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A bound on the Laguerre polynomials
by
ANTONIO J. DURAN (Sevilla)

Abstract. We give the [ollowing bounds on Laguerre polynomials and Lheir deriva-
tives (o 2 O):
ilkdp([l;’:(t)cwi/‘ﬂ)l < 2~ mh‘l(ﬁ,ﬁ)‘lk(" -+ 1) . ‘(YI- " L) (n +]?+mmc(a -k, 0))
1

for all natural wumbers &, p,n = 0 and ¢ 3 0. Also, we give (a8 the main result of this
paper) & technique to estimale the order in k and p in bounds similar to the previous
ones, which will be used (o see thab the eslimate on & and p in the previous bounds is
sharp and to give an estimate on & and p in other bounds on the Loguerre polynomials
proved by Szegd.

Introduction and results, In (7, p. 239}, the following estimate on
the Laguerre polynomlals ig proved:

If o,k € R and a > 0, then there exist positive constants cg, Cy (which
depend on a) such that

(1) exn? € !p;?’x =tk L2 (1) < Crn®
n

where = max(k — 1/3,0/2~ 1/4),

In [L], the author, in order to characterize the Foutier~Laguerre coefli-
cients in a space of Gel’fand~Shilov type, gave the following bounds on the
Laguerre polynomials (see Corollary 1.4):

(2) It"d”(Lﬂ(t)e;**U?)l < 4-"“(n+ T k)(n+fz+ a)

for all natural numbers k,p,n = 0 and ¢, 2 0.

The bounds (1) cannot be used to prove that characterization because
they do not give an estimate for Cl. Moreover, from Theorem & (of this
paper) we can deduce thal il an estimate on Oy were given, this would
ot be sufficient to prove the results which we prove using the bounds
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(2). Indeed, consider a sequence (@n), for which there exist two con-
stants ¥ > 0 and a > 1 such that |a,| €< ya™® for all n > 0, and define
(1) =Y, anLa(t)e~t/2. From (1), we get

[t F(8)] < Cx Y a~™nt.

Since 3=, a~"n¥ ~ ¢kk* for a certain constant ¢, which depends on a, from
Theorem 5 of this paper we deduce that it is not possible to prove that there
exists a constant A > 0 such that {t¥ f(¢)] < CA*k*. However, using (2), we
get

k
OIS 4R 0 (”']:’“) < (a-“:%) B
In this paper, we shall improve (2) as follows:
THEOREM 1. Ift > 0 then
(3)  |tFaP(Lg(t)e?)

< 2mminleklgk(n 4 1) ... (n+ k) ("‘ + mx(aﬂ“ k,0) + p)

Jor all natural numbers k,p,n >0 and a > 0.

Although the order in n of the bound (1) (max(k — 1/3,a/2 ~ 1/4)) is
better than that of (3) (max(k, a)), it should be noticed that:

a) The bounds (1) are proved for t > a, where a is a positive number,

and it is not possible to extend them to (0, oc) without increasing the order
in #n.

Indeed, if we denote by xo(c) the first zero of L(2), it is well known that

zo(e) > ¢/(n+ (a+1)/2), where ¢ is a constant which does not depend on

a. Now, it is easy to prove that |L3(2)| > y(2) if 0 € z < ¢/(n+ (a + 1)/2)
where y(z) is the line through the points (0, ("t%)) and (¢/(n+-(a+1)/2),0).
Therefore, if k is fixed, it is easy to prove that the bounds (1) cannot be
extended to (0, c0) (without increasing the order in n) for. o > My, where
M is a constant which depends on k. Also (proceeding in a similar way),
if o is fixed, it is possible to find k’s such that (1) cannot be extended to
(0, 00). :

b} The bounds in (1) do not give an estimate on the constant Cy, while
in (3), we give an estimate on the order in k and p. Moreover, we shall prove

(as the main result of this paper) that these estimates are the best possible
in the following sense:

THEOREM 2. Let > 0, M,N € N be given. If there exists an infinile
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. (4) ItkLg(t)eﬂ-Iﬁ' ﬁ 2“mi“(ﬁ’!k)4k(n+ 1)‘ . ;(n_}_ k‘)( .
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subset X C N such that

|thaP(La(t)e=")| £ CA*BP(n 4+ 1)...(n+ k) (“ +m&X(an— k,0) +p)

whenn € X and either k> M orp> N, then A> 4 and B > 1.

