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Some more weak Hilbert spaces
by
ALEC EDGINGTON (Cambridge)

Abstruet, We consiruct, by a variation of the method used to construct the Tsirelson spaces,
4 new family of weak Hilbert spaces which contain copies of I, inside every subspace,

Preamble. The notions of weak type 2 and weak cotype 2 were introduced
by Milman and Pisier in [3]; Pisier presented weak Hilbert spaces (the
intersection of these two classes) as objects of study in [4]. That Tsirelson’s
space T, is a weak Hilbert space had essentiaily been proved in [1], where it
was also shown that T; contains no isomorph of I,. Recently the theory of
weak Hilbert spaces has developed apace: yet the scarcity of known examples
remains irritating —until now, the spaces T;(0 < d < 1) and their duals, Hilbert
space itself, and all subspaces of quotients of finite I,-sums of these, were
essentially the only examples known. In this paper we present a few more.
There still remains, however, the problem of finding examples (if there are any)
without an unconditional basis, or even without a basis.

DerinrTions. Given a sequence oe(R*)N such that
Ym =1,
m

and
'514 < am+1/mm < 5U

for all m, where 0 <, < dy < L.
Write RN for the vector lattice of all finitely supported vectors in RN".
If x and y are two vectors in RN we denote by x'y the vector whose ith
coordinate is x,;p,.
Call a k-tuple (y;: i < k) acceptable (acc.) if y,e RN, supp(y) < [k, o), and

Zi'\klyi < L.
For xeR™ define

Ixo = sup{lx,: neN*Y,  [xlZey = sup{ Y Iy xla: (v acc}.

i<k
By induction we see that |-{,, is a norm on RN which is 2-convex (ie.
()2 + 191%)2), < (xl3 + |y 13)H7) and satisfies [x],, < [Ix[l;, for all x. The
canonical vectors e, (ne N*) constitute a normalised 1-unconditional basis for

N
(R( ) m)
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Finally, set i
Il = (3 e I x01%)"
m

and let X = X, be the completion of R™"" with respect to the norm {|-|. Note
that {e,: neN¥) is a normalised 1-unconditional basis for X, X is 2-convex,
and |x|| € x|, whenever xeR™",

LemMa C. If xeX and (y) is acceptable then
15l = 8,07 lvx i),
i
Proof.

51%2 ”J)rx“z 51.22“»1 H.ya x”r%a = 6} Z‘xmz “}’r Xl m

% 5?.):%: Ixlie, < Z‘xm+l Ixlims < “JCHz- "
m m

TueOREM 1. X is a weak Hilbert space.
Proof. (The following argument is based on that employed in [5] to show
that Tsirelson’s space is a weak Hilbert space.)

(I) X has weak cotype 2. Write X, =[e,: n > k]. Suppose yq, ..
e X,. By 2-convexity we have

H(};mﬁ)‘”ll

o Vi1

< Iy i) .
Writing
= .21/2 = x"zo,
*= QT e, {uf)n/»»,,, x, %0,

we have z;x =y; and ),|z)* €1, so by the above Lemma
el = 83 byl )

In other words,
ST I < I < ()

This implies (see [5], Lemma 13.3) that every k-dimensional subspace £ < X,
has dy = d(E, 1%) < 4/5,.

Noyv suppose E < X, dimE = 2k: then dim(EnX,) 2 &, so AF < EnX,
< E with dim F = k and d, < 4/8,. This shows (se¢ [5], Thm, 10.2) that X has
weak cotype 2.

(I) X has type 2: X has weak cotype 2 =» (see [5], Prop. 10.7) X has colype
g (Vg>2). But X is 2-convex, so (see [2], (1.£3)&(1.£9)) X has type 2. w

. We will now show that two more (a priori different) definitions actuafly
yield the same norms as the |||, defined above.
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DEFINITIONS, Suppose (y;: i < k) is acceptable. Then (y;} is allowable (all) if
¥: = g, Where the (E;) are disjoint and | J;E; < [k, oo}
For xeR™N" define

[ely = supff: neN"),  [sher = sup (X Lyl () all).

