

Contents of Volume 100, Number 1

A.	Edgington, Some more weak Hilbert spaces				,				1-13
M.	K. Mentzen, Automorphisms with finite exact uniform	ı ra	nk .						13-24
Z.	Gajda and Z. Kominek, On separation theorems for sul	add	litive	an	d si	upe	rac	1-	
	ditive functionals								25-38
R.	Pini, A multiplier theorem for H-type groups								39. 49
	H. Torres, Spaces of sequences, sampling theorem, and fu								
	type								5174
H.	Jiang, Weighted-BMO and the Hilbert transform								75-80
K.	Rudol, A model for some analytic Toeplitz operators .								81-86
A.	J. Pryde, Inequalities for exponentials in Banach algebras.					·			

STUDIA MATHEMATICA

Managing Editors: Z. Ciesielski, A. Pelczyński, W. Żelazko

The journal publishes original papers in English, French, German and Russian, mainly in functional analysis, abstract methods of mathematical analysis and probability theory. Usually 3 issues constitute a volume.

Manuscripts and correspondence concerning editorial work should be addressed to

STUDIA MATHEMATICA

Śniadeckich 8, P.O. Box 137, 00-950 Warszawa, Poland, telex 816112 PANIM PL

Correspondence concerning subscriptions, exchange and back fascicles should be addressed to

INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES

Śniadeckich 8, P.O. Box 137, 00-950 Warszawa, Poland, telex 816112 PANIM PL

© Copyright by Instytut Matematyczny PAN, Warszawa 1991

Published by PWN-Polish Scientific Publishers

ISBN 83-01-10592-5

ISSN 0039-3223

PRINTED IN POLAND

W R O C Ł A W S K A D R U K A R N I A N A U K O W A

STUDIA MATHEMATICA 100 (1) (1991)

Some more weak Hilbert spaces

by

ALEC EDGINGTON (Cambridge)

Abstract. We construct, by a variation of the method used to construct the Tsirelson spaces, a new family of weak Hilbert spaces which contain copies of l_2 inside every subspace.

Preamble. The notions of weak type 2 and weak cotype 2 were introduced by Milman and Pisier in [3]; Pisier presented weak Hilbert spaces (the intersection of these two classes) as objects of study in [4]. That Tsirelson's space T_{λ} is a weak Hilbert space had essentially been proved in [1], where it was also shown that T_{δ} contains no isomorph of l_2 . Recently the theory of weak Hilbert spaces has developed apace: yet the scarcity of known examples remains irritating—until now, the spaces T_{δ} (0 < δ < 1) and their duals, Hilbert space itself, and all subspaces of quotients of finite l₂-sums of these, were essentially the only examples known. In this paper we present a few more. There still remains, however, the problem of finding examples (if there are any) without an unconditional basis, or even without a basis.

DEFINITIONS. Given a sequence $\alpha \in (\mathbb{R}^+)^{\mathbb{N}}$ such that

$$\sum_{m}\alpha_{m}^{2}=1,$$

and

$$\delta_L \leqslant \alpha_{m+1}/\alpha_m \leqslant \delta_U$$

for all m, where $0 < \delta_L \le \delta_U < 1$. Write $\mathbf{R}^{(N^+)}$ for the vector lattice of all finitely supported vectors in \mathbf{R}^{N^+} . If x and y are two vectors in \mathbb{R}^{N^+} we denote by x y the vector whose ith

coordinate is $x_i v_i$.

Call a k-tuple $(y_i: i < k)$ acceptable (acc.) if $y_i \in \mathbb{R}^{(N^+)}$, supp $(y_i) \subseteq [k, \infty)$, and $\sum_{i < k} |y_i|^2 \leqslant 1.$

For $x \in \mathbb{R}^{(N^+)}$ define

$$||x||_0 = \sup\{|x_n|: n \in \mathbb{N}^+\}, \quad ||x||_{m+1}^2 = \sup\{\sum_{i < k} ||y_i \cdot x||_m^2: (y_i) \text{ acc.}\}.$$

By induction we see that $\|\cdot\|_m$ is a norm on $\mathbb{R}^{(N^+)}$ which is 2-convex (i.e. $\|(|x|^2+|y|^2)^{1/2}\|_m \le (\|x\|_m^2+\|y\|_m^2)^{1/2})$ and satisfies $\|x\|_m \le \|x\|_{l_2}$ for all x. The canonical vectors e_n $(n \in \mathbb{N}^+)$ constitute a normalised 1-unconditional basis for $(\mathbf{R}^{(N^+)}, \|\cdot\|_m).$

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision): Primary 46B20, 46C99

Finally, set

$$||x|| = \left(\sum_{m} \alpha_m^2 ||x||_m^2\right)^{1/2},$$

and let $X = X_{\alpha}$ be the completion of $\mathbf{R}^{(\mathbf{N}^+)}$ with respect to the norm $\|\cdot\|$. Note that $(e_n: n \in \mathbf{N}^+)$ is a normalised 1-unconditional basis for X, X is 2-convex, and $\|x\| \le \|x\|_{l_1}$ whenever $x \in \mathbf{R}^{(\mathbf{N}^+)}$.