(It is surprising that in order to prove Theorem 2, we only need to use
the following two properiies of the Laguerre polynomials: (i} they generate
an orthonormal system in L2((0,00)), and (ii) the formula for the Fourier—
Laplace transform of these orthonormal functions.)

We want to remark that the technique used in the proof of Theorem 2
can be used to estimate the order in k and p in bounds similar to (1) or
(3). Indeed, using this technique, we ghall extend Theorem 2 and give an
estimate on the constants Cy which appear in (1) (see Theorem 5):

TugorEM 3. Let o > 0, M € N be given, If there exists an infinite
subset X C N such that .
b max(a — k,0
[tk LD H?) < CARm A1), (n+ k) (n tm 7(:" ))

when k> M and n € X, then A 2 4.

THEOREM 4. Leta > 0, N € N be given, If there exists an infinite subset
X ¢ N such that

(gwetmi s e

whenp> N andn € X, then B 2 1.

THEOREM 5, Given a,& > 0 and M € N, if there exists an infinite subset

X CN such that the constants Cy (k 2 0) satisfy

[t*(La(1)eH?)| < Cunt® fort 20
when k> M and n € X, then for all A > 0 there ezists an infinite subsel
X4 CN such that Cy 2 A* ifk € X 4.

From this (heorem it follows that the order in k in the bounds (3) is
betier (for infinltely many &’s) than in the bounds (1}, alj;hough we ?;m}ﬂd
do the best cholce for the constant C in the bounds (1), For Instance, taking
ne=k, pe= 0, we deduce from (1) that |t'°Lk(t)c""f2.| < .G’kk’” and from (3)
that [¢5L(£)e= "] € (4/€)*k¥, but Oy 2 (4/e}¥ for infinitely many k's.

n+p-+—a)
n

Proofs of the results. The proof of Theorem 1 is similar to that of
(2) (see [1, Th. 1.3]).

Proof of Theorem 1. First, we shall prove that
n + max(a — k,O)) .
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Indeed, since
tL3(t) = (n+ a) L7 (t) — (n+ 1) LIEH (1)

(see [5, (23), p. 190]; we take LZ_, = 0if n < k and (}) = 0 if k < 0),
proceeding by induction on k, we obtain

k
() tLE@ett = 3 (-1m ( :J (n+1)...(n+m)

mas0

X (n+a)...(n+a+m—k+1)L35k (et
(Notice that the factors in the product (n 4 1)...(n + m) (which appears
in the above formula) are increasing, so when m = 0, this product must be
taken to be 1. Analogously, the factorsin (n+ 0)...(n+ a4+ m —k+ 1)
are decreasing, so for m = k, this product is 1.)

Now, we suppose that o < k. Since [L3(t)e~*/?| < 27 if o < 0 (see

Lemma 2.1 of {3]}, from (5} we get

k

(6) [t Lg(e ) < Y (;)(nu)...(wm)

m=0
Xx(nta)...(n+a+m-k+1)2¢2
<27 (n+ 1)...(n+ k).
Now, if k < a, since
o=y (" e
=0
(see [5, (39), p. 192]), from (6) we get

i(1+a7k—1)tkLﬁ—:(t)|

=0

S.2"'(n+1)...(n+k:)i([+a;khl)

=0

:2’°(n+1)...(n+k)i([+a;k*1)an;(0)

=0
= 2H(n +1)...(n+ K)LIH(0)

=2*(n+1)...(n+k)("+:“’“).

|tF L (E)e"?| =

So, (4) is proved.
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Now, since (d/dt) L2(t) = ~L2t1(1), we have

