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Two-weight weak type maximal inequalities in Orlicz classes
by

LYBOS PICK (Praha)

Abstract. Necessary and sufficient conditions are shown in order that the inequalities
of the form

e{Muf > BN € [ W (CIf@))o(z)dn,
X

or

o{Muf>2) € [ SOAHF(@))olz)dn
X

hold with some positive € independent of A > 0 and a p-measurable function f, where
(X, u) is a space with a complete doubling measure 4, My is the maximal operator with
respect to p, ¥, ¥ are arbitrary Young functions, and g, o are weights, not necessarily
doubling,.

1. Owur aim is to study weighted weak type modular inequalities involving
the maximal operator and Young functions. The classical Hardy-Littlewood
mazimal operator M defined for Lebesgue-measurable functions f on R™ by

Mf(:c)=;1;p|—:ﬂ [ 1f)l dy,
=%l q

where ( is a nondegenerate cube with sides parallel to the coordinate axes
and |Q| is the Lebesgue measure of @, has been proved by Muckenhoupt [8]
to satisfy the two-weight weak type inequality

(1) o({Mf > A< CX? [ |f(z)Po(z)dp
X

with 1 € p < co and C independent of f and A if and only if the couple of
weights (o, ) satisfies the A, condition, i-e. for p > 1,

o (g J ole)de) (157 J o &) <c
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for all Q. There exist at least two different types of inequalities analogous
to (1) which involve a Young function #(t) instead of t7; indeed, we may
consider either

3) e{Mf > N8\ < C [ $(C|f(z)])o(z)dz,
X
4) e({Mf>I)<C [ HCA f(z)))o(z)dz,
' X

with C independent of f and A. As we shall see, (3) always implies (4).
Therefore we introduce the following terminology: (3) will be called the
two-weight weak type inequality, and (4) will be called the two-weight extra-
weak type inequality.

A Young function & is given by &(t) = f; w(s)ds, t > 0, where ¢ is a
left-continuous nondecreasing function satisfying ¢(0+) = 0 and {c0) = co.
Dealing with arbitrary Young functions we cannot rely on homogeneity argu-
ments applicable for powers or any “subhomogeneity” arguments applicable
for functions satisfying the A, condition ($ € A; if thereis C' > 1 such that
#(2t) < C®(t), t > 0). Introduction of appropriate constants seems to be
a proper tool for compensation of this handicap. This is to justify the C in
the argument of &.

Fortunately, (2} also offers two different candidates for a condition anal-
ogous to A,, namely,

() sup sup (réTQf “Q(z)-d”)*”(r%rqf o (aa) %) <

-where ¢! is the usual generalized left-continuous inverse of @, and

sup [ &(e-290) 23 4
(©) w (e p2) S s

where & is the compltementary Young function of & given by a(t) =
SUP-5>o{tr ~ 8(1)) = fy 7 (s)ds, 0(Q) = [, 0, and o = o(Q)/|Q|. Ob-
serve that (5) and (6) coincide if #{(t) = #*. The condition (5) was introduced

by Kerr-na.n and Torchinsky ([4]) and recently treated by Gallardo ([2]), who
generalized the Muckenhoupt theorem in the following sense:

If 2, € Ay, then each of the statements (3), (5) is equivalent to the
“modified two-weight Jensen inequality”

1
(M #(flq) < CZ(?J") Qf ¢(|f(m)|)a(z) dx

with C independent of f and Q.
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In the special case when & is essentially eqital to (1 + logt $)¥ the
condition (6) is known to describe good weights for the inequality (4) (see [1],
[6], [9]). While sufficiency of (6) can be easily extended to the general case
([10]), there is no obvious way to prove its necessity. Since, moreover, (7)
offers

(8) oQ) < C [ #(CIf(=)l/fig)a(z) da,
q

natural questions arise:

a) Can the Gallardo theorem be extended to the general context (that
means, without Ay or any other assumplions on the growth of & or 5) and
how should then the characterizing condition look?

b) Are there any general relations linking (4), (6), and/or (8)?

The purpose of the present note is to answer these questions. Theorem 1
below determines the pairs (o, ¢) for which the weak type inequality with
two different Young functions &, ¥ holds, that is, in a certain sense, the
maximal operator takes the Orlicz (¥, ¢)-class into the weak Orlicz (&, @)
class. The characterizing Ag w-condition is a natural analogue of those due
to Muckenhoupt and Kerman—Torchinsky and it is formulated by means of,
auxiliary functions R and Sg.

