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Weighted weak type inequalities for
certain maximal functions

by

HUGO ATMAR and LILIANA FORZANI (Santa Fe)

Abstract. We give an Ap type characterization for the pairs of weights (w,v) for

which the maximal operator M f(y) = sup Fé‘E f: | F(z)|dz, where the supremum is taken
over all intervals [a,b] such that 0 < a < y < b/¥(b — &), is of weak type (p,p) with
weights (w,v). Here v is a nonincreasing function such that ¢(0) = 1 and ¥{o0) = 0.

The Poisson integral for the Hermite expansion of a function f is given

by
(1) P W)= [ P(r,y,2)f(2)e™™ dz

R
where
1 e—(r2y2—2ryz+r2z2)/(1 —r?) .
vr(l—r?)
C. Calderén [C] and B. Muckenhoupt [M1] proved that the maximal
operator

P(T’y’ Z) =

P f(y) = supl) [P f(w)l

re(o

is bounded in LP(e~*"da) (1 < p < o) and of weak type (1,1) with respect
to the Gaussian measure ¢~ dz. We can write (1) in the form

Pf(y) = [ K(ry,2) f(2)dz
R
where
e={(ry=2)/ VI=FT)?

I((T‘, Y, z) = ———-1_'_

If we take € = +/1—1r? and x(-1,) instead of e~t, we are led to the
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maximal operator

1 P(e)ute
2) st [ |f(e)lde,

€ Pe)y—e

with 1(z) = vI— 2.

In this note we consider weighted weak type inequalities for a maxi-
mal operator which is hoth larger than (2) and than the Hardy-Littlewood
maximal operator.

Let 3 : R¥U{0} - [0, 1] be a nonincreasing function such that 4{0) = 1
and lim; 00 ¥(t) = 0. Given a locally integrable function f on R* and
¥ € R, define

(3) M f(y) = sup 3= f f(2) dz,

where the supremum is taken over all intervals [a,b] such that 0 < o < ¢ <
b/(b— a); and
N 1 b/y{b—a)
4 =
(4) M f(y) = sup 7— f ()] de

where the supremum is taken over all intervals [a,b] suchthat 0 € a <y € b,
DEeFINITION. We shall say that the pair (w,v) of nonnegative locally

integrable functions on R* satisfies condition A7, 1 < p < oo, if there exists
a positive constant ' such that

L e L ot
O (2 | v@)(s fuorens) <o

We shall say that (w, v) satisfies condition A} if there exists a positive con-
stant C such that '

Mu(y) < Co(y).
THEOREM.
(6) (w,v)€ AL, 1< p< oo, if and only if

w{Mf(y) > A} < )% ,‘!f | f(2))Pu(z) de .

(M flgwre are no (nontrivial) weights w for which (w,w) € A 1<p
oo.
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Remark. I 1 £ p < g, then A, C A} If, for example, % has a finite
right derivative at 0 and w € L}(R*), we have Mw € L. (R'), so that
(w, Mw) belongs to A for 1 £ p < o0.

The next extension of Riesz’ Lemma is the main tool in the proof of (6).

LeEMMA. Let f be a nonnegative function with compact support, A a
positive real number and 2 = {M f(y) > A}. Then there exists a scquence
of disjoint intervals {(ag,by) : k € N} such that
by

(8) 2 C U(ak,Bk), where Bk = m,

kEN
A 1

(9) §< .—ak

f Slz)de < 2X0.

Proof. Let
Fzy= [ ftydt—)z,

01 = {z : F(z) > F(z) for some z > z},
O, = {z : F(2) < F(z) for some z < },
O3 =0,U0,.
The sets 0,02 and O3 are open and bounded, so that, for 7 = 1,2,3, we

have O; = UkeN(ak,[)’k), with (e, 31) N (ah,ﬁ 'y =0 for h # k. Observe
that, for j=1,2, we have

7 I
Bi — o

We now take ay = a?, by = 3. Notice that if z € (ag, bg) and 2 > z is such
that F(z) > F(z), then z € (ag,by). Given a point y € £2, there exist @ and
b such that ¢ < y < b/4(b— ¢) and F(b) > F(a). Consequently, there is a
k € N for which a and & belong to {ag, bi). Therefore

b < by
P(b—a) "~ by —ax)’
since b ~ a < by — @, and ¥ is nonincreasing. This proves (8).