(1) EP(Lae) = \t*’ > (:’] ) d”‘(Lﬁ(t))(%l—)p_me—‘ﬁl

mz=0

1N <5 (PN ok adm —t/2
<(3) X ()ztsaznmen

szl

1V < P) 17 g kol ot m k)
<) X ()

mel
X 45(n—m+1)...(n—m+k)
« (n--m+maac(a+m-k,0)).
n-—m

If a < &, (7) gives
1\? r
|t_"d’°(Lﬁ(t)C—m)| < 2-—«4#(."’ + ‘1) - .(n + k) (5) z (m)

n‘-—}-mSk
nt+a-—k
2R (n ). (n b k) D («i)( n—-m )
atm2k
ﬁ e min(a,k34k(n + 1) ‘e -(n + k) E (’J:l) (n ..fm)
m=0
= 2mmin(a,k)4’¢(n + 1) - (n + k) (n -:; P) )

and if o 2 k, (7) gives
n
p\/n+a—Fk
|t"‘d”(Lﬁ(i)e"“n)| <2*m+1)...(n+k) z (m)( nem )

m=0

z'Zh(n-}-1)...(ﬂ+k)(n+a;k+P):

and the theorem is proved,

Preliminaries to proofs of Theorems 2-5. The proof of .Theorem 2 u}
unexpected and gives a technique for estimating the or‘der in k and p oh
bounds like those given In Theorem 1. We start by giv.mg a short sketc
of the proof, which we use, firstly, to motivate the deﬂfutions and lem:(lna.s
prior to the proof of Theorem 2, and secondly, as a guide to the complete

proof of the theorem.
Sketch of proof. Given A, B > 0, we suppose that there exists an
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infinite subset X C N such that

~ k,0
|t*dP(LE(t)e /)| < CA*BP(n+1)...(n + k)(" + ’“‘”‘(“n )+ ”)

when n € X and either k> M orp> N.

First step. We construct a function f, and using the above bounds
on the Laguerre polynomials and their derivatives, we prove that f belongs
to a certain space of smooth functions Si': ?{B y A, B> 0.

Second step. Given a function h in §7%?, we prove that a func-

1

tion closely related to its Fourier transform (more precisely, the function g,
defined by :

gn(w) = (1 —w)~o"1 ft“h(t) exp (— %%%t) dt)

is analytic in a certain open set in the complex plane. This open set depends
on A, B and will be denoted by G4 p.

Third step. On the other hand, we find a point w4 5 (which depends
on A, B) where the function g; defined in the previous step (here f is the
function constructed in the first step) is not analytic.

Conclusion. The second and third steps imply that wa,B ¢ Ga,B.
Hence we deduce that 4 >4 and B > 1. :

Now, we give the definitions of the spaces S{':E;B, A, B > 0, and the open
sets Q’A,B-

In [1], we defined (in a similar form to Gel’fand-Shilov spaces) the fol-
lowing spaces:

§T08 = {f € C*((0, 00)) : there exist constants Cy > 0 such that

|t* M (8)] < CxB™ for all n, k > 0},

S]tA = {f € C>((0, 00}) : there exist constants C,, > 0 such that
[t% F ()] < CAPR* for all n, k > 0},

5::21’8 = {f € C®((0, c0)) : there exists a constant C' > 0 such that
[t F (t) < CA*B k* for all n, k > 0}

forO/L, B >0, and 510 = U, goo §}%%. (Notice that 57%% c 5, and
S;': A~ € 5¥9B.) In the space 5;°, we consider the topology of the inductive
limit of the Banach spaces Sl+ %8 with the norms

A
£ £ ()]
= 0 —il
11142 ¢>os,k,Ir:eN Br Akkk
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We also consider the following Fourier operators:
(8)  Fm:L}(0,00)) = H(H™), Fn(f)=)= ff(t)e"""‘ dt,
(9) Fp: LX(0,00)) ~ H(D),
Fo(f)(w) = of e (310 ar.

(We denote by [T~ the lower half plane and by D the unit disc. Notice that
Fo( ) w) = Fu(f)(Z(w)) where

1 1+ w
(10) Z(ﬂ)) == mml -
is a bilinear mapping which transforms the unit disc onto the lower half
plane.)