The couples (o, ) for which the extra-weak type inequality is true, i.e.
those for which the maximal operator maps the Orlicz (¢, 0)-class into weak
Ly ,, are characterized in Theorem 2. Saturation of the Holder inequality
and some properties of the Luxemburg norm in Orlicz space are the main
tools in the proof of necessity of a condition like (6) (called Eg).

Some other equivalent statements which shed light on connection be-
tween the usual and the two-weight maximal operators are also added. Fi-
nally, we consider a bit more general situation than R™ with the Lebesgue
measure (cf. [11]). A simple method employing centered maximal operators
allows us not to require any doubling condition on g or o. Throughout we
assurne 0- oo = 0. :

2. Let (X,u) be a complete measure space and suppose that there is
given a nonnegative finite real-valued function d in X x X that satisfies
d(z,z) = 0, d(z,y) = d(y,z), d(z,y) > 0if = # v, and d(z,y) < C(d(=,2)+
d(z,y)) for all z,y,z € X; thatis, dis a quasimetric on X. Moreover, we
shall assume that the following two conditions are satisfied:

(i) every d-ball B = B(y,r)={z € X cd(z,y)<r},ye X, r>0,is
j-measurable, 0 < p(B) < o0, and p is a doubling measure with respect to
d, i.e. u(B(y,2r)) < Cp(B(y,r)) forall y and r (in particular, p is o-finite);
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(ii) the space (X,d, i) possesses the Besicovitch property: for every d-
bounded set A any family {B(y,(y))}ye4 of balls contains a countable (or
finite) subfamily {Bn} = {B(¥n,7(¥s)}}, n € N, such that A C |J B, and
Y xB, < C, where xp is the characteristic fanction of the set B.

The mazimal operator M, is defined for p-measurable real functions f
by

1
M, f(z) = sup —— fly)lduly), zeX.
L S()= 10 gy [ 1G] dut)
Similarly, we define the centered mazimal operator

yf(-’u")msupm f |F()ldu(y), =zeX.

The operators M, and M are eqmvalent because g is a doublmg measure;
precisely,

(9) Mc fl2) < M, f(2) < aM; f(x)

for some @ > 1 and all f and z. In what follows, p and o will be weights,
i.e. nonnegative g-measurable functions on X. The Besicovitch property
guarantees that the centered two- we;ght mazimal operator

M of() = sup —mr— Q(B(x P .rf,- | |F()lo(y) du(y)

is of weak type (1,0;1,p), that is, there exists b > 1 such that
(10) o({M;,f > Ap <br? f |f(w)lo(w) dpaly)

for all fand A > 0. To see this xt suffices to realize that M; , is of weak type
(1,0;1,p) and that M, f=M;,(f-(e/0) (Asis customary, we write

{g>A}for{zeX: g(a:) > A}, and, given a set E, o(E) for [, o(y)du(y)
and pg for the integral mean g(E)/y(E) )

Throughout the paper, & and ¥ denote Young functions. Let us still
recall the Young inequality st < &(s) + $(t) and its important consequence
(see [5])

(11) tgdf'“l(t)ff“l(t)sm, t>0.

The weighted modular is defined for every f by

m(f,8) = f &(| 7(z)e(z) du(z) ;

the weighted Orlicz space Ly ,(X ) is then the set of all fanctions f for whick
there is some A > 0 such that m,(f/},$) < . Thls space is equipped with
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the Orlicz norm

17 lle,e = sup{ J foedu :my(g,8) < 1} ,
X

and with the Luzemburg norm
| flle,e =inf{X > 0:m,(f/), &)< 1}.

These norms are equivalent, precisely,

(12) I £lle.c < IFlle.e < 201 fllae

and they provide us with two important facts (see [7]):

a) the closed unit ball in Ly , with respect to the Luxemburg norm coin-
cides with the closed unit ball with respect to the modular, i.e. m,(f,$) < 1
if and only if ||f[ls,, < 1

b) the Holder inequality

J foedu < 1£ls.clllgllls,,
X

holds for all p-measurable functions f, g and is saturated in the sense that

llfllw,e-sup{ ffyedﬂ glllz,, < }

and, as follows from a),

fillee =sun{ [ foodu:llglls,, <1}
X

Let us introduce
Re(t) = #(2)/t, Sa(t)y=&(t)/t, t>0, Re(0)=Sa(0)=0.