LEMMA 0. If $x \in X$ and (y_i) is acceptable then

$$||x|| \geqslant \delta_L \left(\sum_i ||v_i \cdot x||^2\right)^{1/2}.$$

Proof.

$$\begin{split} \delta_L^2 \sum_i \|y_i \cdot x\|^2 &= \delta_L^2 \sum_i \sum_m \alpha_m^2 \|y_i \cdot x\|_m^2 = \delta_L^2 \sum_m \alpha_m^2 \sum_i \|y_i \cdot x\|_m^2 \\ &\leqslant \delta_L^2 \sum_m \alpha_m^2 \|x\|_{m+1}^2 \leqslant \sum_m \alpha_{m+1}^2 \|x\|_{m+1}^2 \leqslant \|x\|^2. \ \blacksquare \end{split}$$

THEOREM 1. X is a weak Hilbert space.

Proof. (The following argument is based on that employed in [5] to show that Tsirelson's space is a weak Hilbert space.)

(I) X has weak cotype 2: Write $X_k = [e_n: n > k]$. Suppose $y_0, \ldots, y_{k-1} \in X_k$. By 2-convexity we have

$$\|\left(\sum_{i}|y_{i}|^{2}\right)^{1/2}\| \leq \left(\sum_{i}\|y_{i}\|^{2}\right)^{1/2}.$$

Writing

$$x = \left(\sum_{i} |y_{i}|^{2}\right)^{1/2}, \quad (z_{i})_{n} = \begin{cases} 0, & x_{n} = 0, \\ (y_{i})_{n}/x_{n}, & x_{n} \neq 0, \end{cases}$$

we have $z_i \cdot x = y_i$ and $\sum_i |z_i|^2 \le 1$, so by the above Lemma

$$||x|| \geqslant \delta_L \left(\sum_i ||y_i||^2 \right)^{1/2}.$$

In other words,

$$\delta_L(\sum_i \|y_i\|^2)^{1/2} \le \|(\sum_i |y_i|^2)^{1/2}\| \le (\sum_i \|y_i\|^2)^{1/2}.$$

This implies (see [5], Lemma 13.3) that every k-dimensional subspace $E \subseteq X_k$ has $d_E = d(E, l_2^k) \leq 4/\delta_L$.

Now suppose $E \subseteq X$, dim E = 2k: then dim $(E \cap X_k) \geqslant k$, so $\exists F \subseteq E \cap X_k \subseteq E$ with dim F = k and $d_F \leqslant 4/\delta_L$. This shows (see [5], Thm. 10.2) that X has weak cotype 2.

(II) X has type 2: X has weak cotype $2 \Rightarrow$ (see [5], Prop. 10.7) X has cotype $q \ (\forall q > 2)$. But X is 2-convex, so (see [2], (1.f.3) & (1.f.9)) X has type 2.

We will now show that two more (a priori different) definitions actually yield the same norms as the $\|\cdot\|_m$ defined above.

DEFINITIONS. Suppose $(y_i: i < k)$ is acceptable. Then (y_i) is allowable (all.) if $y_i = \chi_{E_i}$ where the (E_i) are disjoint and $\bigcup_i E_i \subseteq [k, \infty)$.

For $x \in \mathbb{R}^{(N^+)}$ define

$$[x]_0 = \sup\{|x_n|: n \in \mathbb{N}^+\}, \quad [x]_{m+1}^2 = \sup\{\sum_i [y_i \cdot x]_m^2: (y_i) \text{ all.}\}.$$

Proposition 2. $[\cdot]_m = ||\cdot||_m$ for all m.

Proof. (Again, the argument given here is based on the proof in [5] of the corresponding result in Tsirelson's space.) It is clear that $[x]_m \leq ||x||_m$ for all x. By 2-convexity,

$$\chi \chi_m = [|x|^{1/2}]_m^2$$

defines a norm on $R^{(N^+)}$.

To show $[x]_m \ge ||x||_m$ for all x we use induction. We have the case m = 0, so assume the result for m.

Suppose $x \in \mathbb{R}^{(\mathbb{N}^+)}$. If (y_i) is allowable then

$$\chi \chi_{m+1} = [|x|^{1/2}]_{m+1}^2 \ge \sum_i [y_i \cdot |x|^{1/2}]_m^2 = \sum_i \chi_i \cdot \chi_{m}^2,$$

since $y_i = y_i^2$. For $N \in \mathbb{N}$ set

$$C_k^{(N)} = \text{conv}\{(y_i: i < k): (y_i) \text{ all., } \text{supp}(y_i) \subseteq [k, k+N)\}$$

= \{(z_i: i < k): \(z_i \ge 0\), \(\sum_i z_i \le 1\), \(\text{supp}(z_i) \le [k, k+N)\).