Let us now prove (9). Tor each k& € N there exist two sets of integers
If;,j = 1,2, such that

(11) (ak, bi) =

al
(10) L [ ydi=2, keN.

ap<a<y<

Ul hu [ (et 88).

iel} iel?
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In fact, the sets
= {i EN: (afvﬁf)n (@K, bi) # @}1 i=12,

satisfy (11), since (af, 87) N (ax,by) # @ implies (of, B7) C (ar, by). Inequa-
lities (9) now follow from (10) and (11):

2 of
Soe-an) <2 ZZ(@—&")—%ZE [ rwaes ff £ dt

7= IIEI’ F=1 161’ ﬁ’
2 ai
<220 JH@a=230 (8 - al) S 22(bi - a).
i=lier] p! iel]

Proof of the Theorem. Let us show first that A} suffices for the
weak type (1,1) of M. Let f, A and w be as in the Lemma From (8), (9)
and condition A{, we have

By

9. 1 by
w(@) < ; a f w(z)dr < § z; B f w(z) do f fly) dy

<3 [ e < S e dy
<C [ ).
R

In order to prove the weak type (p, p) when the pair (w,v) belongs to
Aj, first observe that from (9), Holder’s inequalities and A} we have

A 1
5 < ap u‘! f(a:) d

by

by i/rp (p=1)/p
1 | ,
< P ~1/(p=~1)
< (bk — a;]' F(z)Po(z) dz) (bk e a! v(z) dm)

by 1/p
< C(m a;f f(z)Pv(z) dm) ,

so that

by
oo gt ) < & f s in,

L1
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From (8) we finally get

bi © Po(z) dz
w(Q)SEw(ak,m)SﬁJﬂ@ (v} de.

kEN

Let us now show that A} is a necessary condition for the weak type
(1,1) of M. If M is of weak type (1,1) for the pair of weights (w,v), then
the same is true for the Hardy-Littlewood maximal operator, hence {(w, )
satisfies the usual Ay [M2]. Consequently, it is enough to prove that

1 b/¢(b—a)
[ w(®)di < Coly)
b

(12)

— &

for every a,b and y such that y € (a,b). Take f = x(yy+n), ¥ > 0, L > 0,
in the weak type inequality in (6) with p = 1. Since the set {M f(y) > A}
contains the interval (y,z) with z = (/X + y)/9(h/}), it follows that

z C vt+h
er(x)dmgj\- ?;f v(x)dz

for every A > 0. Let (a,b) be a given interval, y € (a,b) and h > 0. Takmg
A=h/(b— a)in the preceding inequality we have

| bG-a) z o vk
y— gf w(z)dz < ’}fw(:c) dz < By yf v(z) dz,

from which (12) follows by differentiation.
In order to prove that the weak type inequality implies Ay forl < p < oo,
observe that for f = x(a5v" /P~ and X = [2(b - a)]™" [ f(z)dz we have

(a,0/4p(b—-a)) C {Mf > A}.
Thus, the weighted weak type (p, p) implies
b/¥(b~a) '

f w(z) de

a

b -

gc(m(:fu(m)ﬂ/fpﬂ) clw) p(f’t)(m)“i’/(f"-l)v(m?dm),

a

which is equivalent to A,
Let us finally prove (7). Since A} C A}, (1 < p < o0), it is enough to
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prove (7) for 1 < p < oc. Let (w,w) € A, w # 0. We have

e p-1 z/4(z) -1
( [ w(ty=1 /e a!t) < C’x”( [ w®) dz)
0 0

< C'x”( f w(t) dt) - :

0

Since w satisfies Muckenhoupt’s A, condition [M2], it also satisfies & reverse
Hélder inequality, i.e., there exist ¢ > 0 and a constant I such that

1 Z e 1/(14¢) B :r[ .
(E fw(t) dt) SE- fw(&) de .

0 0
Thus, for z > 1 we have
(13) (fw(t)—ll(ri—ﬂ dt)p-l < B pPe1t1/(14e)
- T4e) '
5 (L w(ey e a0+
Now, from A}, Hélder’s inequality and (13) it follows that
z p-1 z/4(z) -1
( f w(t)~1/(P-1) dt) < C’z”( f w(t) dt)
0 0
= f9(z) p1
< C'(,b(:r:)p( S wy/em dt) .
0
< C'T,/?(.'c)s”l-"; CB w;pw1+'l/(l+¢)
- 1 14e g, 1/ (1+e) !
(Jo w(t)' "¢ dt)

so by iteration we get

n

.2 p=1
(f,w(t)—l/(:ﬂ—l) dt) < A(Cd)(m)€/(1+5)) $p-1+1/(1+5),
1]

for some positive constant A4, « > 1 and every n & N. Since lim .. 1(1) = 0,
we see that f;” w™1/("=1) dt = ( for 2 large enough. This finishes the proof
of the Theorem.
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