma 9 of
[6] we obtain the following criterion:

CRITERION. EUR(y) < k iff there exist blocks B, ..., B,e NF™! such that
Xo [0, co] = 4B, a; B; a;,... where the length of the block A is at most p—1,
he{l,...,k}, a,eN,, t=1,2,...

Now we define a pure substitution 0 of length 3 on 3 symbols:

0012
: 1-120
25201
ObViOl..ISIY L{(6) = 1. By the Criterion, EUR(0) = 3. It follows from {2] that the
{ergodic) system (X(0), u, T? is isomorphic to the system (X (), p, T), where
nisa subsntu‘t:‘on of length 3 defined on the set of all pairs of symbols in N 3
t_hg.t have positive gneasure (L@ = n({xeX(0): x[0, 1] = if})). Define af = ij,
i, jeN3. Then n(af) = 6(00) = 012012 = (O20)(12) = aadal, etc.
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We obtain
ad—alaial ab—aiadal k> adabal
& —ala?dd  at—aialal o} adiaia;
8l ai->aiadal a3 ajalad
or shortly aj—al. ai*2ajls, i,j€Ns. ‘
Let o = {a}: i, jeN;}. We list the pairs of elements of s/ that have
positive measure:

2 0.2 0.2 0.0 1.0 1,0 1.0 ~l.1 1.2
aga%, a?aga alad, alad, alai, ala3, aial, ajag, aza3, 4343, A3d;, dzdp,

dhai, adab, adal, adat, adal, aja, aled, alad, adal.

We will show that L(y) = 1. _

Assume that #{a) = n(bc)[1, 3] for some b,ces. Since #lah) =
Gy ait2aity, from the definition of 5 we see that i=j. This implies
n(al) = al.,al" 2aif}. Therefore #(b) = Laly a2, nlc) = alfl U Ui, where by
LI we denote a symbol that is either unknown or not interesting for us. 1t
follows that b = ai}, ¢ = ai*! for some reN;. Therefore pla@iia™h >0,
a contradiction. ’

Assume that %(a$) = n(bc)[2, 4] for some b, ce/. In the same way we
obtain u(di,,ait3) >0, a contradiction. This implies L{n) = 1.

Now we prove that EUR(n) =9. Let x, be a fixed point of 1. By the .
Criterion, x,[0, 0] = AB; LB, L]...where the length of the block A is at
most 2, B, €{By, ..., B} for some s < 9, the length of each B; is 2.

If the length of A is either 0 or 1 then the set {B,, B, , ...} consists of
9 blocks. Assume that the length of 4 is 2. Then each biock B,,t =1, ..., 5, 1s
of the form B, = n(ab)[2, 3] for some a, be #. In other words, B, is a block
such that its first symbol is equal to the last symbol of #(a) and its second
symbol is the first symbol of #(b). But all pairs of positive measure appear in
%, [0, 0a] = #(x,[0, co]). Thus s is at least the number of blocks of the form
n(ab)[2, 3], where u(ab) > 0. Simple calculations show that there are 9 such

blocks. Therefore EUR(n) = 9.
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On separation theorems
for subadditive and superadditive functionals

by

ZBIGNIEW GAJDA and ZYGFRYD KOMINEK (Katowice)

Abstract. We generalize the well known separation theorems for subadditive and superadditive
functionals to some classes of not necessarily Abelian semigroups. We also consider the problem of
supporting subadditive [unctionals by additive ones in the not necessarily commutative case. Our
results are motivated by similar extensions of the Hyers stability theorem for the Cauchy functional
equation. In this context the so-called weakly commutative and amenable semigroups appear
naturally. The relations between these two classes of semigroups are discussed at the end of the

DAaper.

1. Intreduction. In this paper we are concerned with the problem of
separation of subadditive and superadditive functionals defined on not
necessarily commutative semigroups. Results of this type, for Abelian semi-
groups, were first obtained by R. Kaufman [8] and P. Kranz [10]. They can
also be derived from the celebrated separation theorem of G. Rodé [12] (cf.
also H. Ko&nig [9]) which represents a far-reaching generalization of the
classical Hahn-Banach theorem. In spite of its highly abstract setting, Rodé’s
theorem does not yield any extensions of Kaufman’s and Kranz’s results
beyond the class of Abelian semigroups (some special noncommutative
versions of Rodé’s theorem have recently been discussed by A. Chaljub-Simon
and P. Volkmann [17). The main purpose of the present work is to replace the
commutativity assumption in separation theorems of Kranz’s type by some
essentially weaker conditions of algebraic or analytic nature. In this regard, we
follow the lines along which the Hyers stability theorem for the Cauchy
functional equation (see D. H. Hyers {7]) was generalized to certain classes of
not necessarily commutative semigroups.

In what follows R and N denote the sets of all reals and positive integers,
respectively, whereas (S, -) stands for a semigroup or, occasicnally, a group. To
emphasize the fact that the binary operation in S does not have to be
commutative we use for it the multiphcative notation.

We recall that a functional f: §-»R is said to be subadditive iff

(1) Ty <fF+1 ), x, yes.
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