Therefore for all $(z_i) \in C_k^{(N)}$,

$$\chi \chi_{m+1} \geqslant \sum_{i} \chi z_{i} \cdot \chi_{m}.$$

So

$$[x]_{m+1} = \emptyset x^2 \emptyset_{m+1}^{1/2} \geqslant \left(\sum_{i} \emptyset z_i \cdot x^2 \emptyset_m \right)^{1/2} = \left(\sum_{i} [z_i^{1/2} \cdot x]_m^2 \right)^{1/2}.$$

But as (z_i) runs over $C_k^{(N)}$, $(z_i^{1/2})$ runs over all (non-negative) acceptable k-tuples with supports inside [k, k+N). Since N is arbitrary it follows that whenever (y_i) is acceptable,

$$[x]_{m+1} \ge \left(\sum_{i} [y_i \cdot x]_m^2\right)^{1/2} \ge \left(\sum_{i} \|y_i \cdot x\|_m^2\right)^{1/2},$$

so $[x]_{m+1} \ge ||x||_{m+1}$.

DEFINITIONS. Suppose $(y_i: i < k)$ is allowable. Then (y_i) is admissible (adm.) if $y_i = \chi_{E_i}$ where $k \le E_0 < \ldots < E_{k-1}$. (Here and elsewhere the notation E < F (where E and F are nonempty subsets of \mathbb{N}^+) means that max $E < \min F$; we write $k \le E$ meaning $k \le \min E$.)

For
$$x \in \mathbb{R}^{(N^+)}$$
 define

$$|||x|||_0 = \sup\{|x_n|: n \in \mathbb{N}^+\}, \quad |||x|||_{m+1}^2 = \sup\{\sum_i |||y_i \cdot x|||_m^2: (y_i) \text{ adm.}\}.$$

DEFINITIONS. An ailanthus is a tree with a positive integer at each node, such that

- (a) the number of branches emanating from a given node is less than or equal to the number at the node, and
- (b) the number at the end of a branch is greater than or equal to the number at the node from which the branch emanates.

For example,

is the beginning of an ailanthus.

A subset $S \subseteq \mathbb{N}^+$ is $m \cdot OK$ if it occurs as the mth row of some ailanthus. Thus $\{2\}$ is 0-OK, $\{2, 3\}$ is 1-OK, $\{3, 4, 5, 8\}$ is 2-OK and $\{3, 4, 5, 6, 7\}$ is 3-OK. Note that if $f: \mathbb{N}^+ \to \mathbb{N}^+$ satisfies $f(n) \ge n$ ($\forall n$) and S is m-OK then f(S) is m-OK, and any subset of an m-OK set ($m \ge 1$) is m-OK.

Notation. If $E \subseteq \mathbb{N}^+$ we write Ex for $\chi_E x$.

PROPOSITION 3. If $x \in \mathbb{R}^{(\mathbb{N}^+)}$ and $m \in \mathbb{N}$ then

$$[x]_m = |||x|||_m = \sup\{||Sx||_{l_2}: S \text{ } m\text{-}OK\}.$$

Proof. We proceed by induction, the case m = 0 being clear since the 0-OK sets are just the singletons. Assume the result for m, and suppose $x \in \mathbb{R}^{(N^+)}$.

Clearly $[x]_{m+1} \ge |||x|||_{m+1}$.

(I) $[x]_{m+1} \leq \sup\{\|Sx\|_{l_2}: S (m+1)\text{-OK}\}: \text{Suppose}$

$$[x]_{m+1}^2 = \sum_{i < k} [E_i x]_m^2$$

where the (E_i) are disjoint and $E_i \subseteq [k, \infty)$. By hypothesis we can write

$$[E_i x]_m = ||S_i E_i x||_{l_2}$$

where S_i is the *m*th row of an ailanthus A_i . We can assume that every node of A_i is $\geq k$. (Replace each node which is < k by k, and we still have an ailanthus.) In particular, the *top* node of each A_i is $\geq k$, so that

$$A_0A_1...A_{k-}$$

is an ailanthus. Let S be its (m+1)th row, i.e. $S = \bigcup_i S_i$. Then

$$[x]_{m+1}^2 = \sum_{i} [E_i x]_m^2 = \sum_{i} ||S_i E_i x||_{l_2}^2 \leqslant ||Sx||_{l_2}^2.$$

(II) $\sup\{\|Sx\|_{l_2}: S(m+1)\text{-OK}\} \le \|\|x\|\|_{m+1}$: Let S be the (m+1)th row of an ailanthus A. Observe that if we put each row of A in non-decreasing order from left to right we still have an ailanthus. (Start at the top and work down. Order each row by a succession of operations each of which replaces ... b... a... by ... a... b... where $a \le b$.) Having done this, write A in the form

$$\mathbf{A}_0 \mathbf{A}_1 \dots \mathbf{A}_{k-1}$$

where each A_i is an ailanthus. Let S_i be the *m*th row of A_i ; so $S = \bigcup_i S_i$. By deleting any repetitions among the S_i we may assume that the S_i are disjoint. Since the top node of A must be $\geq k$, we have $k \leq S_0 < \ldots < S_{k-1}$ and

$$||Sx||_{l_2}^2 = \sum_i ||S_i x||_{l_2}^2 \leqslant \sum_i |||S_i x|||_m^2. \blacksquare$$