ProrosiTion 2. [-1, = 1|, for all m.

Proof. (Again, the argument given here is based on the proof in [5] of the
corresponding result in Tsirelson’s space.) It is clear that [x],, < ||x/,, for all x.
By 2-convexity,

1
§xl = [x'2]a
defines a norm on R™N')
To show [x],, = ||x|, for all x we use induction. We have the case m = 0, s0
assume the result for m.

Suppose xe RN If (y) is allowable then

§x§m+l = [|x|1/2]m+1 Z,D’villxll/zjrzn = Zﬁyi'xﬁma

since y; = yi. For NeN set
C = conv{(y: i <k (y) all, supp(y) < [k, k+N)}
=z i<k): 20, Zz 1, supp(z) < [k, k+ N)}.

Therefore for all (z)e CV,

Uxlm+1

? Zﬁzi'xﬁm'
So l

Dt = 9020 > (0 T) - = [zH2-x23)%.
But as (z)) runs over C{¥, (z}%) runs over all (non-negative) acceptable k-tuples
with supports inside [k, k+ N). Since N is arbitrary it follows that whenever (y,)

is acceptable, i
CxTmer = (50 x12)' % 2 (2 lyexi2)',
i i

$O [X]ma1 2 Ixlmsq- m

DEFINITIONS. Suppose (y;: i < k) is allowable. Then (y,) is admissible (adm.)
if yy = xp, where k < Eq < ... < Ey—y. (Here and elsewhere the notation E < F
(where E and F are noncmpty subsets of N¥) means that max E < min F; we
write k < E meaning k < min E.)

For xeR®N") define

lxllly = sup{ix,: neN*},  lixllh, = Sup{g iy 2lZ: () adm.}.
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DEFINITIONS. An ailanthus is a tree with a positive integer at each node, such
that

(a). the number of branches emanating from a given node is less than or
equal to the number at the node, and

(b) the number at the end of a branch is greater than or equal to the
number at the node from which the branch emanates.

For example,

2
/N
2 3
/ /1N
4 3 5 8
1IN 1NN

is the beginning of an ailanthus.

A subset S = N7 is m-OK if it occurs as the mth row of some ailanthus.
Thus {2} is 0-OK, {2, 3} is 1-OK, {3, 4, 5, 8} is 2-OK and {3, 4, 5,6, 7} is
3-OK. Note that if /1 N* —N" satisfies f (1) > n (Vn) and § is m-OK then £(S)
is m-OK, and any subset of an m-OK set (m = 1) is m-OK.

Notation. If E = N* we write Ex for y;-x.
ProrosiTiON 3. If xeR™NY) and meN then

Cx1m = [l = sup {|Sxfj,,: § m-OK}.

Proof. We proceed by induction, the case m = 0 being clear since the
0-OK sets are just the smgletons Assume the result for m, and suppose
xeR®).

Clearly [x]m+1 2 [lIX]ln 1

(1) [xlm+1 < sup{}iSx|,,: S (m+1)-OK}: Suppose

[x:112n+1 = E [E;JC],%,

i<k
where the (E) are disjoint and E; < [k, o). By hypothesis we can write
LEx],, = 1S, Ex],,

where §, is the mth row of an ailanthus A;. We can assume that every node of
Agls > k {Replace each node which is < k by k, and we still have an ailanthus.)
In particular, the rop node of each A, is >k, so that

N
AL A

oo Aoy
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is an ailanthus. Let S be its (m-+1)th row, ie. S = |;S;. Then
[T = 2 [Ex] = 2 IS Ex|lf, < 1Sx]lE.
i i
(1) sup{||Sxf,: S (m+1)-OK} < |i|x|lw+,: Let S be the (m+ 1)th row of
an ailanthus A. Observe that if we put each row of A in non-decreasing order
from left to right we still have an ailanthus. (Start at the top and work down.

