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Maximal functions related to subelliptic operators
invariant under an action of a solvable Lie group

by
EWA DAMEK and ANDRZEJ HULANICKI {Wroclaw)
Abstract. On the domain Sq == {(z, e") :z € N,b €R,b > a} where NV is a simply
connected nilpotent Lie group, a certain N-left-invariant, second order, degenerate elliptic

operator L is considered. N x {e?} is the Poisson boundary for I-harmonic functions F,
i.e. F' is the Poisson integral

F(zab)= ff(i'y) dua(z),
N

for an f in L% (N). The main theorem of the paper asserts that the maximal function

125z =supf | [ sananti)| 10>}

is of weak type (1,1).

0. Introduction. Let N be a nilpotent Lie group on which the multi-
plicative group

A:{e’":rER}

acts as automorphic dilations {8, }rer (cf. Section 1 for the definition). We
form the split extension

§=NA={ze :z€ N,r €eR}.

The fundamental example of N A is the N A part of the Iwasawa decompo-
sition @ = NAK of a rank one semisimple Lie group G with finite centre.
Then N A is identified with the symmetric space G/I. Thereis a very well
developed theory of harmonic functions on NA = G/K, i.e. of functions
F such that LF = 0, where [ is a G-invariant elliptic operator on G/K.
Harmonic functions with respect to various elliptic and degenerate elliptic
operators on S as defined above and the corresponding Poisson integrals
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have been studied in [D] and [DH] (also in the case when A is multidimen-
sional).

The space of our interest here is
Se={xe¢":z € N,r>a}
with the topological boundary
05, = {ze*:z € N}.

Although the operator L which we consider here is left §-invariant but, of
course, S,, a4 > ~00, is not. So some of the methods used in [D] and [DH]
are not applicable here. However, one of the crucial facts for our analysis is

that the space §, is foliated by the action of N on the lelt and 85, can be
identified with N.

Let Xy,...,X, be a basis of the Lie algebra n of N and suppose that
the elements X3,..., X generate n as a Lie algebra.
On S, we consider a degenerate elliptic operator

(0.1) L= aij(a)X:X;+ Y oj(a)X;+ 02 — k8.,

iq<k i<n
where the matrix {a;;(a)] is strictly positive definite for every ¢ € R. In the
case when

(0.2) Xy,...,X, are homogeneous with respect to the dilations, i.e.
b X; =% X;, d;i>0,
and
aij(a) = aigeltitine,
[@i;] being strictly positive definite,

-L is 'cf,le’l't-invaria,nt operator on the whole group §, and, in fact, every left-
invariant degenerate elliptic second order operator on S is of this form (cf.
Section 1).

_ It has_b_een shown in [D] that then « > 0 is a necessary and suffi-
cient condition for the existence of nonconstant bounded harmonic functions
on S. ' '

The aim of the present paper is to study bounded L-harmonic functions
.(’“ 2 0) on Sa, and the existence of the harmonic measures u® on 85,
nder.ntn‘ied with N. We prove that every bounded harmonic function F on
Sa is the Poisson integral of an L% function f on N, i.e.

(0.3) F(zey= [ flzy)dui(z),
N

where f € L®(N).
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Let
M f(z) = supf| [ flzu)dpdia)| 6> a+ 1},

M'f(z) = sup{‘ f flzy) dp’;(y)l ta<b<adt 1} .
We are going to prove that if k > 0, then M" is of weak type (1, 1) and if

(0.4)  the X;’s for which oj # 0 are expressible as linear combinations of
X1y, Xy and [ X;, X;), 4,7 <K,

then also M’ is of weak type (1, 1).
It can be verified that for the parabolic operator

S (@) XiX; + Y aj(a)X; — B,
ii<k j<n
without condition (0.4), M' may be unbounded on L* (cf. [Z]).
Thus we arrive at the main result of this paper.

(0.5) Man THEOREM. Suppose L is as in {0.1), x > 0, (0.2) and {0.4)
are satisfied. Let pb be the harmonic measures on 05,. Then if

M2 f(z) = sup{| [ flov) dpbw)| :b> o,
then M is of weak type (1, 1).

The proof requires a number of methods. The Lie group techniques to-
gether with homogeneity of N are heavily used together with a number of
classical methods in proving the maximum principles. These often require
less stringent assumptions on L, the full strength of the assumptions im-
posed being only used in Section 4. Some of the crucial estimates for the
harmonic measures ub are obtained using probabilistic methods, especially
the decomposition of the diffusion generated by L into the “vertical compo-
nent” a(t) generated by 87 — kd; and the “horizontal component” for which
the transition probabilities conditioned on a trajectory a(t) of the vertical
component satisfy the evolution equation

(0.6) Buu(t,z) = ( T au(a(t) X:X; + Eaj(a(t))xj) u(t, z)
i<k ign
(cf. e.g. [T]).

One should perhaps mention that without any group invariance bound-
edness on L* of the mazimal functions related to Poisson integrals on C'>
boundaries of unbounded domains for even most reqular elliptic operators
seems to be an open question [K].

The work on this paper lasted on and off for a number of years. During
this time we have benefited a lot from conversations with many mathemati-
cians. We would like to express our deep gratitude to those in particular
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whose help has given us the right ideas or simplified our proofs: Waldemar
Hebisch, Carlos Kenig, Jean-Pierre Kahane, Adam Koranyi, Peter Sjgren,
Flias Stein, Dane Stroock, John Taylor and Jarostaw Wréblewski.

Special thanks are due to Jerzy Trzeciak who has suggested numerous
improvements in the presentation and has corrected very many not only
typographical mistakes in the manuscript.

1. Preliminaries. We start with some general facts concerning Lie
groups. Let G be a connected Lie group with a right-invariant Haar measure
dz. A nonnegative Borel function ¥ on G is called subadditive il it is bounded
on compact sets and

(1.1) V(zy) < ¥(z)+¥(y) forz,y€C,
(1.2) U(z)Y=¥(z), z€d.

If instead of {1.1) we have

(1.3) V(izy) < V(2 (y) forz,yeC

and also ¥(z) > 1 we say that ¥ is submultiplicative. I ¥ is subadditive,
then 1+ ¥ is submultiplicative.

Let || || be a euclidean norm in the Lie algebra g of G and 75 the corre-
sponding left-invariant distance (from the identity), i.e.

r(e) =inf [ ||§(0)l| dt,

where the infimum is over all C! curves vy in G such that 7(0) = ¢, 7(1) = =.
Then 1 is subadditive and for every nonnegative function ¥ on G which is

bounded on compact sets and satisfies (1.1) there is a constant C such that
(see [H1])

(1.4) ¥(z) < Clrg(z)+1), zeqd.
Let B,(z) denote the ball of radius r and centre z, i.e.
Bi(z)={y:1e(z"1y) < r}-
We often write B, or B(r) for B,(e). Let
Tm = min{rg,m), m=1,2,...,00.

Cleatly Ty, is subadditive. Let ¢ € C¢°(B,) be a nonnegative function such

that [¢dz = 1. Then for any left-invariant vector fields X and Y and all
m we have [H1]

(1.5) m(2) =7 < 7o % 0(2) € T(2) + 7,4
(16) 1 X(rm+0)(2) < [ Il Ady X || dy,
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(1.7) XY (rm @)@ & [ V@)l Ady X[ dy

for all z € G, where T, * ¢(z) = [ m(zy~)p(y)dy, ¢ € G. Moreover,
1+ 7oy * ¢ is submultiplicative and for every m and all z,y € G

(1.8) 14+ 7+ p{zy) S (1 +20) (14 T+ () (14 1+ 2(3)) -

Let N be a simply connected nilpotent Lie group and let n be its Lie
algebra. N is called homogeneous [F'S] if there is a basis Xi,..., X, of the
Lie algebra n of N and numbers 1 =dy £dp £ ... < d, such that fora € R
the mapping

X;—edicX;, j=1,...,n,
extends to an automorphism 8, of n. For z = exp X in N we write
foz = exp[da X].