Now, we define the open sets in the complex plane which appear in the
second step. .

Let A, B > 0. We denote by G 4,5 the following open set in the complex
plane:

- c:ll> o)
GA'B”&"{ZECIQ‘Z<W}U zeC:|x o

The bilinear mapping |
~1/2 4 2miz
W) = 355570z

transforms the lower balf plane onto the unit disc. (Notice that W is the
inverse mapping of the mapping Z defined in (10);) Let Ga,g = W(G A,B):
It is the clear that G4 5 = G4aUKp where G4 and A,B. are ‘dﬁﬂned astfczllo:\{:s.
It A > 2/e, Ga is the interior of the disc symmelric with respect to the
real axis an:d which cuts it at the points (—(Ae + 2)/(Ae - 2),0), (1,0?.
If A < 2/e, G4 is the exterior of the same disc a.nc'l if A_m 2/(&, GA_ is
the half plane {w € C : ®w < 1}. If B > 1/2, Kp is the interior of.th‘e
dise symmetric with respect Lo the real axis and which cuts it at the p{on}ts
((14+2B)/ (28 ~1),0), ((2B~1)/(1+2B),0), If B < 1/2, Ky s the exterior
of the same dise and if B = 1/2, Kp ls the right hall plane. ‘

In order to prove the second step, we need the following lemmas. Their
prools will be given at the end of this paper.

LEMMA 1. Let & > 0 and A > 0. If a function f sulisfies
[k f(t)| < CAFKY  fort20and k€N

then the funclion Fr(t*f)(z) = [;°1*f (t)e*mizt di is defined for all com-
plex numbers z satisfying Sz < 1/(2reA). '
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LEMMA 2. Let f€ §}% a>0and B> 0. If
|| < CBP  fort>0andpeN

then ihere ezisis a function h analytic in Gy such that h(z) = (1/2 +
2riz)* T Fp(t°f)(2) if ¥z < 0, where Gp = {2 € C : |2| > B/(2r)} if
B>1/2and Gp={2€C:|z| > B/(2r)}\ {i/(4n)} if B < 1/2.

Finally, in order to prove the third step, we need the following formula,
which relates the function Fpf to the sequence af = [ rt® f(1)L2(1)

X e~ di (where 7% = (n!/D(n + a + 1))V/?), when f € L*((0, 20)) (see
[2, Th. 4.2]):

(11) Fpf(w) = (1 - w)*tt Z(r,‘f)”a;’;w“ for lw] < 1,

Now, we are ready to prove Theorem 2:

Proof of Theorem 2. We suppose that there exists an infinjte
subset X C N such that

kP (L2 (1)) < CA*BP(n+1)...(n+k) (n-}- max(a ~ k,0) +p)
n

when n € X and either k > M or p > N. We put X = {n,, :m e N},

I-‘irst step (see the sketch of proof given at the beginning of this
section). Let @ > 1 and

(12) J@) =3 amm L (e 1,
By (3),if 0 < k < max(M,a), 0 < p < N then |t’¢f(”)(t)f < congt, If

k> ma.x(M,.a:) or p > N, taking b,¢ > 1 such that a/{be) > 1, we find by
the hypothesis that (if 0 < z < 1 then T (e = 1/(1 - z)®)

[ D@ < 3 ammmkar(Le (et
< C'AkBp Zawnm ("m + l) .. '('ﬂm + k)('nm +P)
m

Than
<CA B Y gn [P HE) (ntp
San ("

" n

A N7 Be \*
<C ok
s (e(b—l)) (c-—l) o

It follows that if k,p > 0, then

AP0 < c(mf,g-“;"-ﬁ)" (Z)e
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for a constant C" > 0. So f € .S’f:“A’.B' where A’ = Ab/{e(b — 1)) and
B' = Be/(e— 1)