LEMMA 4. Suppose $(u_i: i \in \mathbb{N})$ is a normalised block basic sequence in $X, N \in \mathbb{N}, \ \varepsilon > 0$ and $M \in \mathbb{N}^+$. Then $\exists v \in \operatorname{span}_i u_i$ such that

- (a) $||v||_N = 1$,
- (b) $||v||_m < \varepsilon$ ($\forall m < N$), and
- (c) $\sum_{j < M} ||E_j v||_m^2 < \varepsilon^2$ ($\forall m < N$) whenever $E_0 < \ldots < E_{M-1}$.

Proof. We proceed by induction on N. If N=0 just take $v=u_0/\|u_0\|_0$. Now assume the result for N.

Take $k \in \mathbb{N}^+$, $k > 2M/\epsilon^2$, and choose $\epsilon_i > 0$ (i < k) so that

$$\sum_{i} \varepsilon_i^2 < k \varepsilon^2 / M - 2.$$

Choose $r_0 \ge k$ and for i < k, step-by-step choose $v_i \in \operatorname{span}_n u_n$ such that

- (a) $||v_i||_N = 1$,
- (b) $||v_i||_m < \varepsilon_i$ ($\forall m < N$), and
- (c) $\sum_{j < M_i} ||E_j v_i||_m^2 < \varepsilon_i^2$ ($\forall m < N$) whenever $E_0 < \ldots < E_{M_i-1}$, where supp $v_i \subseteq [r_i, r_{i+1})$,

$$M_i \geqslant r_{i-1} + k$$
 $(i = 2, ..., k-1)$

and $M_0 \leq M_1 \leq \ldots \leq M_{k-1} \leq M_k$.

Write $H_i = [r_i, r_{i+1})$. Let $w = k^{-1/2} \sum_i v_i$. So $||w||_{N+1} \ge 1$.

Now suppose m < N and $r_0 \le l \le q_0 < \ldots < q_l = r_k$; write $F_s = [q_s, q_{s+1})$. Let i be such that $r_i \le l < r_{l+1}$.

(I) i = k-1: Then

$$\sum_{s \le l} \|F_s w\|_m^2 = \frac{1}{k} \sum_{s \le l} \|F_s v_{k-1}\|_m^2 \le \frac{1}{k} \|v_{k-1}\|_{m+1}^2 \le \frac{1}{k} < \frac{\varepsilon^2}{2M}.$$

(II) i < k-1: Subdivide the (F_s) at the k-i-1 points r_{i+1}, \ldots, r_{k-1} and relabel them as $G_0 < \ldots < G_{\nu-1}$ where $\nu \leqslant l+k-i-1 < r_{i+1}+k \leqslant M_{i+2}$. Then

$$\begin{split} \sum_{s < l} \|F_s w\|_m^2 &= \frac{1}{k} \sum_{s < l} \|\sum_{t < k} F_s v_t\|_m^2 \leqslant \frac{1}{k} \sum_{s < v} \|\sum_{t < k} G_s v_t\|_m^2 \\ &= \frac{1}{k} \sum_{i \leqslant \gamma < k} \sum_{G_s \subseteq H_\gamma} \|\sum_{t < k} G_s v_t\|_m^2 = \frac{1}{k} \sum_{i \leqslant \gamma < k} \sum_{G_s \subseteq H_\gamma} \|G_s v_\gamma\|_m^2 \\ &\leqslant \frac{1}{k} \Big(\sum_{G_s \subseteq H_l} \|G_s v_t\|_m^2 + \sum_{G_s \subseteq H_{l+1}} \|G_s v_{l+1}\|_m^2 + \sum_{l+2 \leqslant \gamma < k} \mathcal{E}_\gamma^2 \Big) \\ &< \frac{1}{k} \Big(\|v_i\|_{m+1}^2 + \|v_{l+1}\|_{m+1}^2 + \frac{k\varepsilon^2}{M} - 2 \Big) \\ &\leqslant \frac{1}{k} \Big(1 + 1 + \frac{k\varepsilon^2}{M} - 2 \Big) = \frac{\varepsilon^2}{M}. \end{split}$$

Hence in any case we have $||w||_{m+1}^2 < \varepsilon^2/M$; also $||w||_0^2 = k^{-1} \sup_i ||v_i||_0^2 \le k^{-1} < \varepsilon^2/2M < \varepsilon^2/M$.

