

M. Scheve

104

- P. J. Boland and S. Dineen, Holomorphic functions on fully nuclear spaces, Bull. Soc. Math. France 106 (1978), 311-336.
- [2] P. A. Chalov and V. P. Zakharyuta, A quasiequivalence criterion for absolute bases in an arbitrary (F)-space, Izv. Severo-Kavkaz. Nauchn. Tsentra Vyssh. Shkoly Estestv. Nauki 1983 (2), 22-24 (in Russian).
- [3] P. B. Djakov, A short proof of the theorem of Crone and Robinson on quasiequivalence of regular bases, Studia Math. 53 (1975), 269-271.
- [4] H. Jarchow, Locally Convex Spaces, Teubner, 1981.
- [5] R. Meise and D. Vogt, Structure of spaces of holomorphic functions on infinite dimensional polydiscs, Studia Math. 75 (1983), 235-252.
- [6] —, —, Analytic isomorphisms of infinite dimensional polydiscs and an application, Bull. Soc. Math. France 111 (1983), 3-20.
- [7] —, —, Holomorphic functions of uniformly bounded type on nuclear Fréchet spaces, Studia Math. 83 (1986), 147-166.
- [8] —, —, Holomorphic Functions on Nuclear Sequence Spaces, Departamento de Teoría de Funciones, Universidad Complutense, Madrid 1986.
- [9] L. Mirsky, Transversal Theory, Academic Press, 1971.
- [10] B. S. Mityagin, The equivalence of bases in Hilbert scales, Studia Math. 37 (1971), 111-137 (in Russian).
- [11] A. Pietsch, Nuclear Locally Convex Spaces, Ergeb. Math. Grenzgeb. 66, Springer, 1972.
- [12] H. H. Schaefer, Topological Vector Spaces, Springer, 1971.
- [13] M. Scheve, Räume holomorpher Funktionen auf unendlich-dimensionalen Polyzylindern, Dissertation, Düsseldorf 1988,
- [14] D. Vogt, Frécheträume, zwischen denen jede stetige lineare Abbildung beschränkt ist, J. Reine Angew. Math. 345 (1983), 182-200.
- [15] M. J. Wagner, Unterräume und Quotienten von Potenzreihenräumen, Dissertation, Wuppertal 1977.
- [16] V. P. Zakharyuta, Isomorphism and quasiequivalence of bases for Köthe power series spaces, in: Mathematical Programming and Related Problems (Proc. 7th Winter School, Drogobych 1974), Theory of Operators in Linear Spaces, Akad. Nauk SSSR, Tsentr. Ekon.-Mat. Inst., Moscow 1976, 101-126 (in Russian); see also Dokl. Akad. Nauk SSSR 221 (1975), 772-774 (in Russian).

MATHEMATISCHES INSTITUT UNIVERSITÄT DÜSSELDORF C/O PROF. R. MEISE UNIVERSITÄTSSTRAßE 1 D-4000 DÜSSELDORF, GERMANY

Received January 17, 1990 (2769)

STUDIA MATHEMATICA 101 (1) (1991)

Weighted weak type inequalities for certain maximal functions

bу

HUGO AIMAR and LILIANA FORZANI (Santa Fe)

Abstract. We give an A_p type characterization for the pairs of weights (w, v) for which the maximal operator $Mf(y) = \sup \frac{1}{b-a} \int_a^b |f(x)| dx$, where the supremum is taken over all intervals [a, b] such that $0 \le a \le y \le b/\psi(b-a)$, is of weak type (p, p) with weights (w, v). Here ψ is a nonincreasing function such that $\psi(0) = 1$ and $\psi(\infty) = 0$.

The Poisson integral for the Hermite expansion of a function f is given by

(1)
$$P_r f(y) = \int_{\mathbf{R}} P(r, y, z) f(z) e^{-z^2} dz$$

where

$$P(r, y, z) = \frac{1}{\sqrt{\pi(1-r^2)}} e^{-(r^2y^2-2ryz+r^2z^2)/(1-r^2)}.$$

C. Calderón [C] and B. Muckenhoupt [M1] proved that the maximal operator

$$P^*f(y) = \sup_{r \in (0,1)} |P_r f(y)|$$

is bounded in $L^p(e^{-x^2}dx)$ (1 and of weak type <math>(1,1) with respect to the Gaussian measure $e^{-x^2}dx$. We can write (1) in the form

$$P_r f(y) = \int_{\mathbf{R}} K(r, y, z) f(z) dz$$

where

$$K(r,y,z) = \frac{1}{\sqrt{\pi (1-r^2)}} e^{-((ry-z)/\sqrt{1-r^2})^2}.$$

If we take $\varepsilon = \sqrt{1-r^2}$ and $\chi_{(-1,1)}$ instead of e^{-t^2} , we are led to the

¹⁹⁹¹ Mathematics Subject Classification: 42B25.

