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A new convexity property that implies
a fixed point property for L,

by

CHRIS LENNARD (Pittsburgh, Penn.)

Abstract. In this paper we prove a new convexity property for I, that resembles
uniform convexity. We then develop a general theory that leads from the convexity prop-
erty through normal structure to a fixed point property, via a theorem of Kirk. Applying
this theory to Ly, we get the following type of normal structure: any convex subset of [y
of positive diameter that is compact for the topology of convergence locally in measure,
must have a radins that is smaller than its diameter. Indeed, a stronger result holds. The
Chebyshev centre of any norm bounded, convergence locally in measure compact subset
of Iy must be norm compact. Immediately from normal structure, we get a new proof of
a fixed point theorem for Ly due to Lami Dozo and Turpin.

Introduction. We prove a new convexity property for L;{g) that re-
sembles and has similar consequences to uniform convexity: the uniform
Kadec-Klee property for the topology of convergence locally in measure.

Browder [Br] showed that in a nniformly convex Banach space (X, || - 1),
for every closed, bounded, convex set ¢ C X, every nonexpansive mapping
T : C — C has a fixed point. Kirk [Ki;] extended this result to show
that if X is a Banach space with weak normal structure (i.e. if C C X is

" convex, weakly compact and has positive diameter, then the radius of C

must be less than its diameter) then X has the weak fixed point property
for nonexpansive mapping (FPP(weak)). Indeed, every uniformly convex
space has (weak) normal structure.

Van Dulst and Sims [D-§] (see also Istritescu and Partington {I-P])
showed, using the work of Brodskii and Mil'man [B-M], that if a Banach
space X has the uniform Kadec-Klee property for the weak topology (a
property of a wide class of spaces that strictly includes the uniformly con-
vex ones), then X has weak normal structure. Consequently, X has the
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Key words and phrases; uniform Kadec-Klee property, convergence in measure com-
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sive mapping, Chebyshev centre.
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FPP(weak). Also in [D-S] analogous implications for the weak* topology on
a dual Banach space are established.

Moreover, Kirk [Ki;], building on work of Penot [Pe], developed a more
abstract setting in which normal structure properties imply fixed point prop-
erties for nonexpansive mappings.

In this paper we extend to a more abstract setting the van Dulst and
Sims [D-S] scheme wherein uniform Kadec-Klee properties imply normal
structure properties. A consequence of this is the new result that L,{u) has
normal structure for the topology of convergence locally in measure. This
result has been independently proven by Besbes [Be]. Moreover, Ly () has
the stronger property that the Chebyshev centres of norm bounded, conver-
gence locally in measure compact subsets are norm compact. Using Kirk

[Ki;] it follows from normal structure that L,(u) has the FPP for nonexpan- -

sive mappings w.r.t. the topology of convergence locally in measure. This
is a new proof of a result of Lami Dozo and Turpin [L-T]. We remark that
the theorem of [L-T] is more general, in the setting of generalized Orlicz
spaces; and also convex domains of nonexpansive mappings are replaced by
star-shaped ones, For related results see Khamsi and Turpin [K-T).

We begin with Kadec—Klee properties. By a Banach space (X, || - ||) hav-
ing “the Kadec—Klee property” we mean that whenever a sequence converges
with respect to the weak topology to a point of the space, and the norms of
that sequence converge to the norm of the point, it follows that the sequence
converges in norm (and necessarily to the weak limit). This is sometimes
called “the Radon—Riesz property” or “property H”. Many Banach spaces
have this property, e.g. £5, 1 < p < 0o. On the other hand, 1,[0, 1], ¢p and
£, fail the Kadec—Klee property.

Nevertheless, it is well known that if {f,}%2, is a sequence in L4[0, 1]
that converges almost everywhere to f € L1[0,1] and |[folls <= ||f]|1 then
| fa — flls = 0. Convergence in measure in L;[0,1] is the topological no-
tion behind almost everywhere convergence. Indeed, the above Kadec-Klee
result still holds if we replace alinost everywhere convergence by convergence
in measure. We are led by this positive result to study L0, 1] endowed with
the topology of convergence in measure.