Ry(t) and Sa(t) are substitutes for the useful expressions t#~1, $1/(*—1) jn

. the L, case. Although they are not mutually inverse in general, some more

subtle relations can be easily verified. We present a brief survey.

ProrosiTioN. If & is a Young function, then Rg and Sg are conlinuous
and increasing functions which map [0,00) onto itself and satisfy for every
t > 0 the following estimates:

Ry(t) € p(t) £ 2R4(2¢);
(13) $(Ra(1)) < B(t) < B(2Rs(1))
(14) So(Ra()) <t < 252 (2R4(2)).

Moreover, if ® € A,, then R3'(t) < S¢(C't) and p(t) < CR4(t) for some
C > 1 independent of t > 0.
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Proof. Substituting ¢ — &(f) in (11) we get &(t) < 13-1(B(t)) < 28(2),
which yields (13) and, on dividing by Re(t) or by 2Ra(?), in turn (14). If
& € Az, then 5

CP(Ss(1)) > B(25a(t)) > (1)
by the complementary version of the second inequality of (13). Dividing
this by Sp(t) we infer that CRg(Ss(t)) 2 £, or, which is the same, R <
$4(Ct). The remaining assertions follow directly from the definitions.

Remark. It is worth noticing that the Proposition is valid for any
Young function; therefore, as Ry = S, each statement of the Proposition
has its complementary version. For example, (14} may be replaced by

(14") Ra(Ss(1)) <t < 2R4(254(1)),
and so on. '

DEFINITION. The couple (0, ¢} of weights satisfies the Ag ¢(u) condition
((a,0) € Ag,w(i)) if there exist positive constants £, A such that

sup supagaRe (;{B—) Bf Sw(ggl(—;)) du(w)) <A.

(We Temind that the convention 0 oo = 0 is used here.) Similarly, (¢,0) €
Eg(p) if for some £,4 > 0,

5,08\ o), .
w [ “’(Eam) o(B) M <A

We use the symbol Ag ¢ to indicate the analogy with A, ([8]) and Ag
([4], [2]), and E3 to indicate its relevance to extra-weak type inequalities.
Of course, if $(t) = V(1) =t?, p > 1, then Apy = Eg = A,.

3. Now, we are in a position to formulate the main results.

TureorEM 1. The following conditions on o, p are equivalent.

(i) There exists C > 1 such that for all f and A > 0,

e({Muf > XNB) < ¢ [ ¥(C|f(2))o(=) du(z);
X
(ii) there exists K > 1 such that for all f and B,
o(BY(|fl8) < K [ W(K|f(z)|)o(z)dpu(z);
3 .

(iii) (o, @) € Asw(p);
(iv) there exists D > 1 such that for all f and z € X,

B(M; f(2)) < DM, [¥(DIf])](=) .
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THEOREM 2. The following conditions on o, ¢ are equivalent.
(i) There exists C > 1 such that for all Jand A >0,

o({Muf > A1) < C [ S(CAY|f(z))o (=) du(z) ;
X

(ii) there exists K > 1 such that for all f and B,
e(B)< K [ &(K|f(@)|/|f|8)e (=) du(=);
B

(iii) (7, 0) € Eg(p);
(iv) there ezists a continuous increasing function h defined on [0, 00) such
that for allz € X,
M, f(z) < h(MZ [2(] fD)(=))-
Remark. When ¢ = ¥, inserting A = 1 in Theorem 1(i) leads to

o({Muf > 1)) < C [ $(Clf(2)])o(z) du(z),
X

which is obviously equivalent to (i) in Theorem 2 (simply take f/X instead of
f and use homogeneity of M,). Therefore, if & = ¥, then each statement of
Theorem 1 implies any one of Theorem 2. In particular, (4) is weaker than
(3) (this justifies our terminology), (6) follows from (5), (7) suffices for (8),
and Ag o(pn) C Eg(p). Moreover, any statement of Theorem 2 obviously
implies the {wo-weight doubling condition p( B(y,2r)) < Co(B(y,r)).