Second and third steps (see the sketch of proof). By Lemmas 1
and 2, there exists an analytic function h in G%, s such that (1 /2+21riz.)‘f+1
% Fr(t* f)(2) = h(z) if Iz < 0 where G"A._B. = G p (see the definition
of the sets G 4,5 before Lemma 1) if B > '1/2 and A’ > 2, and Gy p =
Garp \ {§/{(4m)} il B' < 1/20r A" <2, 1f we consider the bilinear mapping
defined in (10), we see that the function h(Z(w)) is analytic in G 5 and
WZ(w)) = (1 = w)~* 1 Fp(t* f)(w) for |w| < 1. Since

Fp(t* Hw) = (1 = w)o+ Z(Tgm )2 anm gyt

(see (11)) it follows that the function
g(w) = h(Z(w)) = Z(,«rc:m)—aa-—n,,. o™
m

is analytic in Gar g, _
By a classical Tauber Theorem (notice that the (r& )~%a~"m are posi-
tive), the function g has a singularity at w = a. Soad¢Ga,p.
Changing the function f (see (12)) to

J) = 3o (=0 L, (e

we find that —a ¢ Gar .
Conclusion (see the sketch of proof). We define
24 Ale 1428
S *m“{muz’w- 1}
if A' > 2/e and B > 1/2,and 3, = 00 otherwise (thal is, s4 is the maximum
of the “extreme” points of G4 g on the real axis), Tor a > 1,38 a,—a §
Gar 1, 1t follows that @ > s, hence s, cannot be infinite.
So A' > 2/c, B' > 1/2, and
24 Ale 1428
“2 s CFEEoL -
As A' = Ab/(e(b~ 1)) > 2/¢ and B' = Bef(e~1) > 1/2, taking the
limit as @, b, ¢ tend to co we find that A 22, B 2 1/2,
Now, if a,b,¢ > 1 and a/(be) > 1 then

L 2 -2+ Ab E_“;,.U“..?,‘EE

- C2 Ty "Z3Be—etl’
and so taking the limit as b, ¢ tend to a, we get

a52a-—2+Aa a~1+2Ba

2 Aa—9at2 ““2Ba-a+l’
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As A >2and B >1/2, we deduce that
a(A~2)— Aa+22>0, *(2B—1)-2Ba+1>0,

forall a > 1. As
4
2 — —-_— — — T dr————————at——
a’(A-2) Aat2=(A-2)a 1)(a 2A—~4)’

a*(2B-1)—2Ba+1= (2B ~1)(a - 1)(11* 432_ 2)’

we deduce that 4/(24 —4) <1 and 2/(4B — 2)<Lie. A>4and B > 1,
and the theorem is proved.

The proofs of Theorems 3 and 4 are the same as that of Theorem 2.
We just need to notice that the function f(t) defined in (12) satisfies the
conditions of Lemma 1 or Lemma 2. (Lemma 2 may be applied to f. In-
deed, we must prove that f ¢ St If we compute the sequence a2 =
I et F(R)LE(De~/2 dt, we obtain ag = a2 tifn € X and 0
otherwise, hence it is clear that (aq)n satisfies the hypothesis of Theorem 2.7
of (1], and so f € §}0.)

Proof of Theorem 5. Let a,6 2 0 and M € N. Suppose that
Theorem 5 is not true, that is, there exist a positive constant 4 and a
positive integer k4 such that

(L2 (1)) < Ca*nb—e
when k > max(k4, M) and n € X,

In order to find a contradiction, we take a > 1 such that A/Ina < 2/e
and the function

fort >0

ft) =" amLa(t)et/?
‘ nEX
Fork > max(k4, M) we get

|tkf(t)| < CAk Z a~tpk-c <CA* Za—nnk-—c
nex a2l

o k
< CA* eTInagk gz 4 max(a—tt* <20 A k*,
; >0 Ina

and for k < max(k4, M), by (3), {t*f(t)| < const., so f satisfies the condi-
tions of Lemma 1for A’ = A/Ina < 2/e.