The result in Section 1 is about uniform Kadec-Klee (UKK) properties.
- Huff [H] introduced this idea for the weak topology of a Banach space. In
this paper we call Hufl’s original property “the uniform Kadec-Klee-Huff
property” (UKKH), and the reformulation of van Dulst and Sims [D-S}, “the
uniform Kadec—Klee property” (UKK). As we shall see, these ideas coincide
for the case of the weak topology and Proposition 1.2 gives a reasonable
sufficient condition for them to coincide under more general circumstances.

We remark that the e-UKKH property, discussed in Section 1 and used in-

Section 3, is strictly weaker than the UKKH property in general (see [D-5]
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for an example).

In Section 2, we establish the key result that L;(u), for p a o-finite
measure, has the UKK property for the topology of convergence locally in
measure.

In Section 3 we generalize the implication e-UKK = normal structure
to a setting involving an abstract weak topology 7 on a Banach space X,
that includes the topology of convergence locally in measure on an Ly (p)-
space. We also observe that the UKK property for the r topology implies
that the Chebyshev centres of norm bounded, r-compact sets in X must be
norm’ compact. We then conclude that L;(p) has normal structure w.r.t.
the topology of convergence locally in measure.

A result of Kirk [Ki;] gives us, in Section 4, that normal structure implies
the FPP in our setting. We are then able to state two criteria for using UKK
properties to recognize fixed point properties for nonexpansive mappings.
We are led immediately to a new proof that L;(p), for p a o-finite measure,
has the fixed point property for nonexpansive mappings in convex sets that
are compact for the topology of convergence locally in measure.

Section 5 contains an application of the I fixed point theorem.

We remark that in the paper of Khamsi {Kh] it is shown (generalizing a
result of Khamsi and Turpin {K-T]) that the norm boundedness hypothesis
used throughout this paper on our r-compact, convex sets in X is redundant.

The proof that L; has the above-described uniform Kadec—Klee property
extends to L,(u) for 0 < p < 1, The link to some kind of normal structure
property appears to be open; although by [L-T] it is known that these spaces
have the fixed point property for nonexpansive mappings on star-shaped,
porm bounded sets that are compact for the topology of convergence locally
in measure.

Other papers on uniform Kadec—Klee properties are Carothers, Dilworth,
Lennard and Trautman [C-D-L-T], van Dulst and de Valk [D-V], Lau and
Mah [L-M], Partington [Pa] and Lennard [L,].

Sections 1 and 2 form part of the author’s Ph.D. dissertation [L4].

I wish to thank Joe Diestel for his encouragement, and Brailey Sims
for introducing me to fixed point and related properties. I thank Joe, Ka
Sing Lau and Henry Cohen for fruitful conversations about this paper; and
Prof. Khamsi for sending me the papers [K-T] and [Kh]. Thanks also to
Catherine for typing part of the manuscript.

The author is grateful for the support of a University of Pittsburgh
Internal Research Grant.

0. Preliminaries. N and R denote the set of all positive integers and
the set of real numbers, respectively. When we want to talk about the real
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or complex numbers, but do not care which one, we will use the expression
“the scalars”.

For a Banach space X, Bx and B(z,6) will always denote the closed
unit ball and the closed ball with centre z and radius 8, respectively.

Let (2, Z, ) be a positive o-finite measure space. u will always be
assumed to be countably additive. L,(y) is the Banach space of all (equiv-
alence classes of) measurable functions f : 2 — the scalars for which
I[Fll1 < oo, where

Il = [ 17() dp(w).
fed

The equivalence relation mentioned above is the usual one where we identifly
functions that differ only on a measurable subset of {2 of j-measure zero,

Throughout this paper let (X, ||-]|) be a Banach space and let 7 be
a topological vector space topology on X that is weaker than the norm
topology.

A standard example of such a pair (X, 7)is where X is a Banach space
and 7 is the weak topology on X. Another example is where X is a dual
Banach space, with a predual ¥ say, and 7 is the weak*-topology (with
respect to Y). Yet another example is when X is an Ly(p)-space and 7 is
the topology e¢lm of convergence locally in measure.

The topological vector space topology elm of convergence locally in mea-
sure on the set of all scalar-valued X-measurable functions on 12, Lo(p), is
generated by the following translation-invariant metric. Let (En)22, be a
E-partition of 12, where

F={EeX:pE)e (0,0)}.
Define dy by
yoo N~ 11 | - gl
do(fs9):=) ——r [ LI gy forall fige L.
V9= mwmy J Tepog e Tl o€ Lo

If p(12) < oo then the simpler metric

__ |f — gl
do(f,9) = J I—_T_—I}*:—g—ldﬂ, for all f,g € Lo,
generates the clm topology. In this case we simply refer to clm as the
topology of convergence in measure, denoted by cm. Lo(g) is complete
with respect to the above metric. Indeed, (Lo(u), clm) is an F-space.