Weighted weak type inequalities

107

maximal operator

(2)
$$\sup_{\varepsilon>0} \frac{1}{\varepsilon} \int_{\psi(\varepsilon)y-\varepsilon}^{\psi(\varepsilon)y+\varepsilon} |f(x)| dx,$$

with $\psi(\varepsilon) = \sqrt{1 - \varepsilon^2}$.

In this note we consider weighted weak type inequalities for a maximal operator which is both larger than (2) and than the Hardy-Littlewood maximal operator.

Let $\psi: \mathbf{R}^+ \cup \{0\} \longrightarrow [0,1]$ be a nonincreasing function such that $\psi(0) = 1$ and $\lim_{t\to\infty} \psi(t) = 0$. Given a locally integrable function f on \mathbf{R}^+ and $y \in \mathbf{R}^+$, define

(3)
$$Mf(y) = \sup \frac{1}{b-a} \int_a^b |f(x)| dx,$$

where the supremum is taken over all intervals [a, b] such that $0 \le a \le y \le b/\psi(b-a)$; and

(4)
$$\widetilde{M}f(y) = \sup \frac{1}{b-a} \int_{a}^{b/\psi(b-a)} |f(x)| dx$$

where the supremum is taken over all intervals [a, b] such that $0 \le a \le y \le b$.

DEFINITION. We shall say that the pair (w, v) of nonnegative locally integrable functions on \mathbb{R}^+ satisfies condition A_p' , 1 , if there exists a positive constant <math>C such that

(5)
$$\left(\frac{1}{b-a}\int_{a}^{b/\psi(b-a)}w(x)\,dx\right)\left(\frac{1}{b-a}\int_{a}^{b}v(x)^{-1/(p-1)}\,dx\right)^{p-1}\leq C.$$

We shall say that (w, v) satisfies condition A'_1 if there exists a positive constant C such that

$$\widetilde{M}w(y) \leq Cv(y)$$
.

THEOREM.

(6) $(w,v) \in A'_p$, $1 \le p < \infty$, if and only if

$$w\{Mf(y) > \lambda\} \le \frac{C}{\lambda^p} \int_{\mathbb{R}} |f(x)|^p v(x) dx.$$

(7) There are no (nontrivial) weights w for which $(w, w) \in A'_p$, $1 \le p$ $< \infty$.

Remark. If $1 \leq p < q$, then $A'_p \subset A'_q$. If, for example, ψ has a finite right derivative at 0 and $w \in L^2(\mathbb{R}^+)$, we have $\widetilde{M}w \in L^1_{loc}(\mathbb{R}^+)$, so that $(w, \widetilde{M}w)$ belongs to A'_p for $1 \leq p < \infty$.

The next extension of Riesz' Lemma is the main tool in the proof of (6).

LEMMA. Let f be a nonnegative function with compact support, λ a positive real number and $\Omega = \{Mf(y) > \lambda\}$. Then there exists a sequence of disjoint intervals $\{(a_k, b_k) : k \in \mathbb{N}\}$ such that

(8)
$$\Omega \subset \bigcup_{k \in \mathbb{N}} (a_k, B_k), \quad \text{where} \quad B_k = \frac{b_k}{\psi(b_k - a_k)},$$

(9)
$$\frac{\lambda}{2} \le \frac{1}{b_k - a_k} \int_{a_k}^{b_k} f(x) \, dx \le 2\lambda.$$

Proof. Let

$$F(x) = \int_{-\infty}^{x} f(t) dt - \lambda x$$
,
 $O_1 = \{x : F(z) > F(x) \text{ for some } z > x\}$,
 $O_2 = \{x : F(z) < F(x) \text{ for some } z < x\}$,
 $O_3 = O_1 \cup O_2$.

The sets O_1, O_2 and O_3 are open and bounded, so that, for j = 1, 2, 3, we have $O_j = \bigcup_{k \in \mathbb{N}} (\alpha_k^j, \beta_k^j)$, with $(\alpha_k^j, \beta_k^j) \cap (\alpha_h^j, \beta_h^j) = \emptyset$ for $h \neq k$. Observe that, for j = 1, 2, we have

(10)
$$\frac{1}{\beta_k^j - \alpha_k^j} \int_{\alpha_k^j}^{\beta_k^j} f(t) dt = \lambda, \quad k \in \mathbb{N}.$$

We now take $a_k = \alpha_k^3$, $b_k = \beta_k^3$. Notice that if $z \in (a_k, b_k)$ and x > z is such that F(x) > F(z), then $x \in (a_k, b_k)$. Given a point $y \in \Omega$, there exist a and b such that $a < y < b/\psi(b-a)$ and F(b) > F(a). Consequently, there is a $k \in \mathbb{N}$ for which a and b belong to (a_k, b_k) . Therefore

$$a_k < a < y < \frac{b}{\psi(b-a)} < \frac{b_k}{\psi(b_k - a_k)},$$

since $b - a < b_k - a_k$ and ψ is nonincreasing. This proves (8).