Of course §, is an automorphism of N. It is called a dilation. Moreover,
n
(1.9) Q=) d;
=1

is the homogeneous dimensionof N. A homogeneous normon N is a function
N3z —|zleRt
which is C® outside z = e, satisfies |§,«| = €%|z|, and |z| = 0 if and only if
z = e. We have |zy] < 8(|z|+ |y]) for some § 2> 1. .
There is always a subadditive homogeneous norm, i.e. one with § =1

[HS]. Let » > 0 be such that in appropriate coordinates rg(z) = (3 z2)/?
whenever z € B,(e). There is a constant C' (cf. e.g. {FS]) such that

(1.10) ra(z) € Cmax(|z|*,]z|*), = € G,
(1.11) le| < Cra(z), 2 & Br(e),
(1.12) lz|?* < Crgl(z), = € Br(e).

In this paper we study the solvable group §' = N A which is the semidirect
product of N and the group of dilations' A = R with eze™® = d,7, ¢ € 0,
z € N, a being the Lie algebra of A. Let

(1.13) Eyea

be the infinitesimal generator of the one-parameter subgroup e’. Then
[Eo, X} = d;X;.
We have the following simple

(1.14) LEMMA. Lete; < ... < ¢p be such that {¢1,...,¢p} = {d1,...,dn}
and n = @F_, V; with V; = {X :[Ey,X] = c;X}. Then for every XeEn
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there is a decomposition n = @_, V] such that

P P
63 Vi= @ Vi and [Eo+X,X]]=¢;X}
j=m

j=m

for X;eViandm=1,...,p.

Proef. Since [X,V;] = 0 we put V, = Vp and proceed by induction.

Suppose V.. 11,...,V, are already defined. Let X,, € V,, and

X, Xn) = i X;-.

Jj=m+1
We write
P
X; =Xnm+ Z (Cm - Cj)—lX;;.
i=m+1
Then
P
[Eo + X, Xr,n] =emXm + Z (X; -+ C_,'(Cm - Cj)WIX;)
J=m+41
P
= cm(Xm + Z (em ~ c_,-)-IXj) =emX,,. W
j=m+1

By the last lemma for any linear complement a’ of n in the Lie algebra
s of § there is a decomposition n = @F_, V; such that

[a(Eo + Xo), X;] = ae;X;
if a(Eo + Xo) € a', X; € V. Therefore S is a semidirect product
(1.15) | S=NA'
of N and A’ = exp o’ with

4
exp a(Eo + Xp) exp(z Xj) exp(—a(Ep + Xo)) = exp (Ep: e“""X_,-) .
=1

§=1
A decomposition of type (1.15) of § will be called admissible.

2. Maximunfl principles. In this section we study general left-invari-
an.t'degenerate elliptic operators L on §. We are going to prove a maximum
principle for them on the domains of the form

So={ze’ :z € N, b>a}

where § = NA is a given admissible decomposition of 5. Obviously, by
(1.15), S, does not depend on the decomposition . The topological boundary
{ze® : x € N} of §, is denoted by N,, :
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First, we rewrite L in a more convenient form. To do this we distinguish
between left-invariant vector fields on § and on N corresponding to the
same element of n. If X is a left-invariant field on N, let X' denote the
left-invariant vector field on § such that X, = X!. Moreover, Ej is the

left-invariant vector field on S corresponding in the same way to Ey defined
in (1.13). If X € V; then

X'f(za) = e%*X fo(z), where fo(z) = f(za).

(2.1) ProPoSITION. Let L be a left-invariant elliptic degenerate operator

on §. There is an admissible decomposition of S and bases 8, of a and
X1,...,Xu of n such that

[Bu,Xi]=d;X,-, i=1,...,n,
and

(2:2)  Lep{ze®)

Tt n
- (a@ﬁ — kO, + Z a'.je(lii"‘dj)ﬂXin + Z ajedjaxj) p(ze®)
§,5=1 _1=1
for o € C>(S), z € N, a € a. Moreover, a > 0 and [o;;] is positive
semidefinite.

Proof. Using simple algebra we find Xo, X in n such that L can be
written in the form

L=o(Ey+ X + kB + Y P ELEj+ X'
i,i=1

where @ > 0 and [§;;] is positive semidefinite. Now by Lemma (1.14) we
choose a basis X1,..., X, of n such that [Ey + X, Xi] = d;X;. Then

n n
L= a(Ey+ X4 + (B, + X0)+ Y aijXiXj+ > a;jX]
=1 =1
where [a;;] is positive semidefinite, and in the coordinates z - exp t{ Eo + Xo)
we obtain (2.2). =

Let
n n
Lo = Z aijé(di+dj)aX;Xj i L1 = Zajedi“Xj .

f,5=1 i=1
We consider
(2.3) L= an, — k8, + Lo + In
where a, k > 0. Define

' D{ag,a1,R)={ze* :z€ B(R), ap < a<a1}-
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Let v * ¢ be as in (1.5) and

@4y C= 3 layllX:Xilrw « Dl + 3 lell| Xirw + @)l
j=1

i,j=n
+ > sl Xilrw * @)1 X (v * 2)|
hLi=1
where ||fl| = sup,en |f(z)]. By (1.6} and (1.7), C' < o0.

(2.5) THROREM. Assume k> 0. Letag < ay, 0 <e <1 and lcta, v, R
be constants satisfying

0O<o<d, k—aoc>0, 1Z7, reo<k,
R > max{Cymax(e*¥,eh9)/a(x — aov),2}.
Suppose that F' is a twice continuously differentiable function in
D(ag, a1 + o™ log(2e™1), Re~%/?) = D

and LF > 0, F is continuous in D and |F| < 1. If F(ze*) < 0 for
x € B(Re~24n/9), then F(e™1) < €.

Proof. Let
Go(xe®) = Lee?(3m) 4 (e/2)*% /" R= (riy » $(z) + 1)

and let G = —Gj. First we are going to prove that LG(ze®) > 0 whenever
x €N and ap < a < a; + o7 log(2e~1). Let

I = (Lo + L1)Go

L =(y-1G" Y aielh ) (XiGo)(X,Go),

i,j=1
L =a(y—1)G0.Go)?, It ={(kds—abl)CG.

1T]1en LG = 'ng"’ (Is = Iy = I, — I3). For every d between d; and 2d, we
\ave

Deby (0 :
e?® < max{eldn®1, ed‘m} ed (=) ifa > ay,
edila=e)  f g < gy,
Therefore

I 2dn/o ol -1 [etdnlo=ar} jfg >q
| 1| < (5/2) U'(K' 0'057)7’ {edl(ﬂ‘“‘l!) ifa < (L; ’

Similarly,

Bl < (7 - 1)(e/2) %/ 0{x — gay)y-1 { 5 ifa>ar,
18] < (1 = Dfe/27 40t - gy { Grery) Moz
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Moreover,
[I5] < 3(v — 1)0:5023“(“'“1)
and
I = %EO‘(K. - aa)e"("_“l) .
Consequently, if @ < aq, then Iy — Iy — Iy — I3 is positive because o < dy
and 2d,/o > 1. If a > a;, we have

Ii—Ti = Iy = Iy > ok — gay)etds(a=a1{(¢/2)els ~2dn)a=m) (e/2)*¥n/} .
But for such a
glo—2dn)a—ai) > (5/2)“1”""‘/" ,
50
Li-h-L-I3>0.
Moreover, ((ze®) < 0 for z € N and by (1.5), G < —1 on the remaining
part of the boundary 9D of D. Hence F +G < 0 on 0D, The weak

maximum principle for degenerate elliptic operators (Proposition 1.1 in (B
implies F + G < 0 in D and the proof is complete. m

Now we pass to the case ks = 0.
(2.6) THEOREM. Assume k = 0 and C is given by (2.4). Let
amp <oy, O0<e<l, 0<y<l,
R > max{1,C(a; — ap)* max{e?=*°, e} /v(1 — )}
and
D = D(ag, a0 + & /(a1 — ao), Re2/7 exp{2dpe (a1 ~ a0))) -

IFecyD)nC(D), |F| £1in D, LF > 0 in D and F(ze®) < 0 for
¢ € B(Re /7 exp(2dne (a1 — ao))) then F(e™) < 3e.