For sequences, clm-convergence reduces, in a sense, to almost every-
where convergence. Indeed, any sequence in Lo that converges almost ev-
erywhere to f € Ly must converge to f locally in measure, On the other
hand, every clm-convergent sequence of scalar-valued measurable functions

icm

A new convezity property 99

has a subsequence that converges almost everywhere to the same limit func-
tion.

Note that when we discuss L;, clm or em will denote the topologies
introduced above, restricted to L,.

For p = 0 or 1, L,[0,1] denotes the space L,(};), where )y is Lebesgue
measure on [0, 1],

1. Uniform Kadec-Klee properties. The measure of compactness
of a nonempty subset .S of X, v(5), is defined by

¥(§) := sup{sep{za}o2, : {zn}32, is a sequence in S},
where
sep{zn}ary = inf |[an — zm],
n¥m

for all sequences {z,}%2, in X.

Recall that a function f : (X, 7) — R is called lower semicontinuous (Isc
or -lsc) if whenever a net {z,}ae4 converging to z € X with respect to r
is such that f(z,) < f(z) for all a then

/ (za) - f (1") .
[ is called sequentially lower semicontinuous (sequentially lsc or T-sequen-
tially lsc) if it has the property that we get from the one in the previous
paragraph by replacing nets everywhere by sequences.

1.1. DerFINITION, (a) For some £ > 0, X is said to have the g-uniform
Kadec-Klee property with respect to 7, denoted by £-UKK(7), if there exists
6 € (0,1) so that whenever § is a 7-compact subset of Bx with v(5) > ¢,
it follows that

SNB(0,1-8)#9.

(b) X is said to have the uniform Kadec—Klee property with respect to
7, denoted by UKK(7), if for every € > 0, X has e-UKK(r).

(¢) For some ¢ > 0, X has the e-uniform Kadec—Klee~Huff property
with respect to 7, denoted by ¢&-UKKH(r), if there exists § € (0,‘1) so that
whenever {z,}72, is a sequence in Bx such that z, — 2 € X with respect
to 7 and infogm |2 — Zm|| > €, it follows that

Jall < 1-6.

(d) X has the uniform Kadec-Klee-Huff property with respect to the
topology 7, abbreviated to UKKH(r), if for every € > 0, X has e-UKKH(r).

We remark that if X is a Banach space then |- | x 18 weak-lsc, while if
X is a dual Banach space then |- || is weak*lsc. Both these facts follow
from the Hahn-Banach separation theorem.
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Further, the L;(p)-norm is clm-lsc. This follows from Fatou’s lemma
and the fact that clm is a metric topology.

We now describe the relationship between the UKK and UKKH proper-
ties. For the proof of the following result see [L;].

1.2. PROPOSITION. Suppose that for r, every compact subset of By is
sequentially compact. Then the following staiements are true.

(1)  Suppose that || - ||y is T-sequentially lsc. For all e > 0,
X is e-UKKH(r) & X is e-UKK(r).
(2) X isUKKH(r}) & X is UKK(7) and || - ||x is 7-sequentially Isc.

Note that the above proposition applies in the case where X is a Banach
space and T is the weak topology on X, by the Eberlein—Shmul’yan theorem.
The observation of van Dulst and Sims [D-§] that for a dual Banach space X,
UKKH(weak*) and UKK(weak*) coincide when By is weak*-sequentially
compact, is another special case of the above result. Proposition 1.2 also
applies in any case where 7 is the topology of convergence locally in measure
(for a o-finite measure), because 7 is a metric topology. Indeed, this result
holds any time 7, when restricted to B x, is a metric topology.

2. A new convexity property of L;. The aim of this section
is to show (Theorem 2.3) that L;(u), for p a o-finite measure, has the
UKKH(clm) property; which, by Proposition 1.2, is equivalent to the
UKK(elm) property.