Let us now prove (9). For each $k \in \mathbb{N}$ there exist two sets of integers $I_k^j, j=1,2$, such that

(11)
$$(a_k, b_k) = \bigcup_{i \in I_k^1} (\alpha_i^1, \beta_i^1) \cup \bigcup_{i \in I_k^2} (\alpha_i^2, \beta_i^2).$$

Weighted weak type inequalities

In fact, the sets

$$I_k^j = \{i \in \mathbb{N} : (\alpha_i^j, \beta_i^j) \cap (a_k, b_k) \neq \emptyset\}, \quad j = 1, 2,$$

satisfy (11), since $(\alpha_i^j, \beta_i^j) \cap (a_k, b_k) \neq \emptyset$ implies $(\alpha_i^j, \beta_i^j) \subset (a_k, b_k)$. Inequalities (9) now follow from (10) and (11):

$$\frac{\lambda}{2}(b_k - a_k) \leq \frac{\lambda}{2} \sum_{j=1}^{2} \sum_{i \in I_k^j} (\beta_i^j - \alpha_i^j) = \frac{1}{2} \sum_{j=1}^{2} \sum_{i \in I_k^j} \int_{\beta_i^j}^{\alpha_i^j} f(t) dt \leq \int_{a_k}^{b_k} f(t) dt$$

$$\leq \sum_{j=1}^{2} \sum_{i \in I_k^j} \int_{\beta_i^j}^{\alpha_i^j} f(t) dt = \lambda \sum_{i \in I_k^j} (\beta_i^j - \alpha_i^j) \leq 2\lambda (b_k - a_k).$$

Proof of the Theorem. Let us show first that A_1' suffices for the weak type (1,1) of M. Let f, λ and ω be as in the Lemma. From (8), (9) and condition A_1' , we have

$$\begin{split} w(\Omega) &\leq \sum_{k=1}^{\infty} \int_{a_k}^{B_k} w(x) \, dx \leq \frac{2}{\lambda} \sum_{k=1}^{\infty} \frac{1}{b_k - a_k} \int_{a_k}^{B_k} w(x) \, dx \int_{a_k}^{b_k} f(y) \, dy \\ &\leq \frac{2}{\lambda} \sum_{k=1}^{\infty} \int_{a_k}^{b_k} f(y) \widetilde{M} w(y) \, dy \leq \frac{2}{\lambda} \int_{\mathbb{R}} f(y) \widetilde{M} w(y) \, dy \\ &\leq \frac{C}{\lambda} \int_{\mathbb{R}} f(y) v(y) \, dy \, . \end{split}$$

In order to prove the weak type (p, p) when the pair (w, v) belongs to A'_p , first observe that from (9), Hölder's inequalities and A'_p we have

$$\frac{\lambda}{2} \leq \frac{1}{b_k - a_k} \int_{a_k}^{b_k} f(x) dx
\leq \left(\frac{1}{b_k - a_k} \int_{a_k}^{b_k} f(x)^p v(x) dx \right)^{1/p} \left(\frac{1}{b_k - a_k} \int_{a_k}^{b_k} v(x)^{-1/(p-1)} dx \right)^{(p-1)/p}
\leq C \left(\frac{1}{w(a_k, B_k)} \int_{a_k}^{b_k} f(x)^p v(x) dx \right)^{1/p},$$

so that

$$w\left(a_k, \frac{b_k}{\psi(b_k - a_k)}\right) \le \frac{C}{\lambda^p} \int_{a_k}^{b_k} f(x)^p v(x) \, dx \, .$$

From (8) we finally get

$$w(\Omega) \le \sum_{k \in \mathbb{N}} w\left(a_k, \frac{b_k}{\psi(b_k - a_k)}\right) \le \frac{C}{\lambda^p} \int_{\mathbb{R}} f(x)^p v(x) dx.$$

Let us now show that A'_1 is a necessary condition for the weak type (1,1) of M. If M is of weak type (1,1) for the pair of weights (w,v), then the same is true for the Hardy-Littlewood maximal operator, hence (w,v) satisfies the usual A_1 [M2]. Consequently, it is enough to prove that

(12)
$$\frac{1}{b-a} \int_{b}^{b/\psi(b-a)} w(t) dt \le Cv(y)$$

for every a, b and y such that $y \in (a, b)$. Take $f = \chi_{(y, y+h)}, y > 0, h > 0$, in the weak type inequality in (6) with p = 1. Since the set $\{Mf(y) > \lambda\}$ contains the interval (y, z) with $z = (h/\lambda + y)/\psi(h/\lambda)$, it follows that

$$\int_{y}^{z} w(x) dx \leq \frac{C}{\lambda} \int_{y}^{y+h} v(x) dx,$$

for every $\lambda > 0$. Let (a, b) be a given interval, $y \in (a, b)$ and h > 0. Taking $\lambda = h/(b-a)$ in the preceding inequality we have

$$\frac{1}{b-a}\int_{b}^{b/\psi(b-a)}w(x)\,dx\leq\int_{y}^{z}w(x)\,dx\leq\frac{C}{\lambda}\int_{y}^{y+h}v(x)\,dx,$$

from which (12) follows by differentiation.