Proof, We consider the function
G(ze*) = —ela—ag)" /(a1 — ao)”
— Rl exp(—?dne'l/"(al — ap))(rw * (z) + 1)

and we show that LG(ze®) > 0forz € N, a0 < a < ap + &7 (ay — @o).
Since for every 0 < d € 2d, and @ > @

eda < ma.x{ez‘i"%, edlau}e2d,.(a.—nq)
we have
(Lo + L1)G(ze®)]
< (1~ 7)(a — a0) 2 exp(~2dne ™" (a1 — ao)) exp(2dn(a ~ do))
< 7(1 = 7)(e1 — ao) 2 .
< ey(1 = 7)(@ - a0 /(a1 — a)? = OLG(ze).
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The rest of the proof is as in Theorem (2.5). =

(2.7) CoroLLARY. If F € C*(8,)NC(5,), LF > 0 and F is bounded
then for every b > a, z € N we have

F(ze) < sup F(ye?). =
yEN

(2.8) CorOLLARY. For every a, b > a and £ > 0 there is
R= R(e,b,a) ifk=0,
~ | R(g,b) ifr>0,

and § > 0 such that if F € C*(8,)N C(8,), LF = 0, F is bounded and
[F(ze*)| < 6 for ¢ € B(R) then |F(e?)| < c. m

3. Harmonic measures. From now on we shall assume that there are
¥1,..., Y, generating n as a Lie algebra such that

b
(3.0) Z a;; XiX; = Yf-}—...-}-}’f
““lj=1
Then obviously we have the same for every a, i.e,
L=Yi(a) +...+Yi(a)? + Ly +ad? — &8,

where Y(a),...,Yx(a) generate n. For such operators Bony’s version of
Harnack’s inequality [B] is available. Qur first goal is to show that for every
a the Dirichlet problem for S, has a solution:

(3.1) THEOREM. For every bounded continuous function f on N there
exists ¢ bounded harmonic function F on S, which is continuous on S, a such
that F{ze®) = f(z) forz € N.

Proof. Since by Corollary 5.2 of [B] the Dirichlet problem can e solved

in every set from a basis R of open sets in S we can apply Perron’ s method
(GT].

(3.2) DEFINITION. Let U be an open set in 5. An upper semicontinuous
function F': U — [~00,0c) is called subharmonic if for every V in R such
that V C U and s € ¥V we have

F(s)s [ Fly)au!(y),
v

where u} is the harmonic measure on 9V corresponding to L.
The following facts enable us to apply Perron’s method.

(3.3) THE MAXIMUM PRINCIPLE, Let U be an open set in S with compact
closure, and F a subharmonic function in U , UppET semicontinuous in U,
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Then
sup F(s) < sup F(s).
s€U sedlU
For harmonic functions (3.3) follows from Theorem 3.2 in [B]. General-
ization to subharmonic functions is standard.

(3.4) THE MAXIMUM PRINCIPLE FOR S.. Let F': 5, — [0, 0) be
a subharmonic function in §,, upper semicontinuous and bounded on Sa.

Then
sup Fi(s) < sup F{(s).
€S, 2EN,
(3.4) can be proved in the same way as Theorems (2.5) and (2.6). We

notice that F 4 G is subharmonic (in the sense of the definition a,bo\{e) as
the sum of two subbarmonic functions. Then we apply (3.3) to F+G in D.

(3.5) THE Un1rorM CONVERGENCE PROPERTY. Every monotomic se-
quence of harmonic functions which is bounded from above or below is almost
uniformly convergent to a harmonic function.

(3.5) follows from Harnack’ s inequality [B].

Let f € Cp(N,) and let SHo(f) be the set of functions g subharmonic in
S,, upper semicontinuous and bounded in the closure of S, and such that
g(ze®} < f(ze®), ¢ € N.

(3.6) LEMMA. If f € Cp(N.) and F(s) = sup{v(s) : v €SH.(f)}, s €S,
then LF =0 in 5, and
(3.7) lim F(s)= f(ze"), =zeN.

s—re*
Proof. Clearly F satisfies the mean value property, i.e.
F(s)= [ Fy)du/(y), s€S5.
v

By (3.4), inf f € F < sup f. Tt follows from (3.4) and (3.5).that an upper
gemicontinuous function satisfying the mean value property is h.a.rmomc:
To prove the second statement we have to c.onstruc!; a barrier function
[GT]. Let L be as in (2.3), ® the Hunt function on N, i.e. &, X;@, X,-Xjﬁ
are bounded, #(e) = 0 and $(z) > Oforz £ e (cf. eg [H2]), 0 <y <1an

C= 3 lag | XX;20 + D Lol X5l

i,j=1 F==1
where || - || is defined after (2.4). Set
W'{ze®) = (a —ag)? + C™ (xy(a1 — ag)"!
+ay(1—v)ay - ao)"'“z)e"“"“‘@(mo‘lm)
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in the domain ag < a < ay with ¢; > max(4p,0). Then W' ¢ C(5, )
Wi(ze*) > 0if ¢ # 29 or a # ag, W'(zoe™) = 0 and LW' < 0 in {mcg ,
ap < a<dar}.
Now the construction of the barrier is easy. We let ap < ay < a1 and
K =inf{W'(ze®*):z€ N, a3 <a<ay}.
Then

W(ze?) = | Din{K,W(ze®)} ifao <a<ay,
K ifaza,

i3 a barrier function and the proof of (3.7) is now routine. w

Eet H. be the space of bounded harmonic functions on S, continuous
on Sa.. By the previous theorem and Corollary (2.7) for every s in S, the
mapping

my(f)=F(s), Fe€MH., Fln, = f,

is a well defined continuous functional on Cy(N) with =
Corollary (2.8), b(¥) with |lm,f| = 1 and by

sup{|my(f)] : f € Ce(N), ||fl| = 1} = 1.
Hence there exists a probability measure p2® on N such that
(3.8) F(zeb) = {f,u®"), ze€N,abeR, a<h,

for f € Cu(N). Since L commutes with left translations we see that

(3.9) Flae'y = (f,u7%) = [ Floy) dul(y) = fpl(a),
N

where pb = us®.

Let f € Ou(N) and F(zeb) = fub  (2). Then F & Hage Put G(s) =

F(eas)_ Then & € Hc and G by b :
other hand, (ze”) = g#u for some g € Cy(N). On the

Glae’) = F(eae®) = F(3,(2)e*™) = ftusti(5(2))

and so putting b = ¢ we see that g = f o §,. This imp;:sc

(3.10) (f o baspe) = (F, #3¢3)

Let dfi(z) = du(z="). Then it follows immediately from (3.9) that
(3.11) fig = pbxjp¢ fora<hee.

. %3.!1,2) P;lOPOSITION. For every right-invariant differential operator § on
» Opty € L*(N) and consequently ub is smooth and Opb is bounded.

The proof follows from Sobolev’s lemma (cf. [D]).
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We denote the density of 4% also by ut. Proposition (3.12) and (3.10)
imply
(3.13) KEER(2) = €96 _a(2)),
where () is defined in (1.9).