2.1. LEMMA. Let (2, X, u} be a o-finite measure space. If {fu}lnen 15 a
sequence in Ly(p), f € Li(p) and fo,, — f almost everywhere, then given
£ > 0 there ezists T € X with u(T) < oc and with the following additional
properties:

(1) I fxa\rlh <€,
(2) I(fo = Flxzrlly - 0.
Proof. Fix € > 0. The equations
v(E)= [|flds, Ees,
E

define a finite, positive measure v on X that is absolutely continuous with
respect to p. Choose § > 0 such that v(§) < /2 for all § € X with
#(S§) < 6. Now, choose F' € X with u(F) < oo such that (2 \ F) < /%
this is possible as (12, X, i) is o-finite.

Next, apply Egorov’s theorem to produce 7' € X with 7 C F such that
B(F\T) < 8 and ||(fn — Hxrlloo — 0. Clearly then »(F\T) < £/2, s0

icm

A new convexity property 101

that ‘
lfxa\rlli = v(B\T) = {2\ F) 4+ v(F\T) <e/2+¢/2=¢€.
Further, since u(T) < oo, it follows that
[(fr ~ Hxrllh £ (T (fo ~ Hxrllo =0 asn—oo. =

2.2. THEOREM. Let (£2,X,p) be a o-finite measure space. Then Li(u)
has the following property: For every ¢ > 0 there erisis § € (0,1) such
ihat whenever {fu}neN 15 a sequence in Br,, f € L1, {fu}n converges to f
almost everywhere and inf,p || fa — fnlll > &, it follows that || f|l1 <1 — 6.

Proof. Fix § € (0,1) and then fix a sequence { fn}nen in By, such that
fo = f € Ly almost everywhere and || f|ly > 1 — 4. For each g € I; and

for each set § € &, define
as(g) = ]|9Xn\s||1 .
1t is clear that for all g € Bz, and § € Z,

(1) as(9) <1 - llgxsll -

As fn —= f almost everywhere there exists, by Lemma 2.1, T € 5 such
that

(2) ar(f) <||fllh - (1 -8,

(3) I(fa = Hxrll = 0.

So, using (2), we see that

I faxrlle 2 Wfxril = [(Ffa = Pxzlh

= (IIfllh = er(f) = 1(fn = Hxrllr > 1 =& = I(fa = Flxrll -
It follows from (1) that er(f,) < 6§ + ||(fa — flxr|ls for all » € N, and
consequently for each n and m in N we have

| fn = Fmlly S N(fa = Fm)xrlls + az(fn) + az(fm)

< 208+ [{(fn — Dxrlly + 1(Fm — Hxzlh)

Thus, from (3), infpgm [|fn = fmli £ 28, Finally; if £ > 0 is given, with
£ < 2, set § = /2. Then for all sequences {fn}nen in Br, such that
Ju =~ [ € L; almost everywhere we have

Il >1~8 = inf [lfo—full Se.
2.3, THEOREM. Let (2, Z,p) be a o-finite measure space. Then Ly(p)

has the uniform Kadec-Klee-Huff property with respect to the topology of
convergence locally in measure.
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Proof. Fix ¢ > 0. Choose § € (0,1) satisfying the conclusions of
Theorem 2.2. Now fix a sequence {f, }nen in By, such that {f,},, converges
locally in measure to some f € Ly and inf oty || fn = |1 > €.

As (2, %, ) is o-finite, there exists a subsequence {fn }x of {fu}n
such that f,, —+ f almost everywhere. Moreover, infiy: || fu, — fu/l1 >

infpgm | fa— fmll1 > €. Consequently, invoking the above theorem, it follows
that ||fli £1—-4. =

3. Uniform Kadec—Klee properties imply normal structure. In
this section (X, -]|) is a Banach space and r is a topological vector space
topology that is weaker than the norm topology.

X is said to have normal structure w.r.t. + (NS{r)) if for all norm
bounded, 7-compact, convex subsets C' of X with two or more points, we
have

rad(C) < diam(C).
Here rad(C), the radius of C, is defined by
rad(C) := inf sup ||z — y||;
YyEC xeC
while diam(C'), the diameter of C, is given by

diam(C) := sup sup j|lz — y| .
veC zeC

A subset K of X is called diametral if rad(K) = diam(K). For each y € C,
the redius of C w.r.t. y, denoted by rad(y; C), is defined by

rad(y; C) = sgg |2 —»||.
x

The Chebyshev centre of C is the set of all ¥ € € such that rad(y;C) =
rad(C).