Thus for all m < N+1, $\|w\|_m < \varepsilon/\sqrt{M} \le \varepsilon$, and for any $E_0 < \ldots < E_{M-1}$, $\sum_{j < M} \|E_j w\|_m^2 \le M \|w\|_m^2 < \varepsilon^2$. Finally, set

$$v = w/\|w\|_{N+1}$$
.

COROLLARY 5. If $(u_i: i \in \mathbb{N})$ is a block basic sequence on the (e_n) , $\varepsilon > 0$ and $N \in \mathbb{N}$, then $\exists v \in \operatorname{span}_i u_i$ with ||v|| = 1 and $(\sum_{m < N} \alpha_m^2 ||v||_m^2)^{1/2} < \varepsilon$.

Proof. By the Lemma we can obtain $w \in \text{span}_i u_i$ with $\|w\|_N = 1$ and $\|w\|_m < \alpha_N \varepsilon$ ($\forall m < N$). Let $v = w/\|w\|$. Then

$$\left(\sum_{m \le N} \alpha_m^2 \|v\|_m^2\right)^{1/2} \leqslant \frac{\alpha_N \varepsilon}{\|w\|} \left(\sum_{m \le N} \alpha_m^2\right)^{1/2} < \varepsilon. \quad \blacksquare$$

Theorem 6. Any infinite-dimensional subspace of X contains an isomorph of l_2 .

Proof. Suppose $Y \subseteq X$, dim $Y = \infty$, and $1 > \varepsilon > 0$. So Y has a subspace which is isomorphic to the closed span of a block basic sequence (u_i) on the (e_n) . By the above Corollary we can obtain disjointly supported (v_k) in $\operatorname{span}_i u_i$ such that $||v_k|| = 1$ and

$$\left(\sum_{q_{j} \leq m < q_{j+1}} \alpha_{m}^{2} \|v_{k}\|_{m}^{2}\right)^{1/2} \geqslant (1 - \varepsilon^{2})^{1/2},$$

where $q_0 < q_1 < \dots$

Suppose $\lambda \in \mathbb{R}^{(N)}$. By 2-convexity we have

$$\left\|\sum_{k} \lambda_k v_k\right\|^2 \leqslant \sum_{k} |\lambda_k|^2 \|v_k\|^2 = \sum_{k} |\lambda_k|^2.$$

On the other hand,

$$\begin{split} \left\| \sum_{k} \lambda_{k} v_{k} \right\|^{2} &= \sum_{m} \alpha_{m}^{2} \left\| \sum_{k} \lambda_{k} v_{k} \right\|_{m}^{2} \geqslant \sum_{j} \sum_{q_{j} \leqslant m < q_{j+1}} \alpha_{m}^{2} \left\| \sum_{k} \lambda_{k} v_{k} \right\|_{m}^{2} \\ &\geqslant \sum_{j} \sum_{q_{j} \leqslant m < q_{j+1}} \alpha_{m}^{2} |\lambda_{j}|^{2} \left\| v_{j} \right\|_{m}^{2} \geqslant (1 - \varepsilon^{2}) \sum_{j} |\lambda_{j}|^{2}. \end{split}$$

This theorem sharply distinguishes X from the Tsirelson spaces, which contain no isomorphs of l_2 (see [0]). We now recall their definition.

Definitions. Given $0 < \delta < 1$. For $x \in \mathbb{R}^{(N^+)}$ define

$$\|x\|_{\delta,0} = \sup\{|x_n|: n \in \mathbb{N}^+\},$$

$$\|x\|_{\delta,m+1} = \max(\|x\|_{\delta,m}, \delta \sup\{(\sum_i \|y_i \cdot x\|_{\delta,m}^2)^{1/2}: (y_i) \text{ acc.}\}),$$

$$\|x\|_{\delta} = \sup\{\|x\|_{\delta,m}: m \in \mathbb{N}\}.$$

Tsirelson's space T_{δ} is the completion of $\mathbf{R}^{(N^+)}$ with respect to the norm $\|\cdot\|_{\delta}$.

Clearly if $x \in \mathbb{R}^{(N^+)}$ then $\|x\|_{\delta,m} \leq \|x\|_{l_2}$, and $\delta^m \|x\|_m \leq \|x\|_{\delta,m}$. We can use the fact that $T_\delta \not\cong l_2$ to show:

Theorem 7. $X \not\cong l_2$.