In order to prove that the weak type inequality implies A'_p for $1 , observe that for <math>f = \chi_{(a,b)} v^{-1/(p-1)}$ and $\lambda = [2(b-a)]^{-1} \int f(x) dx$ we have

$$(a, b/\psi(b-a)) \subset \{Mf > \lambda\}.$$

Thus, the weighted weak type (p, p) implies

$$\int_{a}^{b/\psi(b-a)} w(x) dx$$

$$\leq C \left(\frac{1}{2(b-a)} \int_{a}^{b} v(x)^{-1/(p-1)} dx \right)^{-p} \left(\int_{a}^{b} v(x)^{-p/(p-1)} v(x) dx \right),$$

which is equivalent to A'_{v} .

Let us finally prove (7). Since $A'_1 \subset A'_p$ (1 , it is enough to

Weighted weak type inequalities

111

prove (7) for $1 . Let <math>(w, w) \in A'_{p}$, $w \not\equiv 0$. We have

$$\left(\int_{0}^{x} w(t)^{-1/(p-1)} dt\right)^{p-1} \le Cx^{p} \left(\int_{0}^{x/\psi(x)} w(t) dt\right)^{-1}$$
$$\le Cx^{p} \left(\int_{0}^{x} w(t) dt\right)^{-1}.$$

Since w satisfies Muckenhoupt's A_p condition [M2], it also satisfies a reverse Hölder inequality, i.e., there exist $\varepsilon > 0$ and a constant B such that

$$\left(\frac{1}{x}\int_{0}^{x}w(t)^{1+\varepsilon}dt\right)^{1/(1+\varepsilon)}\leq \frac{B}{x}\int_{0}^{x}w(t)\,dt.$$

Thus, for $x \ge 1$ we have

(13)
$$\left(\int_{0}^{x} w(t)^{-1/(p-1)} dt \right)^{p-1} \le \frac{CB}{\left(\int_{0}^{1} w(t)^{1+\epsilon} dt \right)^{1/(1+\epsilon)}} x^{p-1+1/(1+\epsilon)} .$$

Now, from A'_p , Hölder's inequality and (13) it follows that

$$\left(\int_{0}^{x} w(t)^{-1/(p-1)} dt\right)^{p-1} \le Cx^{p} \left(\int_{0}^{x/\psi(x)} w(t) dt\right)^{-1}$$

$$\le C\psi(x)^{p} \left(\int_{0}^{x/\psi(x)} w(t)^{-1/(p-1)} dt\right)^{p-1}.$$

$$\le C\psi(x)^{\varepsilon/1+\varepsilon} \frac{CB}{\left(\int_{0}^{1} w(t)^{1+\varepsilon} dt\right)^{1/(1+\varepsilon)}} x^{p-1+1/(1+\varepsilon)},$$

so by iteration we get

$$\left(\int_{0}^{x}w(t)^{-1/(p-1)}dt\right)^{p-1}\leq A\left(C\psi(x)^{\epsilon/(1+\epsilon)}\right)^{n}x^{p-1+1/(1+\epsilon)},$$

for some positive constant A, $x \ge 1$ and every $n \in \mathbb{N}$. Since $\lim_{t \to \infty} \psi(t) = 0$, we see that $\int_0^x w^{-1/(p-1)} dt = 0$ for x large enough. This finishes the proof of the Theorem.

References

[C] C. P. Calderón, Some remarks on the multiple Weierstrass transform and Abel summability of multiple Fourier-Hermite Series, Studia Math. 32 (1969), 119-148.

[M1] B. Muckenhoupt, Poisson integrals for Hermite and Laguerre expansions, Trans. Amer. Math. Soc. 139 (1969), 231-242. [M2] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, ibid. 165 (1972), 207-226.

PROGRAMA ESPECIAL
DE MATEMÁTICA APLICADA
INTEC-CONICET
C.C. NRO 91
3000 SANTA FE, ARGENTINA

DEPARTAMENTO DE MATEMÁTICA FACULTAD DE INGENIERIA QUÍMICA-UNL SGO. DEL ESTERO 2829 3000 SANTA FE, ARGENTINA

Received February 7, 1991

(2776)