3.1. THEOREM. Fizre € (0,1). Suppose (X,||-|]) has the e-UKKII(r)
property. Suppose also that every T-compact subset of By is T-sequentially
compact and norm separable, Then X has normal structure with respect
to T,

The construction used in the proof below js a modification of one of Brod-
skii and Mil'man [B-M]. The key new idea exploits the norm separability of
the convex set involved.

Proof. Suppose, to get a contradiction, that X fails NS(t). Then there
exists a subset C' of X such that C is r-compact, norm bounded, convex
and diametral with diam(C) > 0. We may translate and scale (', preserving
its other properties and gaining: diam(C) = 1 and 4 € C, where 8 is the
zero element in X, :
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Fix {ur}ren, a norm dense sequence in €. Let § > 0 correspond to
our given ¢ € (0,1) as in the definition of the property e-UKKH(7). Define
a € (0,1) by

¢ := L min{l - &,6/4}.

Choose 2 := # and Cy := co{zy, % }. Our initial aim is to construct a
sequence {Zx}keN in C such that, for all n € N,

(‘) dist(znﬂ,ﬁ{zl,...,xﬂ, ul,...,un}) >1l-a.

So fix n € N. Suppose that z;,...,2, € C have been chosen such that

dist(zk’m{zla AEEPELY 2 P2 PR uk—l}) 2l~a,
for all £ = 2,...,n. We wish to construct z,41 € C with property (&).
Define
Cri=co{@1, ..y Zpy i, eeoylin}.
C. is a subset of C. Also, let b be the barycentre of Cl,:

1 n n
b:= z—n-(z:zj-i- Eu_,) .
j=1 j=1
Fix n € (0,1). Since C is diametral, there exists z; € C such that
|z — ]| > 1 — 5. Next, fix £ € Cy. It is straightforward to verify that

1 1
Y= Tl_»\(b — Az), where A:= o

is a member of C,. Thus, Az + (1~ A)y = b. So
z = -;(b ~(1=MA)y)=2nb—~ (2n—1)y.

Consequently, z — 2z, = 2n(b — 2,) — (2n — 1}(y — 2,). It follows that
lie — zqll 2 20lb — 29| - (2n = Dlly — 2|
>(l—-n9)—(2n-1)(1)=1-2n7n.

Choose = a/(2n) and z.41 := 2. Then ||z — z,44]| = 1 ~ @, for all
z € Cp. The construction of {z;}xen is complete.

We begin the final part of the proof by recalling that C' is 7-compact;
and therefore m-sequentially compact, by hypothesis. Consequently, we can
find a subsequence {x,, }xen of {Zn}n and some w € C so that z,, ~p» w
w.r.t. 7. Now, since {up}nen is norm dense in C, there is some N € N for
which [[x — un]| < 6/4. Define, for every k € N, 2 = zpn, — 2n41. Then
each |jzx]| < diam C = 1, and 2y > w — zy41 Wt T,

Fix k,1 € N with k < I. Since ny < nj, we have from inequality (&)

]]zk—z¢||==||x,.*—:c,.,||_>_13-a>1—(1——5):5.
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So, sep{zx}ren = 1 —a > &. But X has the e-UKKIH(r) property, and
therefore by our choice of 4,

t) llw—2znpall £1-8.
However, again using (&), we see that

lzvtr —wll 2 lEnsr — unll = lluw — w|
>(1—a)—8/4>1—8/4—6/4=1-5/2,
which contradicts (1), =

We remark that if we strengthen'our assumption in Theorem 3.1 to the
UKKH(7) property on X, then by the proof of [D-S, Theoremn 2], or the
proof of [I-P, Theorem 1}, we get the following theorem.

3.2. THEOREM. Suppose (X, || -||) has the UKKH(7) property. Let C C
X, where C is nonempty, r-compact and norm bounded. Also suppose that
in By, T-compact sets are T-sequentially compact. Then the Chebyshev
centre of C' is norm compact and nonempty.