Order each row by a succession of operations each of which replaces
.b...a...by...a...b... where a < b.) Having done this, write A in the form

/ N

0 Ak 1
where each A, is an ailanthus. Let Si be the mth row of A; so § = { J;S;. By
deleting any repetitions among the §; we may assume that the S, are disjoint.
Since the top node of A must be =k, we have k< S§; <...< 8-, and

1517 = S 1813 < LSl w

Lemva 4. Suppose (u;: ieNj is a normalised block basic sequence in
X,NeN, ¢>0 and MeN'. Then Jvespanu, such that

@ folly =1,

®) livl,, <& (Vm < N), and

©) Yj<pm|Eplls < & (Vm < N) whenever E, <.

Proof. We proceed by induction on N. If N = 0 just take v = ug/|u,llo-

Now assume the result for N.-
Take keN*, k> 2M/¢%, and choose ¢ > 0 (i < k) so that

Vet < le/M—2.

<EM-1.

Choose ro 2 k and for i <k, step-by-step choose v;espan,u, such that

@ lzly =1,

(®) liv;ll. <& (¥Ym < N), and

© Yem |Ep )3 < & (¥m < N) whenever E, <
where suppy; < [r;, Tit1)s
M,- ? T{—-j_'{"‘k
< My_; €< M,
k7123 0. So [[wly+y 2 1.
< gy =1y write F, = [4q,, qo+1)-

< Eyoq,

Write H, = [r,, riﬂ}. Let w=

Now suppose m < N and ry 1< ¢p <
Let i be such that v, <L <ry,.

(I) i=k~—1: Then

Z ”stur%- "—Z I F v - 1Hm

s<l s<l

82

Hvk 1Hm+1 Sy <o

—_
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(IT) i < k—1: Subdivide the (F,) at the k—i~1 points r4q, ...y Py and
f;lllabel them as G, <...<G,~y where v</+k—i~1<ryp1+k€ M, ,.
en

1
S UFME = D IT i <3 T IS Gl

s<l s<l <k s<v 1<k

1 1
=1 % Y ITculi=g

isy<k GaEIIT <k

Tk
1 2
< T IGuli+ ¥

S H¢ [+ P1=F FP

> Y Gwl2

i€y<k G,

1G04 o3+

e 2 &)

’ i+agy<k
1 ke?

< E( ol + 21l "P“M“*Z)

1 kg? g2
S"l 1 —_— = —
i1+ 2)- 2

Hence in any case we have 2 g 3 - _
<P i ve [wliey < 8%/M; also ||w|3 = k™ 'sup, |v,)2 < k™!
" Thus for all m < N+1, |w], < ﬁ/\/l\_dés and for a
’ m y any Ep < ... < Ey_,,
Li<m|E;wln < Mwli < ¢ Finally, set 0 M-
U= wW/lwyge . m

COROLLARY S. If (u;: ieN) is a block basic se
SRL quence on the (e,), 6 > 0 and
NeN, then Ivespanyu; with o] = 1 and (F,,<yed [0)2)"* < e.

Proof. By the Lemma we can obtain wes .
pan;u; with =1
1wl < atye (¥m < N). Let v =w/|w|. Then i Wil and

a2 o2y ¢ Ené 231/2
(MZC:N m“ ”m) = Hw“(mgNGCm) <& m

o lTHEOREM 6. Any infinite-dimensional subspace of X contains an isomorph
3

Proof. Suppose Y< X, dimY = o0, and 1 > &
rroo ; S A, = o0, &> 0. 80 Y has a subspace
\g;nf;l is l1)somcgphu1:] to the closed span of a block basic sequence (u,) on. ‘thep(e )
& above Corollary we can obtain disjoi v i i o
ot Tol L isjointly supported (v,) in span,u, such
‘ ( X

qiSm<gyaq

1/2
a2 o d2) = (1—e2)ii2,

where g, < g, <...
Suppose AeR™. By 2-convexity we have

il;xkvknz <Y 42l )% = T 1A%
k k

Il
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On the other hand,

HZ")M%HZ =0 szl/lkvkm?z 2

i ogySm<gjsi

N DI RAE
3

EDYEED)

J grSm<gje1

iAoyl = (1= T 1A%
i

This theorem sharply distinguishes X from the Tsirelson spaces, which
contain ne isomorphs of [, (see [0]). We now recall their definition.