Another consequence of the maximum principle is the existence of frac-
tional moments of the measures u%, when & > 0 and of a logarithmic moment
when r = 0.

(3.14) PropPosITION. Let L be as in (2.3) with k > 0. Let 5 < k/2dn0.
Then there exists a constant ¢ = e(n) independent of a and b such that
{7, pt) < ce®mbl,
Proof. By Theorem {2.5) for every { < &/« there is a constant ¢ which
depends on the group, the operator L and { such that

HE(Bu(e)®) < cexp(2d,|b])u=¢/2dn

This implies the assertion. =

(3.15) ProproSITION. Let L be as in (2.3) with x = 0. For every a < b
and every 0 < v < 1
(3.16) J (og(L+ ma(=)))Y dt() < 0.

Proof Let a<b, 0<v<1andlet R be as in Theorem (2.6). Then

(B, (e)°) < (log(u/R))"(2dn(b — a) + 1)”

for u sufficiently large, which gives (3.16). =

Remark. It can be proved that in the case when & > 0 the family of
measures {1t} ,<s is uniformly tight and p) converges weak™ to a probability
measure pb as a — —oo, pi? is the Poisson kernel for L as described in D],
[DH].

4. Parabolic operators. In this section we comsider parabolic oper-
ators on G X Rt where G is an arbitrary Lie group. Let X1,..., X~ be a
fixed basis of the Lie algebra g of G and

k N
(4-1) L= L — 8, where L= Z Ctij(t)Xin + Z ai(t)X;
' §i=1 i=1

and [av;;(t)] is positive semidefinite.

We are going to write down some properties of the diffusion a.ssocia_ted
with L. Most of the proofs are standard and for operators with coefficients
bounded on G X (0,T) can be found in [SV]. Our operators do not have this
property, but are invariant with respect to « and so using T * ¢ (see (1.5))
instead of a euclidean norm we can rewrite the proofs from {SV].
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Let C*1(G x (0,T)) denote the set of functions on G x (0,7) d times
continuously differentiable in z and once in t. If all right-invariant spa-
tial derivatives of F up to order d are bounded on  x (0,T) we write
F e 3G x (0,T)). Moreover, C{(G) is the set of functions on G with
continuous and bounded right-invariant derivatives up to order d.

(4.2) THEOREM [SV]. Let s < T < 00 and
M =sup{|a; (D)), |eu()] s s <t < T, 4,5 =1,...,k, I=1,...,N}.

We fiz positive numbers ¢, C, r. There is R = R(¢, M,C,r) such that if
f c 02'1(G X (SaT))s f 2 “Cv

Lf<0
lim inf f(z,t) > 0

in Bp(z) x (8,7),
ast-— 3, z— 1y, ¥y € Br(x),
then

flyp,) > - Jors<t<T andye B(z). m

(4.3) CoroLLARY. Lete, M,C,7, R = R(e, M,2C,7) be as in the previous
theorem. If f € CPUG x (s, TY)NC{G x [8,T)), Lf =0, | f| £ C then for
every s € G

i s—e< t) <
,Join f(y,8)—e £ fz,t) < ygg?(cz)f(y,swra

where z € B(z) ands<t< T, m.

For the rest of this section we assume that I can be written in the form

L="1(1) + ...+ Y,()* + Yo(?) - &;
where .
N
Yit) =Y Bi(0)X;
i =1

with B;; € C(R*) and for every t, ¥1(¢), .. ., Y,(t) generate g as a Lie algebra.

This is true for example if X3,..., X in (4.1) generate g and [a;(t)] is
strictly positive definite.

(4.4) THEOREM. Let 0 < s < T and ¢ € CY(G). There is ezactly one
function F € Cyu(G x [¢,T)) such that

(4.5) LF=0 onGx(sT), F(z,s)=¢(x) forze@.
Moreover, if ¢ € CHG) then F € CFN(G x (s,T)).

Proof. If the 8;; are smooth this follows in a standard way (described
for example in Section 3 of this paper).
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Assume now that the §;; are continuous and approximate them almost
uniformly by smooth functions, i.e. we write By = Bij * pn, where ¢y, is an

approximate identity in L'(R). We then obtain the family of operators

k N
Ly= )" of(X:iX; + Y o2(1)Xi - d;
£,j=1 i=1

and let Fy, be the solution of the corresponding Dirichlet problem for L,
i.e.

InFo=0 onGx(8T), FJlz,s)=¢lz) forzed.

We will show that F, converges almost uniformly to F satisfying (4.5). We
have

Fo(zt)=pxpy (2), s<t<T,
where the p7 , are probability measures. Therefore for every n and f such
that |7] < 2

Fall < el and [ XTF[| < | X Tl
where || fl| = supgeq | ()] Let

&n,m = max{|of;(t) — afi ()], o' (t) — o (D] :
Li=1,...kl=1,...,N, s<t<T}.
There are C, M independent of n, m such that
|(Lyn = Lp) Fn(z, 8} < C(1 4 rele)Menm, zEG.

Let now &, M,r be as in Theorem (4.2) and R = R(e, M, 2||¢|,7). We
consider the function

G(z,1) = Fu(e,t) — F(z,1) + 2CH1+ R)Mep
on Br(e) x [s,T). Since Ln(Fn— Fn) = (Lp — Ln)Fin we have
LGz, 1) = (Im — Ln)Fn(z,8) =201+ RYMep m <0
forz € B,(e), s<t<T,
and so by Theorem (4.2}
Fu(@,t) — Fru(2,8) + 260 + Renm 2 ~€
for z € By(e) and s <t < T Interchanging n and m we obtain
Fo(,) = Fr(2,8) = 26(1 + RYMenm <€

and the unjform convergence of F}, and also of X TF, is proved.
Now, on the one hand LF, — LF in the sense of distributions, and on

the other hand, for 1 € C°(Br(e)) we have S
(LFy )] = (& — Ln)Fa, 9)] £ O+ B)Menll$lle
with &, — 0 so LF = 0. Uniqueness of F follows from Coroliary (4.3).
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Moreover, we prove as above that if ¢ € C{(G) and X7 (|I| < d) is a
right-invariant differential operator then X !F, converges almost uniformly
to X{F. This means that F € O (G x (s,T)) because & F = L,F. u

(4.6) CoroLLARY. Let F' be as in Theorem (4.4). There is a family of
probability measures P(s,t,dz) = P(s,t) (transition probability function)
such that
(4.7) F(z,t) = ¢ P(s,t)(z),

(4.8) P(s,t)y= P(s,u)* P(u,t) fors<u<t.m
(4.9) ProroSITION [SV]. If f € Cu(G x [3,8)) N CPM(G x (s,1)) then

f Flzy™, s) P(s,t, dy) — f(z,1)
a

= fdu f((Lu-—Bu)f(my_1,u)) P(u,t,dy). m
3 G

(4.10) TuEoREM. Let s < T and M = max{|e;;(t)],|a:()] : s <1 < T}
There is a constant C independent of s, T, M such that for 0 <1 < T and
r> CM(t—~s)

P(s,t, Bp(2)°) < 2dim Gexp(~r?/CT M (¢t — 35)).