Proof. Suppose $X \cong l_2$. Then the sequence (e_n) is itself equivalent to the canonical basis of l_2 . Now choose $\delta \in (\delta_U, 1)$ and observe that (for $x \in \mathbb{R}^{(N^+)}$)

$$\begin{split} \|x\| &= \left(\sum_{m} \alpha_{m}^{2} \|x\|_{m}^{2}\right)^{1/2} \leqslant (1 - \delta_{L}^{2})^{1/2} \left(\sum_{m} \delta_{U}^{2m} \|x\|_{m}^{2}\right)^{1/2} \\ &= (1 - \delta_{L}^{2})^{1/2} \left(\sum_{m} (\delta_{U}/\delta)^{2m} \delta^{2m} \|x\|_{m}^{2}\right)^{1/2} \\ &\leqslant (1 - \delta_{L}^{2})^{1/2} \left(1 - (\delta_{U}/\delta)^{2}\right)^{-1/2} \sup_{m} (\delta^{m} \|x\|_{m}) \\ &\leqslant (1 - \delta_{L}^{2})^{1/2} \left(1 - (\delta_{U}/\delta)^{2}\right)^{-1/2} \|x\|_{\delta} \leqslant \|x\|_{l_{2}}, \end{split}$$

a contradiction.

The above argument works equally well to show that no subsequence of the (e_n) spans a Hilbert space. Thus we see that X is not isomorphic to an l_2 -sum of finite blocks taken from T_δ : indeed, (e_n) is a normalised sequence tending weakly to zero which contains no Hilbertian subsequence; an easy compactness argument shows that this is impossible in such a space.

We now proceed to show that $X_{\alpha} \not\cong X_{\alpha'}$ if α and α' are sufficiently different. To this end, suppose that $X_{\alpha} \cong X_{\alpha'}$. Then there is a normalised block basic sequence (u_i) on the (e_n) , and a subsequence $n_0 < n_1 < \ldots$ of \mathbb{N}^+ , such that $(u_i) \approx (e'_{n_i})$. Now $||u_i||_m \leqslant \alpha_m^{-1}$ for all i, so by passing to a subsequence we may assume that, for some numbers λ_m , $||u_i||_m \to \lambda_m$ as $i \to \infty$, for all m.

We certainly have $\sum_{m} \alpha_m^2 \lambda_m^2 \le 1$. In fact $\sum_{m} \alpha_m^2 \lambda_m^2 = 1$: for suppose not; then $\exists c > 0$, $M_0 < M_1 < \dots$ and $i_0 < i_1 < \dots$ such that

$$\sum_{M_n \leq m < M_{n+1}} \alpha_m^2 \|u_{i_n}\|_m^2 > c^2 \quad (\forall n).$$

Then for any $x \in \mathbb{R}^{(N)}$, $\left\| \sum_{n} x_n u_{i_n} \right\|^2 \le \sum_{n} |x_n|^2$ (by 2-convexity), and

$$\left\| \sum_{n} x_{n} u_{i_{n}} \right\|^{2} = \sum_{m} \alpha_{m}^{2} \left\| \sum_{n} x_{n} u_{i_{n}} \right\|_{m}^{2} \geqslant \sum_{k} \sum_{M_{k} \leq m < M_{k+1}} \alpha_{m}^{2} \left\| \sum_{n} x_{n} u_{i_{n}} \right\|_{m}^{2}$$

$$\geqslant \sum_{k} \sum_{M_{k} \leq m < M_{k+1}} \alpha_{m}^{2} |x_{k}|^{2} ||u_{i_{k}}||_{m}^{2} \geqslant c^{2} \sum_{k} |x_{k}|^{2},$$

so that $(u_{i_n}) \approx l_2$. But (u_{i_n}) is equivalent to a subsequence of the (e'_n) , so this is impossible.

We now prove a lemma which in both statement and proof is very similar to Lemma 4.

DEFINITION. Given a subsequence $\mathbf{p} = (p_0 < p_1 < \ldots)$ of \mathbf{N}^+ . Call a vector $x \in \mathbf{R}^{(\mathbf{N})}$ (\mathbf{p} , 0)-good if $x_i = \delta_{in}$ for some n. Call x (\mathbf{p} , N+1)-good if $x = k^{-1/2} \sum_{i < k} x_i$ where $k \in \mathbf{N}^+$, the x_i are (\mathbf{p} , N)-good and $l \leq \operatorname{supp} x_0 < \ldots < \operatorname{supp} x_{k-1}$ where $p_l \geq k$.

LEMMA 8. Suppose $n_0 < n_1 < ...$ and $p_0 < p_1 < ...$ are two subsequences of \mathbb{N}^+ , $N \in \mathbb{N}$, $\varepsilon > 0$ and $M \in \mathbb{N}^+$. For $x \in \mathbb{R}^{(\mathbb{N})}$ write

$$T(x) = \sum_{i} x_i e_{n_i}.$$

Then $\exists x \in \mathbf{R}^{(N)}$ such that

- (a) x is (\mathbf{p}, N) -good,
- (b) $||T(x)||_m < \varepsilon \ (\forall m < N)$, and
- (c) $\sum_{j < M} ||E_j T(x)||_m^2 < \varepsilon^2$ $(\forall m < N)$ whenever $E_0 < \ldots < E_{M-1}$.