Proceeding as in the proof of Theorem 2, we find that the function
g(w) = Enex(‘r,‘.")_za"‘w" is analytic in G 4.
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he definition of G4). But
As A’ < 2/e, we deduce that a € G4 (see t :
g(w) has a sinéu,]arity at w = a, 50 a ¢ G4r. Hence the theorem is proved.
Proof of Lemma 1. It is well known that a function belongs to the
Gel'fand-Shilov space Sy (« > 0) if and only if |f™(2)] < C“_exp(w(c:./e)
x |¢/A]*/#) (see [6, p. 171]). In a similar way, we can prove that if a fu-g(;(ﬁr)l
7 satisfies |t*f(t)] < CAFkF for ¢ > 0 and k € N, then |f(2)] £ C’e.
for £ > 0. Now, the lemma follows easily from (8). [ )
y i 1t. In [1, Th. 6.2],
rder to prove Lemma 2 we need some previous result. In {1, - 6.2}
we E(?ved that]') the following integral operators are isomorphisms of 55
onto itself (a > 0):

Ha(F)e) =} [ FE)(te)-/ 1T (VaT) dt.
0

2= an extend these operators to the space (SF°)
oo u € (5P Ha 1 defined by (Halu), ) = (w4
and we also have H% = Id. We need the f(.)Howmg(}:;mmg .‘-(c]';')l.:ﬁ casy
prove—see [1]—that functions in S7° are entire, so 6™ € (5} ) -;1 .
LEMMA 3. Let @ > 0. Then Ho(t*t") = I(a + n + 1)25437H16™ for
alln > 0, .
Proof. As N2 =1d, it is sufficient to prove that

atantl
(n) 1 .1.,) ot
Hal0™) = FaFarD\2

In [1, Sect. 4], for u € (SF°)', we defined its Fourier transform Fn(u) as the
. 4], :
follo;ving analytic function in the lower half p'.la.n_e. :
Fn(u)(z) = (u(t), e izt ) +°)'
i i i -phism of (ST )" onto
d we proved that the Fourier transforx'n is an isomor
?; ¢/ ’“e) pthe space of analytic functions in the lJower half plane. We need to
H

show that

Fr(Ha(8))2) = Frr (m (%) it ta+n) ().

R P |
Indeed, by [4,p. 137, (1)], the right hand side equals (7)*+2"+! (2xiz)~* .
Now, using (30) of [4, p. 185], we get " i
Fr(Ha(6))(z) = (Ha(8(), 67"} = (8, Hale™™)

o0

=g, fermmnaone v i

0
= (6™, (}) *H (2xiz)-o~le~/(Bwi))
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= (1) (ariz)-a-n-1,
which finishes the proof.
Proof of Lemma 2. We consider the analytic function in the upper
half plane g(2) = Fr(t*f)(1/z). Using (32) of [4, p. 132], we obtain

o0

g(z) = f t"'f(t)e""“/’ dt

a1 1 ot oo oo
N (575) (5) of M,,f w2 J, (Vud) f(u) du e=*/ ) gy

z a1 1 o+l oo )
2—15) (5) J o Ha(F)()e /B dr,
[H

Let

k@ =o(Z) " = (1) Fenanwesona
X o

As f € 5Y°, it follows that Ha(f) € §{° and so Hu(f) € §7 4 for some
A > 0. By Lemma 1 it follows that K(z) is analytic at z = 0. Now, by the
Taylor formula, we obtain

(13) K(2) = i ﬂ%@zn
n=0 '

for |z] < (lim sup,, 3/|K("(0)/n!])~". Using Lemma 3, we get

K®(0) = ()™ (=1 (8mi) [ 1409, (1)(e) de
. 0 .
(1) (=1 (8ri) e, Ha (1))
(1) (= 1) (Briy™(Ha(t2+™), )

= (=1)"(2ri) I (a + n + 1)(5™, f)

= (2mi) ™" I(a + 7 + 1) f(0) .

By the hypothesis on f, it follows that | K("(0)| < C'(27)"I'(n+a+1)B"
and so (13) converges for |z| < 2x/B. : ,
Now Fp(t°f)(z) = (2xiz)~*~'K(1/z), and the lemma is proved by

taking
iy o+l
h(z)= (M) ‘ K(l) )

il

27iz z
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