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A model for some analytic Toeplitz. operators
by

K. RUDOL (Krakow)

Abstract. We present o change of variable method and use it to prove the equivalence to
bundle shifts for cortain analytic Toeplitz operatars on the Banach spaces HP(9) (1 € p < w), In
Section 2 we see this approach applied in the analysis of essential spectra. Some partial results were
obtained In {9] in the Milbert space cuse.

1. Functional medel. Given a bounded plane domain % and a nonconstant
function ¢pe H*(%), we consider the multiplication by ¢ operator T = T,
acting on the Hardy space H?(%), where 1 < p<co, Let Q= ¢(#). Since for
complicated symbols ¢ the handling of this operator presents many difficulties,
it is quite useful to know whether T is isometrically equivalent to a “shift” T;of
the Hardy class HP[E] related to some analytic vector bundle E over Q.
Indeed, 7}, is the multiplication by a perfectly simple function: the complex
coordinate, Le. (T,1)(2) = Af(}) for f €HP[E]. (The basic notation can be
found in (1] and [8]. By an analytic vector bundle over O we mean here
a complex manifold E together with a holomorphic projection =: E — § whose
fibres £, = n ™' {1} are Banach spaces linked in a regular manner: for any point
A we can find its open neighbourhood U, a Banach space K and an analytic
isomorphism 7~ U -+ K x U whose restriction to E 5 18 a linear isometry onto
K x {1}. The space H?[E] consists of those analytic mappings f: Q — E which
are cross-sections of FE (i.c. satisfy n(f(4)) = A, e Q) and for which the function
A= [ 7 (A has & harmonic majorant on £2) Our method depends on the
properties of the set Q rather than on the domain %, which can even be
replaced (under suitable conditions) by a Riemann surface. Since the shift T,
shows some “inner-like” behaviour,. the natural requirement on ¢ is that it
“maps the boundary (9%) of ¥ into 99Q” in the sense described by our
“boundary condition” (b) given below. The latter has clear motivation in the
case p == 2, when analytic Toeplitz operators are subnormal. A characteristic
feature of the subnormals § equivalent to bundle shifts over Q is that the
minimal normal extension N of § satisfies o(N) & 09, while ¢(5) < .

Let us fix some notation, We can always take analytic universal covers
T DF of Fand t; D0 of Q with ¢ (t(0)) = £(0). Let u be the normalized
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Lebesgue measure on éD. For he H?(D) denote by e LP(u) its boundary value
(ie. h(rz)—h(z) as r—1~ for ae. zedD). Now we can formulate our first

(necessary) condition:

{b) (pot) (2)e8Q  for almost every [1] point zedD.

Let us define g to be (o) treated as a measurable function on &D. Now (b)
simply states that ufo™'€2) = 0. Using the invariance of harmonic measures
(statement (x) below), one can obtain an equivalent version of (b} in terms of
cluster sets:

(b") d(p, ) < 6Q  for ae A€d¥,

Here a.e. means “almost everywhere w.r.t. harmonic measure for ¢”. Il is
the unit disc D, then the above condition holds when ¢ is either in-
jective, a universal cover or an inner function. However, for
4 = {zeD: 0 < Argz < 3n/2}, when ¢(z) = 22, it fails. The assumption (b) is,
in a sense, justified by the following fact. (Here we assume for simplicity that 8%
consists of pairwise disjoint circles accumulating only on a countable set of
points, cf. [10].)

1.1. LeMMA. If the condition (b) fails, then even for p =2 our T cannot be
equivalent to any bundle shift over (.

Proof First we show that ess.rg(g)n@ # @. If not, then to any point of
O we can associate an open neighbourhood ¥V with p(e™'¥) = 0. By taking
a countable subcover, we reach a contradiction: u(p™'£2) = 0. For p =2, the
minimal normal extension N of T can be identified (cf. [1], [8] and for the
minimality [6], [10]) with multiplication by ¢ on the subspace of L*(w)
composed of the functions automorphic w.r.t. the cover . Since the indicator
(ie. characteristic) function of the pre-image o'W of any set W is also
automorphic, it is easy to verify that ¢(N) = ess.rglg) w

Our remaining assumptions are of geometric nature and are satisfied by
any finitely connected domain Q. We summarize them as follows.