Remark. Putting ¢ = ¢ = 1 we obtain the following corollary of
Theorem 1: The nonweighted weak type mazimal inequality

(15) p{Muf > ANBRA) < € [ W(CIf(2)]) du(=)
’ X

holds with C independent of f, A if and only if there exists K > 1 such that
&(t) < V(K1) for allt> 0.

Indeed, by Theorem 1, (15) is equivalent to the existence of some £, A
such that for all « > 0, _ '
(16) aRg(eSe(l/a)) < A.

If #(t) ~ W(Kt), then Rp(t) < K Ry(Kt) and we may choose ¢ = K1
and apply the complementary version of the first inequality of (14) to the
function ¥ to obtain

aRs(c59(1/a)) < aK Ry(Se(1/a)) < K .

To prove the “only if” part, assume for contradiction that there exists
a sequence {t,} such that &(t,) > ¥(at,), n € N, and define e, by the
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equality ¢, = £S¢(1/ay). It then follows from (16) that
Aa;l 2 R;p(tn) > an(nt”) > nR¢(2SW(a;1)),

provided that n >

> 2~1. Via (14), or rather (14'), this yields A’ >
2-1na;l, n > 2™, which is absurd.

Remark. The preceding remark shows that, in particular, M, maps

L into weak Lg without any restriction on the growth of & or @. This quite
naturally corresponds to the more general result of Gogatishvili, Kokilashvili
and Krbec ([3]): The inequality

p({M.f > ANWF) < C [ F(C|f(2)]) dpu(z)
X

holds for a continuous increasing F, F(0) = 0, F(o0) = o0, if and only if F
18 qUASICONvex,

4. We now proceed to prove Theorems 1 and 2.

Proof of Theorem1. We first show (i)=(ii)=-(iii}=>(i), and after-
wards (ii)=>(iv)=>(i). _

(f}=¢(ii). Clearly, given a fixed ball B, M,(fxs)}(z) > |flaxB(x), hence
B is a subset of {M,(fxg) > A} for any A < |f}p, and (ii) will follow by
the continuity argument.

(i))=(iii).. If g = 0, there is nothing to prove. Qtherwise o(z) > 0
for p-almost every z € X. Given a > 0 and k£ € N, we put f(z) =

K-154(1/a0(2)) and fi = fxp,, where Ey = {z € B : o(z) > 1/k}. By

(ii) and the complementary version of the first inequality of (13), applied to
¥, we have

oB)#((fs)s) < K f !T’(Sw(llw(z)))ﬂ(x) du(r)
) Sol) =) = Ko BN o),
and, as the last quantity is finite,
1
aesRe( g J setasar@ae) < 1.

Since the constant on the right does not depend on k and p(B\UE) =0,
(91 G‘) € Ay ‘I’(")
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(iii)=-(i). The Young inequality and Ag v givé
o 1
< e —
iz < “( 5y | PN dule)+ gy [ Seifao(@) dute)

757 J PU@et i)+ <7 B3 (4] es)

for every a > 0 and B. Put a = Ap(B)(J5 ¥(|f(z))o(z) dp(z))~" for A > 0.
Then

fls <3+ e B (e [ W(If(=))o(z)du(=) ),
ro(B) 5

whence, passing to supremum,
MEf(z) S M +e7 RGIATAME (#(1FD)(2))
which yields
{MSf > 23} € {AME,[0(|)] > ARs(e)} = {M{,[Z(IFD)] > B(Ae)/Ae}

Thus, making use of (9), (10) and an appropriate substitution we obtain

o({M,f > XDB(N) < Acb [ ¥(2ae"|f(z)]}o(2) dp(=) -
X

(ii)=>(iv). Divide by o(B) and pass to supremumn.
(iv)=(i). It follows from (iv) that

{M:f > 2} C {M; [¥(DIf1)) > DTN},
which via (9) and (10) yields |
o({Muf > AN@() < Db [ #(aD|f(z)])o(z) di(=),
X

and the proof is thus complete.

Proof of Theorem 2. The proof of (i)=>(ii) goes along the same
lines as in Theorem 1.