Proof. We use induction; if N = 0 set $x_i = \delta_{i0}$. Assume the result for N. Take $k \in \mathbb{N}^+$ such that $k > 2M/\epsilon^2$, and $\epsilon_i > 0$ (i < k) such that

$$\sum_{i} \varepsilon_{i}^{2} < k \varepsilon^{2} / M - 2.$$

Choose r_0 such that $n_{r_0} \ge k$ and $p_{r_0} \ge k$, and for i < k choose $x_i \in \mathbb{R}^{(N)}$ such that

- (a) x_i is (\mathbf{p}, N) -good,
- (b) $||T(x_i)||_m < \varepsilon_i$ ($\forall m < N$), and
- (c) $\sum_{j < M_i} ||E_j T(x_i)||_m^2 < \varepsilon_i^2$ ($\forall m < N$) whenever $E_0 < \ldots < E_{M_i-1}$.

where supp $x_i \subseteq [r_i, r_{i+1}), M_i \ge n_{r_{i-1}} + k$ for i = 2, ..., k-1, and $M_0 \le ... \le M_k$. Write $H_i = [n_{r_i}, n_{r_{i+1}}]$.

Finally, let $x = k^{-1/2} \sum_i x_i$. By construction x is (p, N+1)-good.

Suppose m < N, and $r_0 \le q_0 \le ... \le q_l = r_k$ where $n_{r_0} \le l \le n_{q_0}$; write $F_s = [n_{q_s}, n_{q_{s+1}}]$. Let i be such that $n_{r_i} \le l < n_{r_{s+1}}$.

(I) i = k - 1: Then

$$\sum_{s < t} \|F_s T(x)\|_m^2 = \frac{1}{k} \sum_{s < t} \|F_s T(x_{k-1})\|_m^2 \le \frac{1}{k} \|T(x_{k-1})\|_{m+1}^2 \le \frac{1}{k} < \frac{\varepsilon^2}{2M}.$$

(II) i < k-1: Subdivide the F_s at the k-i-1 points $n_{r_{i+1}}, \ldots, n_{r_{k-1}}$ and relabel them as $G_0 < \ldots < G_{\nu-1}$, where $\nu \leqslant l+k-i-1 < n_{r_{i+1}}+k \leqslant M_{i+2}$. Then

$$\begin{split} \sum_{s < l} \|F_s T(x)\|_m^2 &= \frac{1}{k} \sum_{s < l} \|\sum_{t < k} F_s T(x_t)\|_m^2 \leqslant \frac{1}{k} \sum_{s < v} \|\sum_{t < k} G_s T(x_t)\|_m^2 \\ &= \frac{1}{k} \sum_{i \leqslant \gamma < k} \sum_{G_s \subseteq H_\gamma} \|\sum_{t < k} G_s T(x_t)\|_m^2 \\ &\leqslant \frac{1}{k} \Big(\sum_{G_s \subseteq H_t} \|G_s T(x_i)\|_m^2 + \sum_{G_s \subseteq H_{i+1}} \|G_s T(x_{i+1})\|_m^2 + \sum_{i+2 \leqslant \gamma < k-1} \varepsilon_\gamma^2\Big) \\ &< \frac{1}{k} \Big(\|T(x_i)\|_{m+1}^2 + \|T(x_{i+1})\|_{m+1}^2 + \frac{k\varepsilon^2}{M} - 2\Big) \\ &\leqslant \frac{1}{k} \Big(1 + 1 + \frac{k\varepsilon^2}{M} - 2\Big) = \frac{\varepsilon^2}{M}. \end{split}$$

Hence in any case $\|T(x)\|_{m+1}^2 < \varepsilon^2/M$; also $\|T(x)\|_0^2 = k^{-1} \sup_i \|T(x_i)\|_0^2 \le k^{-1} < \varepsilon^2/2M < \varepsilon^2/M$. Therefore for all m < N+1, $\|T(x)\|_m < \varepsilon/\sqrt{M} \le \varepsilon$, and for any $E_0 < \ldots < E_{M-1}$, $\sum_{j < M} \|E_j T(x)\|_m^2 \le M \|T(x)\|_m^2 < \varepsilon^2$.

LEMMA 9. Given $N \in \mathbb{N}$, $\varepsilon > 0$ and $K \in \mathbb{N}$, $\exists x \in \mathbb{R}^{(\mathbb{N})}$ such that $||x||_{l_2} = 1$, $||\sum_i x_i e'_{n_i}||_m < \varepsilon \ (\forall m < N)$ and $||\sum_i x_i u_i||_{N+k}^2 \geqslant \lambda_k^2 - \varepsilon^2 \ (\forall k < K)$.

Proof. By deleting the first few u_i and e'_{n_i} , we may assume that $||u_i||_k^2 \ge \lambda_k^2 - \varepsilon^2$ for all i and all k < K.