DepNiTIoNs. Given 0 < d < 1. For xeR™") define
lixlls0 = sup{lx,): neN"},

Xl = 202Xl s S5up {2 Iy xl3) 2 () ace}),
Ix]l5 = sup{Ixfism: meN}.
Tsirelson’s space Ty is the completion of R™N" with respect to the norm ||,
3

Clearly if xe RN then xllsm < %], and 8" [[xl < 1% ]ls.m-
We can ase the fact that T; 21, to show:

THEOREM 7. X % I,.

Proof. Suppose X = l,. Then the sequence (e,) is itself equivalent to the
canonical basis of I,. Now choose &8y, 1} and observe that (for xeR™")

1x] = (T adlx2)? < (L—83)V2 (Y 83 il 2) "
= (1= 3} (L G/ 8™ )

< (1—8HM2 (L= (6/8)%) " supu(8™ |x1.,)
< (1= V21— (3/8)2) " x5 <€ Iy

a contradiction. m

The above argument works equally well to show that no subsequence of the
(e,) spans a Hilbert space. Thus we see that X is not isomerphic to an l,-sum of
finite blocks taken from Tj: indeed, {e,) is a normalised sequence tending
weakly to zero which contains no Hilbertian subsequence; an easy compact-
ness argument shows that this is impossible in such a space.

‘We now proceed to show that X, & X if o and o are sufficiently different.

To this end, suppose that X, = X .. Then thereis a normalised biock basic
sequence (#;) cn the (e,), and a subsequence ny, <ny <. of N*, such that
(u) = (e,). Now [, < ot ! for all i, so by passing to a subsequence we may
assume that, for some numbers A, lu),— 4, as i— oo, for all m.
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We certainly have ¥ ,a212 < L. In fact Y0545 = 1: for suppose not; then
>0, My <M, <...and i, <i, <... such that

Yl (n).

MpyEm<Muys,

Then for any xeR™, |¥,x,u, ||° < $,lx/* (by 2-convexity), and

”an“inH =Z°¢m”2xn”tn”i?Z > A pIeS ”tn”m
n L] ] ko MpEm< Mg . Ll
2 X

k Mpsm<Mpg,

o‘:mlxkl2 I[umHm = 2 Z |xk|29

so that (u, ) =~ I,. But (ui) is equivalent to a subsequence of the (¢}), so this is
impossible.

We now prove a lemma which in both statement and proof is very similar
to Lemma 4.

DerNiTION. Given a subsequence p = (p, < p; <...) of N*. Call a vector
xeR™ (p, 0)}-good if x, =6, for some n. Call x (p, N+1)}-good if
x = k12 ok x; where keN"‘“ the x; are (p, N)}-good and [ < suppx, < ... <
supp x;—; where p, 2 k.

) LEMMA 8. Suppose ny <<ny < ... and py <p,; <
N*, NeN, ¢> 0 and MeN*. For xeR™ write

T(x) =) xe,.
i
Ther AxeR™ such that
(@) x is (p, N)-good,
(b} [T, <& (Vm< N), and
© Y <m|E; T3 < & (Vm < N) whenever Eo

Proof We use induction; if N = 0 set x; = J,;. Assume the result for N.
Take keN™ such that k> 2M/e%, and ¢ > 0 (i < k) such that

S gl < ke*/M 2.

v < By g,

Choose r, such that n,, >
(@) x; is (p, N)-good,
(b) 1T 0x)llm < & (¥Ym < N), and
(©) Yy<re |E; Tl < 8 (Ym < N) whenever E,

where suppx; S [r;, rivq), M, 2 otk for i=2

< M,. Write H, = [n,, 5, )
Finally, let x =k"*?%" x,. By construction x is {p. N +1)-good.