Proof. Let r be such that in appropriate coordinates zy,..., 25
N
1/2
Ta(z) = (Z w';')
=1
when 75(z) < r. We consider the functions

gﬁﬁ =g+ (1 —¢)m*p, m=12...,00, K=1,...,2N,
where '

_ [=x fK=1,..,N,
% —ERK-N ifK:N+1,...,2N,

Y ECE(Br),0<yp <1, Y(e)=1forz e By sz and @ in (1.5) is such that
Tm = T/4 < Ty % p < Ty + 1/4. Then $X(e) = 0, right-invariant derivatives
of # are bounded and if X7 is left-invariant then the | X 78X | are bounded
independently of m, K. Let A > 1 and
N
C= Zma,x(
m K\

1,j=

N N
1X: X500+ S XOKN + 3 IXBENX;BK]+1).
1 i=1

i,J=1

The function G(z,u) = exp(AN*M(u — s) + AL (2)/C) satisfies (L, — 8,)G
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< 0 in &G % (3,1) so by the previous proposition
| exp(ABK(a71)/C) P(s,t,d) < exp(A\ M (i - 5)).
&

Passing with m to infinity we obtain

[ exp(AK(a1)/C) P(s,1,dz) < exp(A Mt — 5))
4]

for every K. Now proceeding as in [S] we have
P(s,t, Bo(e)°) < 2N exp(—Ar/2CVN + X2 M(t — 5)).
ITra= T/4C\/FM('L‘ ~ 3} this means
P(s,t, B(e)°) < 2N exp(—r?/16C*NM(i~5)). =
(4.11) CorOLLARY. Let C, M be as in the previous theorem. For every
g € [1,00) there is a conslant Cy depending only on C, g such that

t—s)? ift-s<1,
[ oty Plostdo) < Crmax(par, oty { €27 F8 oS
o

forD<s<t. m

Let B(G) be the Borel o-field on G and £2(G) the set of continuous
functions #() on [0,00) with values in G. F, denotes the a-field on £2(G)
generated by the sets

{z():2(s)e I}, Ogs._<_t, I'e B(G),

F=o( U 7).

0<i<oo

(4.12) COROLLARY. For everys >0 and z € G there is a unique proba-
bility measure P, 5 on 2(G) such that (2(1), T3, P,.z) is a continuous Markov
process with the iransition probability function

{(4.13) P(s,z,t,V) = P(s,t,z7'V)
and initial distribution &,. w
For mare details about the diffusion P, see [SV].

and

5. Estimates. Let N be a homogeneous group and let X, .. .,)!(n 'E)e a
homogeneous basis in the Lie algebra n of N, i.e. for the group of dilations
bryr > 0, we have :

5,Xj=rd"Xj, j=1,...,n,
where 1 = dy = ... = dg < drin <...<dp.
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Suppose that the vector fields

(5:1) Yo(t)’yl(t)a P :Yk(t)
satisfy the following conditions:

(a) Yi(t) = iy Bis(D)X; for i = 1,....k and Yo(t) = T Bos(1)X;
with fi; € C(0,00) for all i and 7,

(b) for every t, Y1(2),...,Yi(t) generate n,

(c) there are A > 0, A > 1 such that for every £ € R¥ and ¢ > 0

k k
AeP < 3 (3 Bu)Bs(t)) et < Al

=1 =1
and also
Bos()]| <A forj=1,...,n.
We consider an operator on N x R given by
(5.2) Lu(z,t} = Lou(z,t) + Lyu(z,t) — Ou(z,t)
where

k
Lou(z,t) = E}’j(t)“u(;:,t), Inu(z,t) = Yo(t)u(z, t).

Ci=1

First for the transition probability function P(s,t) given by Corollary (4.6)
we prove the following estimate:

(5.3) TeEOREM. Let L be as in (5.2), P(s,t) the transition probability

function corresponding to L and f € C2°(N). Then for every multiindez T
there are constants K = K(I), C = C(A,I) such that

(54) 1 * XTP(s, )|z < CAF (8 — 8)= M1 20t — 5)5] f]| o

)1"01- allf} E}}C’g"(N) and 0 < s < t where ¢(t) = max{max{t(>~4}/?: j =
yeees )}y 1)

Remark. The main idea of the proof is due to Waldemar Hebisch.
Proof. Let

B ={(z,1):]z] <1,1/8< t < 1}

where | | is a homogeneous norm in N and let ¢ € Ce(B). Suppose u
satisfies

(5.5) (L —08)u(z,2)=0
in a neighbourhood of supp ¢. Then
0 = (B pu), pu) = {(Bip)u, pu) + {wLu, pu) .
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Hence :
e Low, pu)| < |(In(ipw), pu)l + (L), pu)| + [{(Bp)n, pu)]
= [{(Lag)u, pu)l + ((Bep)u, pu)| < Cllulliacs
where C' = C(p)A. We have
(Lo(ipu), pu) = (Lo, pu) + ([ Lo, plu, pu) .
Now we fix t and we abbreviate Y;(t) = ¥j. Let n; = Yjo. Then

kB
[Lo, ] = 2> (n¥; + Y}¢),

=1
whence

k
Ko, e, wu)l € |3 4 ¥u, i) + Cllullfacs)
j=1

where C' = C(p)A. But

k k .
IZ(&OY}% mﬂ)[ < 3713 (oViu, ¢¥ju) + 3C lullLas)
i=1 §=1

where C = C(p)A. On the other hand,

k K k
3713 Yy, pYu) = =371 YV, pu) — (2/3) )_(n;Yiu, ou)
F=1 j=1 i=1
k

= =87 (pLou, pu) — _(2/3)2(773’111'“: Uy,

i=1

whence
k
| ¥, mi0)] < (ot o)+ 9C(@Aulibac
i=1

i.e.

[{Lo(eu), pu)l < 2(pLou, pu} + C(¢)Alullzaca)
and, finally,
(5.6) |(Lo(pw), en)] < Cle)AullLam -

Let X2+4,. +X7 = -4, where X denotes the right-invafriant field deﬁm?d
by X in n. For ¢ > 0 we define a Sobolev norm on functions supported in
B putting _

14572 f|[3a + 1 £1122 = N1l -

We need the following :
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LemMaA (J. J. Kohn). There is an € > 0 and @ constant C such that

k
lkeulibreg < € (32 I1Xa(eu)lEe + llpulida)
j=1

Jor all u in €7 and ¢ in C2°, where ¢ depends only on the length of com-
mutators in Xq,..., Xy needed to span n. Therefore

k
loullheg < (a7 [ 3 (e pu)(e, ) dodi + [lpul3a)
J

=1

Hence for u which satisfies (5.5) in a neighbourhood of supp ¢, by (5.6),
we then have
(5.7) leull 2oy < Clops WAl o -

Let w,¥ € CP(B) and ¥(z,t) = 1 for (z,t) € suppw. Suppose u
satisfies (5.5) in a neighbourhood of supp 1. Then, since A commutes with
L, A%(3u) satisfies (5.5) in a neighbourhood of supp . Hence, by (5.6) and
(5.7), since A°[A®, ¢]is a pseudodifferential operator of order < ¢ {of course
we may assume ¢ < 1),

14 (eu)llza = || A%(pypu)|| L2
< 1A% (@A pu)|| s + | A ([, A (pu))]l o
< lea* 2 ($u)ll sy + Cloy &)l pull e
< (Clw,e) + Clo)M)lulae) -
Hence
el < (Ceoe) + CUR)AC (N Alull sy

and continuing in this way we obtain

leullary < Cr,0, A A% |ull 125y
for arbitrary r, where K = K(r).
Consequently, for every multiindex I and X! = Xb .. X i

(5.8} “‘PXI‘"»“%I(T) < CAK”””%,?(B)

where &' = K(r,I), C = C(p,A,r,I), and the same with X7 in place of
X7T. Now let u satisfy (5.5) in a neighbourhood of supp ¢. Hence also X Tu
satisfies (5.5) in a neighbourhood of supp ¢. By the Soboley lemina, since
the domain is bounded, this yields '

1

69 [ s JeX u(z, )P dt < CA¥|Ju)|pam ,
' 1/8 lzl<1/2
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where K = K(n/2+ 1,I) and C = C(g, A, I). Putting X'(Lo + L1)uv =
8:XTu in place of Xu in (5.9) we obtain

sup | X u(z,1)] < CAKHu”Lz(B)
1/4<1<1/2, |z|<1/2

with K = K(I) and C = C(A,I) for an appropriate choice of ¢ in (5.9).