Suppose supp $u_i \subseteq [p_i, p_{i+1})$. Apply Lemma 8 (in the space $X_{\alpha'}$) to obtain a vector $x \in \mathbf{R}^{(N)}$ such that x is (\mathbf{p}, N) -good and $\|\sum_i x_i e'_{n_i}\|_m < \varepsilon$ for all m < N. The former implies, firstly, that $\|x\|_{l_2} = 1$, and, secondly, that $\{p_i : x_i \neq 0\}$ is an N-OK set; hence for all k < K,

$$\left\| \sum_{i} x_{i} u_{i} \right\|_{N+k}^{2} \geqslant \sum_{x_{i} \neq 0} \|x_{i} u_{i}\|_{k}^{2} \geqslant \lambda_{k}^{2} - \varepsilon^{2}. \quad \blacksquare$$

DEFINITION. Given α and α' , write $\alpha \vdash \alpha'$ to mean that

$$\inf_{k} \frac{\alpha_{N+k}}{\alpha_k} \times \inf_{k} \frac{\alpha_k'}{\alpha_{N+k}'}$$

is unbounded as a function of N.

For example, if $\alpha_m = (1 - \delta^2)^{1/2} \delta^m$ and $\alpha'_m = (1 - (\delta')^2)^{1/2} (\delta')^m$ then $\alpha \mid -\alpha'$ provided $\delta > \delta'$.

More generally, if $N \in \mathbb{N}^+$ and S, S' are subsets of \mathbb{N} such that $\operatorname{card}(S \cap \lceil rN, (r+1)N)) = k, \quad \operatorname{card}(S' \cap \lceil rN, (r+1)N)) = k'$

for each r, and if

$$\frac{\alpha_{m+1}}{\alpha_m} = \begin{cases} \delta, & m \in S, \\ \delta', & m \notin S, \end{cases} \qquad \frac{\alpha'_{m+1}}{\alpha'_m} = \begin{cases} \delta, & m \in S', \\ \delta', & m \notin S', \end{cases}$$

then $\alpha \vdash \alpha'$ provided $\delta > \delta'$ and k > k'.

THEOREM 10. If $\alpha \vdash \alpha'$ then $X_{\alpha} \not\cong X_{\alpha'}$.

Proof. Write

$$f(N) = \inf_{k} \frac{\alpha_{N+k}}{\alpha_{k}} \ (\geqslant \delta_{L}^{N}); \quad g'(N) = \sup_{k} \frac{\alpha'_{N+k}}{\alpha'_{k}} \ (\leqslant (\delta'_{U})^{N}).$$

Given N, take $\varepsilon > 0$ so small that

$$\frac{1-2\varepsilon^2}{1+N\varepsilon^2/g'(N)^2} \geqslant \frac{1}{4},$$

and take $K \in \mathbb{N}$ so large that

$$\sum_{k \geq K} \alpha_k^2 \lambda_k^2 < \varepsilon^2.$$

Apply Lemma 9 with these values of N, ε , K to get a vector $x \in \mathbb{R}^{(N)}$. Then

$$\begin{split} \left\| \sum_{i} x_{i} u_{i} \right\|^{2} & \geqslant \sum_{k} \alpha_{N+k}^{2} \left\| \sum_{i} x_{i} u_{i} \right\|_{N+k}^{2} \\ & \geqslant f(N)^{2} \sum_{k < K} \alpha_{k}^{2} (\lambda_{k}^{2} - \varepsilon^{2}) \geqslant f(N)^{2} (1 - 2\varepsilon^{2}), \end{split}$$

while

$$\left\|\sum_{i} x_{i} e_{n_{t}}'\right\|^{2} \leq N\varepsilon^{2} + g'(N)^{2} \sum_{k} \alpha_{k}^{2} = g'(N)^{2} \left(1 + N\varepsilon^{2}/g'(N)^{2}\right),$$

so that

$$\|\sum_{i} x_{i} u_{i}\|/\|\sum_{i} x_{i} e'_{n_{i}}\| \geq \frac{1}{2} f(N)/g'(N),$$

which by hypothesis is unbounded as a function of N, contradicting the fact that $(u_i) \approx (e'_{n_i})$.

Acknowledgements. I am extremely grateful to Peter Casazza, for acquainting me with so much of the weak Hilbert space folklore, and to Charles Read, for his indispensable mathematical guidance.

- [0] P. G. Casazza and T. J. Shura, Tsirelson's Space, Springer, 1989.
- [1] W. B. Johnson, A reflexive Banach space which is not sufficiently Euclidean, Studia Math. 55 (1976), 201-205.
- [2] J. Lindenstrauss and L. Tzafrin, Classical Banach Spaces II, Springer, 1979.
- [3] V. D. Milman and G. Pisier, Banach spaces with a weak cotype 2 property, Israel J. Math. 54 (1986), 139-158.
- [4] G. Pisier, Weak Hilbert spaces, Proc. London Math. Soc. 56 (1988), 547-579.
- [5] -, The Volume of Convex Bodies and Banach Space Geometry, Cambridge Univ. Press, 1989.

TRINITY COLLEGE Cambridge, U.K.

> (2643)Received January 19, 1990 Revised version December 7, 1990