Suppose m <N, and r,< g, < ... Sq=r, where n, <I<n
Fy=[n,,n,, ) Let i be such that n, <l<n

kand p,, > k, and for i < k choose x,6 R™ such that

<o < By
k=1, and M, <

s Write

i

.. are two subsequences of
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(I) i=k~1: Then

o2

FTO)|2 =~ T ,,,\*T I P
BRI =5 £ I T0e il < IT s <4 < oy
(IT) i < k—1: Subdivide the F; at the k—~i—1 points n,__, ..., %, _, and
relabel them as G <. <Gv 1, where v l+k—i—1l<n,  +k< M.
Then
Y IF T(x Ilm=;c~Z | 2 F.T(xllm < Z HZ G, T(x)]n
s<l . s<! <k s<v 1<k
1
=72 L Y GTk A
i<y<k G;%H, t<k
1
éﬁ( 2 GTEIR+ 2 16T )lnt+ Y &)

GsEH; GsEHi+1 i+2€y<k—1

1 ke?
< E(H T2+ T (xix D+ +——2>

M
1 ke? - .fs2
k(1+1+ﬁ—2)

Hence in any case [T()2:: <e¥/M; also |T(x)3= k™ ‘sup,| T(e)l3
< k™t < e%2M < ¢*/M. Therefore for all m < N+1, [T, <&/ M <&,
and for any Ey<... < Ey-y, YemE,TOIZ S MITX)|5 <& =

LEMMA 9. Given NeN, ¢>0 and KN, 3xeR™ such that x|, =
iXixenll, <& (¥m < N) and 13l 3 e = A —€* (Yhk < K).

Proof. By deleting the first few u; and e}, we may assume that
w2 = A2 —¢* for all i and all k < K.

Suppose suppw; < [p;, pi+1) Apply Lemma 8 (in the space X ) to obtain
a vector xeR™ such that x is (p, N)-good and ||}, x,€,/|,, < & for all m < N.
The former implies, firstly, that |x{,, = 1, and, secondly, that {p;: x; # 0} is an
N-OK set; hence for all k < K,

|3 e =
i v

DermNITION. Given o and o, write o}~ to mean that

Z ”xiuiHl% Z - m

xi#0

o PON
inf — &

X 1nf

P % Ok

is unbounded as a function of N.

For example, if a, = (1—69)Y26™ and o, = (1—

)9 ()" then oo
provided & > &". : :
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More generally, if NeN* and S, & are subsets of N such that
card(SA[PN, (r+ DN)) =k, card(§' PN, (r+ N)) = K

for each r, and if

o &, mES, Oy

then «|-o provided & > &' and k > k'
TueoreM 10. If ¢-o then X, % X,.

Proof Write

PR
Given N, take &> 0 so small that
1—2¢% 1
1+Ne2/g' (N>~ 4
and take KeN so large that

Y af AR < &
k2K

Apply Lemma 9 with these values of N, ¢, K t

2
¥ xu” = Zoc%wﬂlzx:u;lliﬂ
7 % :

(NP Y, af(Af—e?) = f(N)*(1-2¢6%),

k<K

while

|I;x,-e;,n2 S Ne?+g (NP Y of = ¢ (NP (1 + Ne*/g' (N)?),
k

so that

HZM“:H/'Ileeeﬁu“ 2 %f(N)/g’(N},

which by hypothesis is unbounded as a function of N, contradicting the fact

that (u) =~ (e;,). =
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Uyt {5, mes, Gyt

SN =inf B (8 g ON) = sup Tt
k

!

(< (6.

o get a vector xe R™. Then

Weak Hilbert spaces 11
References

[0] P. G. Casazza and T. J. Shura, Thirelson’s Space, Springer, 1989,

[11 W.B.Johnson, A reflexive Banach space which is not sufficiendly Euclidean, Studia Math. 55
(1976), 201-205.

[2] J. Lindenstrauss and L. Tzalriyy, Classical Banaeh Spaces 11, Springer, 1979.

[3] V.D. Milman and G. Pisier, Bauach spaces with ¢ weak cotype 2 properiy, Israe’ J. Math. 54
(1986), 139-158,

[4] G. Pisier, Weck Hilbert spaces, Proc. London Math. Soc. 56 {1988), 547-579.

[5] —, The Volume of Convex Bodies and Bunach Space Geometry, Cambridge Univ. Press, 1989.

TRINITY COLLEGE
Cambridge, UK.

Received January 19, 1990 (2643)
Revised version December 7, 1990