Let D.(z,t) = (d2,7%). Then by (5.1) and (5.2) we have
(5.10) P((0c~ L)u) Dy = (3 — F')(u+ Do),
where ‘

k n
Lru(z,t) = Y Yi(r*) ulz, ) + Y Bo;(r*t)r* % Xju(a,1) .
J=1 =1

It follows immediately from (5.10) that {8; — L™)(v+ D,} = 0iff Lu = 0.

Consequently,

(5.11) sup
1/4<i<1/2, |z|<1/2

| X (u- Do)t £ O\ De(r*) A% [|u - Drll L2y

" where ¢(r) = max{max{r(®~4)/2 : j = 1,...,n},1}. Let {Jj=dyis + ...+

dpin. Then X7(u-D,)=rllIX7u. D, and by (5.11),

7l sup |XTu- Dy
1/4<t51/2, |al<1/2

r ) 1/2
<CODAR(Y e (v [ [ Ju(a, 0 de ar) "
r? /8 |z|<r
Therefore
(5.12) sup | X fu(z, )]
|z|<{2r)1/2 )2
I 2 1/2
< C'(N, DAK (ryK 2= /4 (rl I [ lunde dt)
' B lwl<F
Now let p, = P(0,t) where P(0,1) is given by Corollary (4.6) and
. u(a:,t):f*p,(m), fECcDO(N)'
Then by (5.12)

sip  |f + X pu(2)] < C'(, DNARe() VA= s
lo|<(2r)1/2 /2 - _

Using . f(y) = f(zy) instead of f we get

(5.13)  [|f * X 'pillp= < C'OX D AR ()Rt s

If we now consider the operator L’ with Y/(t) = Yi(s+1),1=0,..., k, then
we obtain (5.4). = -
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(6.14) THEOREM. For every multiindez I there are constants C = C (A, I)
and K = K(I) such that

(5.15) I XTP(s,t)| g < CAK e(t ~ 8)K(t — 5)~11/2-Q/2
Jor 0 < s < t where ¢(t) is a8 in Theorem (5.3).
Proof. Let f be an L' function with compact support and u the L-

harmonic function given by u(z,t) = f * pi(2). In view of (5.12) and (5.4)
we have

4 1/2
1F * X pu(e)| S CAFe(Y<EVI2=0A (171 [ | f xpy|l3 ds) /
t/8
and
I * pellza € CAK () 44| £]| s

for some constants C' = C(A,I) and K = K(J)}. Replacing f by of we
obtain :

1F * X pille < C 4K () 1220 1] 1
Taking an approximate identity in L' we arrive at (5.15) for s = 0 and,
changing the operator as at the end of the previous proof, for arbitrary 5. w

(5.16) TuEOREM. For every multiindez | and every positive integer £
there ezist C' = C(I, A, €) and K = K(I,£) such that

(517 (IXTP(a,0)], (14 w)E) < CARe(t) (1 - 5)~11V/2
whent — s < 1. Here XT may be either left- or right-invariant.

Proof. If |I| = 0, (5.17) follows from Corollary (4.11). Let
{Pm}m=1,2,.., 0 £ oy £ 1, be a family of smooth functions with compact
support such that v, =1 on By (e). We write (14 75 )¢ = & and consider
the harmonic functions u.(z,t) = &, * py(z) where &, = p,,® sgn(Xp,).
Then by (5.12) for t < 1 we have

(fomﬁ, IXIptD = (émsXIPf) =Py * XIPt(e)
) .
< O, DAR () 1/2-ar (t-l J [ 1w ep(e)?dz ds)”:.
O JalsvE
But by the fact that ¢ is submultiplicative and Corollary (4.11)

(t'l'f f |f¢(my”1)p,(y)dyr d:.:-u!.t;)l/2

O |zjgvi N

< (( f |$(2) dm)t‘.1 f(é,p,) d&)w2 < C(k) AR/
lz|<vE 0

icm

Mazimal functions related to subelliptic operators 55

and (5.17) follows for s = 0.

To obtain (5.17) for arbitrary s we consider the operator L' with ¥/() =
Yi(s+1),i=0,...,k. u

Now we are going to prove some pointwise estimates for P(s,1) and its
derivatives. We start with some inequalities in terms of rx but later we
pass to a homogeneous norm to obtain estimates which we really need. For
the rest of this section we assume that ¥ is at most of order 2, i.e. fo; =0
when d; > 2.

(5.18) THEOREM. (liven a multiindez I and a positive integer £ there
are constants C = C(I, A, £) and K = K(I,£) such that fort-s <1

(5.19) | XTP(s,t,2)| < CAX(t — s)~1V/3=9/2(1 4 rpy(2))~¢.
Proof. Let W = |X!P(s,t,z)|(1+ mw(z))%. By Corollary (4.6) and by
the fact that 1 4+ rn{z) is submultiplicative

W< f (1 + 7 (zy )1 + (@) P(s, u, zy )| XL P(u,t, y)| dy .
N

Applying now the Schwarz inequality and (5.15),(5.17) we obtain

W< ([ @+ rvlar PP wzy ) dy)
N

x ( J O+ Pt ) a)'"”

< C’AK(u _ 3)—0,'4(t _ u)—Q/4w—|I[/2

for some constants C' = C(A,1,§), K = K(I,£). Finally, taking minimum
over u we arrive at (5.19). w :

When |I| = 0 we need an estimate of type (5.19) for ¢t —s > 1. But in
view of Corollary (4.11), proceeding as in the previous proof we obtain
(5.20) P(s,t,2) < CAK1 (1 — 8)K3(1 4 7n(2)) ¢
for t — s > 1. Here C is a constant depending on A, £ and K, K depend
on €.

(5.21) THEOREM. Let | | be a subadditive hornogeneous norm in N [HS].
For every multiindez I there are constants C = C(I,A) and K = K(I) such
that
(5.22) |XTP(s,t,2)| € CAK(t — s)!/3|z|7H1=971.

Proof. Let L™ be as in (5.10) and u(z,t) = ¢ * P(0,1)(z), ¢ € C.f‘°.
Then v = u - D, is the solution of the Dirichlet problem for L™ — 8; with
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boundary value - §.. Therefore on the one hand

(5.23) v(z,1) = @ « P(0,rt)(6, ),
and on the other hand,
(5.24) v(z,t) = (¢ - 8.} * PT(0,t)(x)

where P7(0,1) is the transition probability function corresponding to L”.
Comparing (5.23) and (5.24) we obtain

PT(0,t,2) = r9 P(0, 7%, 6,x) .
Assume now that r < 1. Then by (5.19)
IXTPT(0,1,2)] < CAK(1 4 ry(2))~@ 1111
with ¢ = C(1,A,Q), K = K(I,Q) and A independent of r. This means
| XTP(0,72,6,2)] < CAKp=Q-tH|g|-2-HI-1
Now writing r1/? instead of r and z = &,y we obtain (5.22) for s = 0. To

get (5.22) for an arbitrary s we consider, as before, the operator I’ with
Y/(t) = Yilt +5). v

6. Diffusion. Let L be an operator of the form (2.3) on the group N A
and assume that L satisfies (3.0). Without loss of generality we may assume
that o = 1. Let 27(5) be the set of continuous mappings from [0, 7] into
S and _

{P,'mz. i8>0zl € S}
the diffusion associated to L considered on £27(8), i.e. the P, cev are defined
on the o-field Fr(S) generated by the sets {z(-) € 2p(9) : z(s) € I'},
0<s<T, I €B(G). Given g € 27(A) we look at the operator
n n

(6.1) L= Z TR CICELID 6 g Zajea(t)djxj .

| i\j=1 = |
Let {Piz : s > 0,z € N} be the diffusion on 27(N) given for L& by
Corollary (4.12). If {W, : s > 0,b € A} is the Wiener measure on £27(4)
associated to 82 — k8, then (see e.g. [T])

(6.2) . Poaet = [ P, Walda),
ie.if Z € Fr(S) and Z, = {z € 2r(N): (z,8) € Z)} then_
Pa,xe“(z) = fpixeb(zg_)wa.b(dﬁ) .