(8) (&)= Q is conformally equivalent to a domain 2, of Parreau-Widom.
type on which the Direct Cauchy Theorem holids and whose inner boundary
has Hausdorff dimension less than one. Additionally, we assume that H™ (%)
is dense in H*(%).

Although our assumptions are weaker (for p = 2) than the conditions of [8]
necessary in the general setup, we have the following result.

1.2. TrEOREM. If a nonconstant @& H® (%) satisfies (b) and (g) then T, is
isometrically equivalent to a bundle shift over L.

Proof We begin by showing that the proof can be reduced to the case
when (g) is satisfied with @ = Q,. Indeed, in the general case denote by
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w: £, - Q the conformal bijection and let § = T,, where ¢ =x"lop. If
¢ satisfies (b), or (b"), then so does y. Suppose that we have shown the isometric
equivalence ol S to the shift T}, for a bundle F over 2, (notation: § ~ T;). Now
(g) implies (as in [81, p. 426) that » is pointwise boundedly approximable on €,
by a sequence of rational functions without poles in Q7. Consequently, in
the sense of functional calculus, we have T, =x(S)=x(T;), where
(T h)(x) = x(2)h(z) for heHP[F], zeQ,. [That the action of a rational
function, say r, of the given multiplication operator (by &) acts as multiplication
(by rof) is obvious and the mentioned approximability concludes the ar-
gument.] The conformal change of variable w = x(z} induces the bundie E over
Q, corresponding to F, so that the isometry f - fox™! rom H?[F] onto
HP[E] carries %(T}) onto the bundle shift T;. (The norming points, say ¢, ¢,
should be chosen to satisly ¢ = x(,))

Thus, we have reduced the problem to the case Q= Q,, with S=T,
satisfying (b) and {(g). As before, put p = (por1)" . Define the measure w on §2 b;:
@ = o(u). In other words, [hdw = [(hog)dy for any he #(2Q). From [8] or [9],
we know that

(*) =i and w is the harmonic measure for § evaluating at t(0).

Now, by the isometry g—gort from H?(%) onte some subspace A4 of
H?(D), we have S =~ T,.| . Hence multiplication by ¢ = (pot)” on L"(u} is
isometrically equivalent to an extension of S, The method of representing the
operator of multiplication by ¢ as multiplication by the coordinate function on
the direct If-integral #, = [® I7(v,}dw(y) of Banach spaces, presented in [2] for
p =2, applies also for 1 € p < co. Here v, (ye0Q) are the measures on 6D
obtained by disintegration of u with respect to ¢ and the space #, consists of
the functions f'(y, z), y€ 822, |z| = 1, with f(y, *)e L*(v,) for almost all y=éQ and
such that the L”(v,)-norms || f(y, )|, define an LP{w)-function in y. We also
often write £(3) for f (v, *), treating f as a vector-valued function. The norm in
#, 1s defined by

L1 = (1 N dw)™

Given Fe LF(u), the mentioned correspondence defines F(y, *) as the element of
L*(v,) determined by F and it sends 4" onto a subspace . of #,. Thus,
S T, 4 where (T,/)y, 2) =zf(y, z). Now, our result will follow from
analytic description of the subspace 4.

Clearly, .# is pure invariant under muitiplication by z:

(#%) z oW and if A, M, FH, S H, 2 2H,, then #, ={0},

Indeed, if a subset .4, 5 {0} of .# satisfies the condition in (%), then so does
its closed linear span and, by the Stone-Weiersttass theorem, . is invariant
under multiplication by any continuous function on 8@2—in particular, by z7%
Hence (after returning to ') we obtain a nonzerc analytic function having
a zero ol arbitrarily high order.
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Note that by (x), the mapping f— fot is an isometry from g, onto
a subspace of [® [F(v)du(x) for any p. Here we write ¢ instead of 7 for
notatzonal convenience. Let # stand for the corresponding image of
A (W = M ot). To our % there applies (a part of) the proof of Theorem 4.1 of
[8]. But, unlike in [8], the elements of #~ are functions taking values in Banach
(not Hilbert —unless p = 2) spaces and these spaces vary with x, |x| = 1. For
p = 2 the latter difficulty is not essential: #, is always a subspace of L& (w) for
some Hilbert space X (cf. [2]). The version of Beurling’s theorem ([5], Th. 9
for Hilbert-space-valued functions then applies, making all other steps of the
analogous proof from [8] available. To handle the general case one needs the
following version of Beurling’s theorem for Banach-space-valued functions, It
does not seem to have appeared in the literature.
Consider a measurable family of Borel measures ¢, = 0 on 4D, of mass 1.
For a subspace ¥ of {® L?(g,)du(x) put ¥ nI* = {fe?": f(x}e Li(g,) for ae.
x, with (x| £ (x)] )& LG}