So, directly from [B-M] (without the adaptation of their construction
that we used to prove Theorem 3.1), we get the corollary below,

3.3. COROLLARY. Suppose that (X,||-||) has the UKKH(r) properiy.
Also suppose that T-compact subsets of Bx are r-sequentially compact.
Then X has normal structure w.r.t. T,

We remark that strengthening the UKK hypothesis on X in the above re-
sult has enabled us to drop the assumption of norm separability of r-compact
sets that we used in Theorem 3.1. Note also that, by Proposition 1.2, if X

has the UKKH(7) property then || - |} is 7-sequentially lsc—a fact that one

needs when verifying Theorem 3.2.
From Theorem 2.3 and Corollary 3.3 we have the following new result
concerning Ly; it has been proven independently by Besbes [Be].

3.4. THEOREM. Let (2, X,p) be a o-finile measure space. Then Li(u)
has normal structure w.r.t. the topology of convergence locally in measure.

We remark that one can show that in every Ly(u), g o-finite, clm-

compact sets must be norm separable. So the previous theorem also follows
from Theorems 2.3 and 3.1.

4. Normal structure implies a fixed point property. In this
section, as usual, (X, || -||) is a Banach space and r is a topological vector
space topology on X that is weaker than the norm topology. -

X is said to have the fized point property w.r.t. T (FPP(r))if the follow-
ing holds. For each nonempty, norm bounded, r-compact, convex subset C
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of X, every nonexpansive mapping T : ¢ — C has a fixed point. Here T' is
a nonezpansive mapping if

Tz - Tyl <l - yll, forallz,yeC.

4.1. THEOREM. Suppose that || - || is a r-Isc function. If X has normal
structure w.r.t. v, then X has the fized point property w.r.t. 7.

Proof. By our hypothesis on || - ||, the norm closed balls of X are also
r-closed. By [Kip, Theorem 2], the result immediately follows. w

It is also true that if ||+ | is simply 7-sequentially Isc in Theorem 4.1
and the T-compact subsets of Bx are r-sequentially compact, then NS(7)
implies FPP(7). Combining Theorem 3.1 and Corollary 3.3 with the above
remark, we have the following result.

4.2. THEOREM. Let (X, -|) be such that T-compact subsets of Bx are
r-sequentially compact.

(a) If X has the e-UKKH(r) property for some ¢ € (0,1}, || -|| is 7-
sequentially Ise and r-compuct subsets of Bx are norm separable, then X
has the FPP(1). ‘

(b) If X has the UKKH(7) property, then X has the FPP(r).

Our work above gives a new proof, via rormal structure, of a fixed point
theorem for L, due to Lami Dozo and Turpin [L-T].

4.3. THEOREM. Let (£2, X, 1) be a o-finite measure space. Thef? Li(p)
has the fized point property w.r.t. the topology of convergence locally in mea-
sure on Lq. '

5. An application of the L, fixed point theorem. In this section
our Banach space X is L1[0,1] and the weaker t.v.s. topology 7 on X is
cm, the topology of convergence in measure restricted to Iy [0,1].

We begin with an example of 2 norm bounded, cm-compact, convex sullb—
set S of Ly[0,1] that is not norm compact. Then we define a nonexpansive
wmapping T : C — C and apply the fixed point theorem to gain information
about certain subsets of §.

A Lebesgue-measurable function f : [0, 1] — the scalars is called nion-
increasing almost everywhere (a.e.) if there exists a nonincreasing function
g : [0, 1] — the scalars such that f(z) = g(z) almost everywhere,

Define the subset S of Ly[0, 1] by

§:={fe]0,1]: f20ae, fis nonincreasing a.e. and ||f||y < 1}.

It is easy to see that § is norm bounded, convex and cm-closed.
S is not || - ||,-compact. Indeed, {2"Xp,1/2} : 7 € N} is a subset of §
that is 1-separated in Lp-norm.
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We can see that § is em-compact in the following way., Note that for
each £ > 0, the set Q, := {lee.Il : f € 8S}is of essentially-uniformly
bounded variation, and is also essentially-uniformly bounded. Applying
Helly’s Selection Principle (see, for example, Kolmogorov and Fomin [K-F])
iteratively to the sets @, /n (n € N), and using a diagonal argument, we
can show that every sequence in § has a subsequence that converges almost
everywhere.

Consider T : Lg[0,1] — Ly[0, 1), where T'f is defined for all feLyby
(T)(z) = 3f(=/2), forallzelo,1].
T maps L1]0, 1] into L;{0, 1]. Indeed, for all f € Ly,

1 172 ,
17l = f}ifG/Dldz= [ |£(v)ldy < |iflls.
0 0

Similatly, ITf — Tg|ly < ||f — g|l1 for all 5,9 € Ly. Tt is now clear that T
maps § into .5 and T is nonexpansive on S.