Let a < b and T, = inf{t: o(t) < a}. Then in view of (6.2) for M C N
we have

(63) f:‘z(M) = f P(Q;OaTm M) dwﬂ.b = EbP(Q;O:Ta}M) '
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where P(a; 8,8, M) = Pie{=(t) € M}.
The following immediate corollary of (4.8) and (6.3) will be used: for
t< T,

(6.4) P(g;0,To, M) = P(g; 0,8, Y Pa;t,To, M) .
Let us alse formulate an casy

(6.5) Prorosirion. Let &, H be two Lie groups. Let Xp,..., Ay be
elements in the Lie algchra g of G and Xy,..., Xy clements in the Lie

algebre b of H and lel o be @ homomorphism of G onto H such that
oy =X;, J=1,...,n.

Assume that Ay, ..., Xy generale g, Let o7 and o be condinuous funciions
on Rt such that the matriz [o;;(1)] is positive definite for cacht. Let

n n
L= a(ONX; + ey - d,,
i=1

i,J=1

1 n
L= a()X:iX;+ ) o;(1)Xj~8:.
=1 j=t

Then the transition probability funciions PY(s,1) and P™(s,1) correspond-
ing to £ and L in view of Corollary (4.6) satisfy

P81, V)= P98, 1,071 (V)). u

The following fact is well known and not difficult to prove by standard
nmethods.

(6.6) PROPOSITION. Let Ty = inf{t : a(t) < a}. Then
4

Wy{T, < t} = l (Ar) 12 (b — a)s™3/* exp[~(b ~ @ ~ ks)* (45) " ] ds . w
0

To construch an appropriate free group for the operator L we must as-
sume Lhat there is a subset IT of {1,...,n} such that

(8.7) Ly = Z a;jaf““*‘“‘i)“X;Xj,
iJeln
{X:}Yierr gonerate n and the malrix [oy;] is strictly positive definite.
Now let L% be the operator

(6.8) e = Z a,'j(t)X,'Xj + i a; ()X

fyjenr _‘f:'l
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with

a;;ed(di+di)  when t < 1
aij(t) = {a;;e“(‘)(d"“"") when £ > 1 :

i _ Jaet®d whent <1,
ai(t) = {a.-e“(l)"‘ when ¢ > 1.

Then for A and A in (5.1)(c) we have
A = Cy exp[Cymax{a(t): 0 <t < 1}],
A = ey expleamin{a(?) : 0 <t < 1}]

for some constants C, Cy, €1, ¢; and we can assume that 4> 1.

Passing to the free nilpotent Lie algebra generated by A, 7 € I, on
which dilations are defined by §,X; = rX; we apply Proposition (6.5) to
derive from (5.17) the following

(6.9) THEOREM. Let L% be as in (6.8) and let P(a; 0,1, -) be the trarisition
probability function associated to LE - 8,. Then for every £ and cvery left-
or right-invariant differential operator 8 on N there ezist a constant ¢ =
C(8,£) and an ezponent K = K(83, &) such that for t <1 we have

J10P(4;0,,2)|(1 + 7n(2))f da < CAFE K
Now let 2% be a harmonic measure as described in Section 3.

(6.10) THEOREM. Let > 0 be the exponent as in Proposition (3.14).

Then for every left- (right-} inveriant differential operator @ (8Y) on N we
have

(6.11) J1804(@)|(1 + 7 (2))" dz < oo,
(6.12) J 1Y (2)(1 + n(z))" dz < o0

Proof. Since j%(z) is harmonic as a function of z, b, (6.11) follows from
Harnack’s inequality and Proposition (3.14). Let T, = min{¢ : a{t) = a}
and T} = min{1,T,}. By (6.3) and (6.4) we have :

' 8Vib(z) = E48VP(g;0,TL )  Pla; T', Ty, ).
Hence by the strong Markov property

f [8Y 28 (2)1(1 + T (2))" dx
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< B [10¥P(a;0, T2, 2)|(1 + n(2))" d=
X f P(a; T;, T, 2)(1 + v (2))" da:}
= B{ [10¥P(@;0,Ts )1+ rn(z))" dz
X Eary [ P(20,T0, 2)(1 + ov(2))" dm}
= Eb{ S 18V P(a0,1,2)[(1+ ()" da
% [ BagryP(a;0, T, 2)(1 4+ 7v(2))" d2 Ta 2 1}

+ Eb{ f|3vP(g;0,Ta,x)l(l +rn(E))de; Ty < 1} .

By (6.3) and Proposition (3.14), the second factor in the first summand is
equal to

(3D, (14 78)7) < Gt < O(n) A2
and so, by Theorem (6.9), for K large enough the first summand is less than
or equal to ‘
CC(:})E;,AK‘"” < Cr(n)EbEZCg(K-q-z)a(l) ,

which is finite. By Theorem (6.9), the second summand is less than or equal
to

CEJ{ARTY Ty < 1} € C(By{OI N (BTG 1w < 1DV,
which, by Proposition (6.6), is finite. m

Remark. If k in (2.3) is sufficiently large then (6.12) follows (with an
exponent smaller than 1) from (6.11) and since this is enough to prove that
the maximal function M" (see (7.4}) is of weak type (1, 1) we do not have
to consider the operators L% and their transition probability functions in
this case.

7. Maximal functions. Let §, = {ze®: 7 € N,b > a}, and let L be
of the form (2.8) with @ = 1 and & > 0. We assume that Ly satisfies (6.7).

Let ub, b > a, be harmonic measures on N. For a function f € LP(N),
1 € p < o0, we are going to study the harmonic functions Fi(zeb) = fHtpb ()
and the maximal function

(7.1) Mo f(z) = sup{F(ye") : b 2 a, |7y < €'} .
Of course,
(7.2) M, f(z) £ ML f(z) + M [(2),
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where

(7.3) M. f(x) = sup{F(ye") :a+1>b>a,|z7'y < e},
(7.4) M!"f(z) = sup{F(ye?) : b > a+1,]z7y| < e’}.

First we prove
(7.5) THEOREM, MY is of weak type (1, 1) uniformly in a.

Remark. If x in (2.3) is sufficiently large (6.12) follows only from Ilar-
nack’s inequality and M* is of weak type (1, 1} under a weaker assumption
on L: for every a, Y1(a),...,Ym(a) in (3.0) and L generate n.

Proof. First we observe that by (3.10)
M(fobs)oé_g=M)f.

Hence
{a: M f(z) > e S et fllne ff [{z: My f(z)> £} < le"lllfiIL1
with the same constant e. Thus we restrict our attention to MY = M.

QOur next reduction is the following. By Harnack’s mequahty [Bj,
sup{F(ye®):1 < b< 2, |y <’} < CF(e").
Putting res F' in place of I we obtain
sup{F(ye"t*):1 < b < 2,|e7ty| < "t} < CF(ze™t).

Consequently,
(7.6) M"f(z) < Csup{f#uf(z) :n=1,2,...}.

Let us write v = uj.

(7.7) LEMMA. If 5 > 0 is as in Proposition (3.14), then
(7.8) S lv(bz) — v(@)(1 + (=) dz < Crn(h)?,
(7.9) S Iv(eh) = v(@)|(1 + Tn ()" dw < Crn(R)".

Proof. Since ¥ is a harmonic function (7.8) follows immediately from
Harnack’s inequality and Proposition (3.14) while (7.9) follows from Theo-
rem (6.9) and Proposition (3.14). m

For a function f on N we write §, f(z) =

(7.10) LEMMA. Let vy, = §.,v and
p(z) = sup{ fv*u_l *...*u_n(a:):nzﬂ,l,...}.

e~ f(8_n ).