1.3. THEOREM. Let ¥ be a subspace of # = [® LF(g,)du(x), invariant under
multiplication by z and pure in the sense of (#+). If ¥~ L? is dense in ¥, then
there exists a subspace & of ¥ and a decomposable isometry ¥ Li— # such
that ¥ = WH?, and ¥ restricted to LynL? is isometric into FNL* in the
respective Hilbert space {L?) norms. The latter condition makes ¥ unique up to
a constant unitary factor.

Proof Assume first that I < p <2 ¥ nI? is then a subspace of #~I?,
closed in the I*-norm and pure invariant (by (++)). Theorem 9 of [5] applies.
The careful reading of its proof shows that the space # corresponding to
¥ ~L?, call it #,, can be chosen to be a subspace of _#,. Moreover, the
decompasable isometry ¥ takes then the canonical form (induced by inclusion)
and it is a “universal isometry”, i.e. it carries Lf-norms onto Li-norms. As
p < 2, the completions of ¥*'nL* and of Hj, in the LP-norm are ¥ and
HZ respectively, while ¥ extends to a decomposable isometry between these
two spaces. The case 2 < p < oo follows by a duality argument, m

Since H*(%) is dense in H?(%), the nature of all mappings defined so far
yields the density of A4 ~L* in .4 and the appropriate spaces appearing in the
proof of Theorem 4.1 in [8] satisfy the conditions of our Theorem 1.3. Now the
rest of the proof of Theorem 1.2 proceeds as in [8]. m

2. The essential spectra. In [3] the essential spectrum ¢,(T,) is described as
the union of the cluster sets cl(p, y) over the set f,(#, p) of all points y & 3% that
are not “meromorphically removable” for H?(%). For domains with “small” inner
boundary, (¥, p)= 09 and then ¢,(T,) is the global cluster set of ¢. By
Theorem 1.2, there is another way of finding ¢,(T,) if ¢ satisfies (b) and (g).

From now on, we fix 8= Ty HP[E]—HP[E], the shift of an analytic
bundle E over a bounded domain 0 = C. Since there exists a functional
calculus in S, “based on H®(Q)”, ¢,(S) = Q (cf. [7]).
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Let k be the dimension (the same Yye Q) of the fibre E, of E over a point
ye Q. Then k is the codimension of (§—y)HP[E] = ker(f —f (), as one easily
verifies. Also ker(S—~y) = {0}, Hence,

(21) 0 (S) is contained in 8Q If k < oo, and is equal 10 3 otherwise.
In special cases, this result can be strengthened:
(22)  If Q is finitely connecied and if k < o, then a,(S) = dQ.

Indeed, in this case S is similar to the shift M &1 of a trivial bundle Q x C*
where I is the identity on C* and M is the shift considered in [37] (Thm. 4.3), as
follows from Theorem 2 of [1] applied to a smoothly bordered domain
conformally equivalent to £

Although the definition of quasisimilarity carries over verbatim to Banach
space operators, the outstanding deep results on quasisimilar subnormal
operators (like: o (T) = 0,(S)) on Hilbert spaces lack any Banach space
counterparts so far, The following application of Theorem 1.2 seems to be the
first attempt in this direction.

2.3. CororLARY. If'T and 8 are twa quasisimilar Toeplirz operators on HP (%)
with symbols @, e H* (%) satisfying (b) and if Q = @(%) = (D) is finitely
connected, then o (T) = ¢ ,(S) and the opcrcztor.s are similar. If, morecver, ¢ is
univalent and 9 is simply connected, then they are isometrically equivalent.