(ii)=>(iii). Assume for contradiction that (i) holds and (g,0) ¢ Es(p)-
Then there is a sequence {B,} of balls such that

- L of2) .
B{ 45(_3?—) du(z) > 1,

2no(z)/.o(Bn)

ie.

les.xBa /M6 ,0/0B0) > 21
The saturation of the Hélder inequality ensures the existence of a sequence
{fn} such that '

(17) o Il Fullle,oe(ma) <1,
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18 n< X8, (2) o(z) -
(18) 5! fn(z)oB, o(z) o(B.) du(z) = (fo)n. - $~1(Ae/ap(B)). Therefore, by the definition of the Luxemburg norm,
Now, (17), (12) and a) imply %?;- g 7 (ai;)) l”'(f) .'
V. a0
oz .
f @(f,.(a:))g(g_})) du(z) <1, On choosing &~ = m,(fxp,¥) and inserting into (19) we get (ii).
X n
N Remark. The proof of (i)=»(ii)=(iv)=>(i) in Theorem 1 remains valid
that is, using (18) and the convexity of &, upon replacing the Young function & with any nonnegative, continuous and
B> increasing function F' on [0,00). This observation provides a restricted ver-
o(Bs) > i’f ®(n fu(z)/ (fa)B, )o(z) du(=) sion of Theorem 1 which may be of independent interest. Actually, it gives
a slight generalization of Propasition 1 in [4].
S .
< \/’-;Bf ®(v/nfu(2)/(fa)B, )o(c) du(z), We shall use E to denote a u-measurable set in X.

COROLLARY. If F is a nonnegative, continuous and increasing function
defined on [0,00), then the following statements are equivalent.

() There exists C > 1 such that for all A >0 and E,

1 . o(z) 1 ~ oz
s <3 [ 2@ 5 ) + ; IE (sf(z.’;)) 9(<B§ du(z) . F(Ne({M,xs > \}) < Co(E);

That is, (iv) holds with h(t) = £~(t + A).

which contradicts (ii).
(iii)=(iv). By the Young inequality,

(i) there exists K > 1 such that for all B and E,

(V)5 6). Webave F(u(E 0 B)/u(BY)e(B) < Ko(EN B);
{M:f>h(1)} C {M3 ()} > 1}, (iii) there exists D > 1 such that for oll f and z € X,
and, by (9), (1 . — e ¢
¥ (9), (10} and an appropriate substitution, F(Mixe(z)) < DM ,xE(z) .

e({Muf > A1) <b [ $(A " ah(1)|f(2)])o(z) du(z).
X .
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Korovkin theory in normed algebras
by

FERDINAND BECKHOFF (Minster)

Abstract. If A is a normed power-associative complex algebra such that the selfad-
joint part is normally ordered with respect to some order, then the Korovkin closure (see
the introduction for definitions) of TU {#* 01|t € T} contains J*(T") for any subset T' of
A. Thie can be applied to C*-algebras, minimal norm ideals on a Hilbert space, and to
H*-algebras. For bounded H*-algebras and dual C"*-algebras there is even equality. This
answers a question posed in [1].

§1. Introduction. Let us recall some definitions. Let A and A be
normed power-associative complex algebras with a continuous involution +,
and let A, = {z € A | 2" = z} and A, be normally ordered, i.e. A, (resp.
.:41) is an ordered real vector space such that the norm || - || is equivalent to
a monotone norm || « ||, (0 € z £ y implies ||z|[m < ||¥]|m). A continuous
linear map P : A — A which is selfadjoint (i.e. P(A;) C .,:f,) and which
satisfles (Pz)? < P(2?) for all z € A, is called a Jordan-Schwarz map,
since for such a P the Schwarz inequality holds with respect to the Jordan
product: P(z)*o P(z) < P(z* oz) for all z € A. A J*-subalgebra of A is
by definition a *-closed and norm-closed subspace which is also closed with
respect to the Jordan product. The J*-subalgebra of A generated by T C A
is denoted by J*(T).

1.1. THEOREM. Let A and A be normed power-associative complez alge-
bras with a gontinuous involution *, and let Ay and A; be normally ordered.
If§: A — A is a continuous +-homomorphism and {P,)aca an equicontin-
uous net of Jordan—Schwarz maps Py : A— A, then

{z € A| Poz o Sz and Pa(z* 0z) 5 S(z* 0 2)}
is a J*-subalgebra of A.

Here convergence always means convergence in the norm topology. It is
also possible, and other authors do so, to consider weaker topologies, see for
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