Note that 76 = 6, where 6 is the zero function. Moreover, the following
result, which will enable us to apply the fixed point theorem (Theorem 4.3),
is true.

5.1. LEMMA. 8 is the unique fized point of T in I, [0,1].
Proof. Suppese f € L1[0,1) and Tf = f. Then
(1) 3f(z/2) = f(z), for almost all z € [0,1].

B){ changing the values of f on a set of measure Zero, we may assume that
f is nonincreasing on [0,1). Of course, equation (1) still holds. Moreover,
since f is also in Ly,

(2) Jim 47(t) = 0.

From (1), there exists a A;-null set N, € A; such that 1f(=z/2) = f(x), for

all 2 € f2; :=[0,1]\ Ny. For each j € N with 7 > 1 define
Ni={ye[0,1]:y = 2712, for some z € M}.

Further define ¥ := U1 N; and 2 :=[0,1)\ N. Clearly At(N) = 0, and

so A(2) = 1. ' ' ' '
Fix z € 2. Hence z € [0, 1J\ N; for all j € N. Then for each JeEN,

2/271 € [0,1]\ Ny = 1, or equivalently $f(2/27) = f(x/29~1). Conse-

quently, for all ke N,
1 x
f(z) = i‘;}'f(gg) ’
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and thus, by (2),

zf(z) = ;Ef(;—k) - 0.

So, for all z € 2 with z # 0, we have f(z) = 0. We conclude, therefore,
that f(z) = 0 almost everywhere. u

Note that T does have nonzero fixed points in L \ L;. For example,
Tf = f dor the function 1/x, where x is defined by x(x) = z for all
z € [0,1].

5.2. PROPOSITION. Let C be q cm-compact, conver subset of 5, not
containing the zero funclion 8, Then C fails to be invariant under the
mapping T,

Proof. If T did map C into C, then by hypothesis and Theorem 4.3,
T would have a nonzero fixed point f € C. But C is a subset of Ly[0,1},
and so from Lemma 5.1 we have a contradiction. m

There are many examples of subsets ¢’ of S that satisfy the hypotheses
of the above proposition and are not norm compact. So that for these
sets, Theorem 4.3 cannot be replaced by the Schauder-Tikhonov fixed point
theorem in the above proof. For instance, fix g € § with 0 < ||g|}; < 1.
Define

Iy = {f € L1[0,1]: f > g a.e., f is Donincreasing a.e. and || f|l; < 1}.

Iy is a em-closed subset of §. Consequently, I, is em-compact. It is also
norm bounded and convex. Moreover, 8 is not in I,. Finally, using a similar
argument to that for §, it is simple to show that I, is not norm totally
bounded.
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On the principle of local reflexivity
by

EHRHARD BEHRENDS (Berlin)

Abstract. We prove a version of the local reflexivity theorem which is, in a sense, the
most general one: our main theorem characterizes the conditions which can be imposed
additionally on the usual local reflexivity map provided that these conditions are of a
certain general type. It is then shown how known and new local reflexivity theorems can
be derived. In particular, the compatibility of the local reflexivity map with subspaces
and operators is investigated.

1. Introduction. The by now classical version of the local reflexivity
theorem reads as follows:

1.1. THEOREM [11, 13]. Let X be a Banach space, E C X" and F C X'
finite-dimensional subspaces, and ¢ > 0. Then there is an isomorphism
T:E— X such that

@ TN, 1T < 1+,
(i) '(Tz") = &"(z") for 2" € E and 2’ € F,
(iii) Tz" = 2" fora”" € ENn X.

New proofs have been given in [6] and [14], variants where it is shown
that T may be assumed to satisfy certain additional conditions are studied
in [2,4, 5,7, 8,9, 12]. The applications of the local reflexivity theorem are
abundant, and it is undoubtedly one of the most fundamental theorems in
Banach space theory.

The aim of this paper is to state and prove a local reflexivity theorem
which is in a sense the most far-reaching one (this will be made precise
shortly).

At Jeast formally all known local reflexivity results are covered by our
main theorem, and we will indicate how some of them can be derived easily
as corollaries, A systematic investigation of how to apply the new local
reflexivity technics to situations where variants of the classical thecrem have
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