Prool. To establish the second claim, check first that y is then injective
(e.g. by noting that dim(ker(T—2)*) < 1 for AeC implies the same for S). Now
¢ satisfies (b)&{g) with Q = ¢(¥) and (2.2) yields o (T) = Q. But the same is
true of S, since @(#) = (%), To check the isometric equivalence, use Thm. B of
[1]. As pointecd out by the referec, one can also use a conformal change of
variable in % (hat carries  to ¢, and the corresponding isometry of I”-spaces.
In the case of p=2, % =D, a part of the above corollary corresponds to
a much stronger result of Cowen [4]. Note also that if ¢ is injective, then (b) is
satisfied automatically.

Addendurn, 1 wish to thank the referee [or useful suggestions and for
drawing my attention to a cycle of works related to [11], where an analytic
functional model is given for a wide class of Toeplitz operators with rational, or
even meromarphic symbols, The model is up to similarity, but the main
difference is that in the case of a meromorphic function with no singulatities
(such as our ¢) ong oblains as its model the multiplication operator, whose
symbol (the projection T of the Riemann surface of ¢) is not simpler than
¢ itself, The point in [11] is that while the symbol can have poles, the
projection IT is regular. Multiplication by IT acts on spaces of functions on
a bundle, unlike our 77 defined on spaces of cross-secticns of E.
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I also wish to thank Professor J. B, Conway for pointing out the following
mistake made in my basic work [8]. The assumption 2.8(a)(b) in [8]
{appearing in the main results) should have been made earlier and replace its
weaker form (2.3). The gap in the proof of Proposition 2.5 resulted from the
possibility of the situation where there are more than one nontrivial Gleason
parts of R{Q). This gap is then filled as follows. If U is the connected
component of int({2) containing Q, then points of AU either belong to the same
part of R{({3) as U, or are peak points for R({) (cf. Exercise 8 in Chapter VI of
T. Gamelin’s Uniform Algebras). Thus, any other nontrivial part of R(£3) must
lie in 8@\ AU, a subset of the inner boundary of 2, which by (2.8)(a) is small.
S decomposes as a direct sum of operators with spectra contained in the
closures of nontrivial parts of R({3). All summands except one are normal, since
8Q\ 8,0, being a peak (hence closed} set of small Hausdorff dimension, has
zero area, but the purity assumption implies that no nontrivial normal
summands exist.
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Inequalities for exponentials in Banach algebras

by
A J PRYDE (Clayton, Vie)

»

Abstract. For commuting elements x, v of 2 unital ‘Banach algebra & it is clear that
e ) & el le?]l. On the other hand, M. Taylor has shown that this inequality remains valid for
a selt-adjoint operator x and o skew-udjoint operator p, without the assumption that they
cominute, Jn this paper we oblain gimilar inequalities under conditions that lie between these
eatremes. The inequalitics are used to deduce growth estimates of the form [¢*%?| < (1 + [£]F for
all £eR", where x = (x,, ..., X,)e#" and ¢ s are constants.

1. Introduction. Let # be a unital Banach algebra. Then e*™* = ¢*¢” for all
commuting pairs (x, y)e #* and hence

(1) le* ™| < lesl e’}

In this paper we consider the validity of this inequality, and modifications
of it, in the case that x, y do not commute. To begin with, let # = .4, the
space of 3 by 3 complex matrices, together with any norm. The following
example shows that there is no constant ¢ >0 such that for all x, ye.;,

2) el < cleXlle]-
100 0t —32
ExampLE 1.1, Let x= |0 0 0| andy= |OQ O t where teR.
000 00 0
Then
e 00 1 ¢ 0 : e tle—1) t*(e—3)/2
&= 010, e=|011¢t], =0 1 t .
001 001 0 0 1

So lle*| = O(l), ||| = Ot [le**?]| = O(t?) as t—co,

Nevertheless, inequality (1) remains valid for certain classes of not neces-
sarily commuting pairs x, y. For example, Taylor [7] obtained - (1) for
self-adjoint operators x and skew-adjoint y. In Section 3 we show that (1) holds
whenever x, y are normal elements of a C*-algebra.

In Section 4 we obtain a weaker estimate for triangular matrices. Indeed, let
7, be the space of n by n (upper) triangolar matrices with any suitable norm.
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