Then
(71)  Mf(@) < sup{ [ f(=9)onp(y)dy: n =0, 1,--»}-
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Proof. By (3.11) and (3.13),

n o N ne1 1 . 1 1 1
Mo = Hpy * fyly ¥ oo % Ho = Onpig * Sy * .. ¥ g
=8 (v rvog k.. xvey)

and the proof follows from (7.6). =

The idea of the proof of the following lemma in the case when N is
abelian is due to Jaroslaw Wrdblewski.

(7.12) LeMMA, There exists o > 0 such that

[ #(@)(1 + ()2 dz < 0.
Proof. We write

p(z) € vz

)+ Zlu*
whence for 0 < £ < 7 of Proposnlon (3.14),
I= f wle)(1+ n(2)) de < fu(:r,)(l + 7~ (2))* dz

+Z f\u* cAvop(T) - VR

Avop(e) - v ok vogpi(2)],

kv {7)| (L4 mn(z)) da .

Let
(7.13) or(2) = vog x ..
We estimate
L= [ |u*. kv (2)] (1 + Tv(e))® de

< [ ]S v+ oulay™) - v+ oul)v-sly) dy|(L + (o)) do |

< fffh/ 2y~ 1z Vor(z) — v(zz ™ i (2)| dzvoi(y) dy(1+ n(2))* da.
Replacing = by 32 we obtain

I < fff [o(zay™tzm1) — (@) (1 + 7 (z))* de

Xipr(2)(1 + Tv(2))* dz v (y)dy,

Sk U_gyr ().

coxvog(E) — vk,

whence, by (7.9),
I < ff {2y 2 ()1 + T (2))° dz i (y) dy
But (cf. e.g. [D]),
2y~ h) S vy Ads | € ()1 + ()

for some ¢. Thus

(7.14) I < [ o)1+ 7n(2) Tt dz [ ) ov-e(y) dy.
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But if € is small enough, then for some { < 75
(7.15) [ v v-r(y)dy < e [v(n)lyl dy,

where || is a subadditive homogeneous norm. Also there is a constant C'
such that for every k

(7.16) J oA+ a())et e dz < C.
To prove (7.16) we note first that for some 0 < { < %
Jrar@+ (@) dr < [ oo (2)(1+ 216 de
< f v(2)(1+e 2| Ydz < 1+ e f v(2)|z|* dz.
Hence
J oe(z)(1 + mv(=) e+ V< dz < Jvoaxoavoea (@)1 + (@) de

< ﬁ(l +e [l dz) < C.

Thus for £ > 0 small enough and for appropriate 0 < { < ¢, by (7.14) and

(7.16),
oo o0
ZI" SCZe"‘C < 00,
k=1 k=1

which completes the proof of Lemma 7.12. m
(7.17) LEMMA, There is a constant C' such that

I= f |{(zhy) — v(zh) — v(zy) + v(z)| dz
< min{C, Crn(R)rn (9)(1 + 7 (¥))"}
Jor some q. Hence, for every 0 < a < 1,

I < Crn(R)*Ta(y) (1 + mn(y)™.

Proof. Let ||-|| denote a euclidean norm in n. We write y = exp(||y|[Y),
h = exp(||h]|H). Of course, || -|| and 7 are equivalent for small elements in
N. We have
: fl1 lkwll
I= | | [ Yv(shexpt¥)dt— [ Yu(zexpty) clt| dz
0 0

Il
f f |[Yv(zhexptY) — Yv(zexptY)| du dt
0

Myl

| [ JIvv(zexpty exp(||hl] Ad_sy HY) ~ Y v(z exp V)| de d
0

IA
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iyl (L] ‘
f | f (Ad_;y H)Yv(z exptY exp(s Ad_yy H))ds
0

I

dz dt

¢
el HA

f f |(Ad.y H)Yv(z exptY exp(s Ad_;y H))| dz dsdt
0o o
flwll el
f f {Ad_y H)Yv(z)| ds dz dt
0o 0

A

IA

(M

<C [ I(Ad-oy IR d2 < ClyCL+ D)l
0

(7.18) LEMMA. Let @ be as in Lemma (7.10). Then there exists € > 0
such that

f [p{zh) — @(z)| dz < Cry(h)°.
Proof. Let @) be as in (7.13). Then

fltp(.’l:h) — p(z)dz < f sup |V * @ % v (Th) ~ ¥ % @i * v_i(z)| dz
< [ w(zh) - v(2)| dz

o
+ E f b4 g ¥ v (zh) — v * @ ¥ v_p(B) ~ v * pp(zh) + v * pi(z)| da.

k=1
But

f |v % g * v_i(Th) = v * o ¥ v_g(z) = v * pp(ah) + v * pi(z)| do

< f v * pr(zhy™!) = v x pr(ay™!) — v x pp(zh) + v+ pp(@)|v_p(y) dy dz
< [ W(ahy™'2) = w(zy~12) - vahe™) + v(ea)|

Xpe(2)v-i(y) dzdy dz
< .]' lw(@h? ()7} — w(z(y™")?) = v(xh®) + v(z)| do pp(z)v_r(y) dz dy,

where y* = zyz~1. By Lemma {7.17),
f ek (y=1)%) = w(a(y~1)?) — v(zh®) + v(z)| dz er(z)v-k(y) dz dy
< [ Orn(R () )+ (7)) Y el 2)r-i(y) dady
<C [ () (@) (1 + T () (L4 | Ade [N Dpr(2)v-i(y) dz dy
< Crn(h)® [ (14 || Ads DD (2) dz
x [ (@)1 + iv(@)) Dy (y) dy
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< Cry(Ry e 4D [ (1+]|Ad, N Dpy(2)dz - [ rv(y)*v(v)dy,

which, for & > 0 small enough, by (7.15) and (7.16) completes the proof of
Lemma (7.18). »

To complete the proof of Theorem (7.5) we recall Zo’s lemma in the form
which has been used by E. M. Stein and W. Hebisch (cf. [St], [ITe]).

(7.19) LEMMA (Zo). Suppose that on a space of homogeneous type (with
the metric d(-,-)) a family of kernels { Ky}nex is given. Suppose that

sup fifi’n(:c,y)ldy< 00,

sup f

Y w,y)>2d(,2)

Then the operator

sup | Kn(z,y) ~ Kn(z, 2)| de < 00

Kf(z)= sg}p‘ [ Ku(z,9)f(y) dy\
is of weak type (1, 1).

The following lemma has been used by E. M. Stein [St] and is not difficult
to prove.

(7.20) LEMMA. Suppose a function @ on a homogeneous group N satisfies
for some positive p, € the following conditions:

Jle(@)(1 +15(2))0ds <00, [ lp(ah) - p(z)] dz < Cr(h)®.
Then the kernels Kn(z,y) = Snp(z~'y) satisfy the conditions of Zo's lemma.
Thus, by (7.11), (7.12) and (7.18) Theorem (7.5) follows. m

To complete our study of the maximal function (7.1) we are going to
assume that the operator (2.3) with o = 1 has the property that Ly is at
most of order 2, i.e. Ly is a linear combination of X;, j € II, and of the
commutators [X;, X;], 4,5 € II. Under this assumption we prove

(7.21) TuroreM. The mazimal function M' as defined in (7.3) is of
weak type (1, 1).

Proof. Let G be the free group with the Lie algebra generated by A7,
7 € II, on which dilations are defined by §,4; = rA;. Let o0 : G — N be
the homomorphism of G onto N such that

Jen,
and P%(g; s,t) the transition probability function associated to

L= ayeldt B0y a5+ 3 asetiedl)x; - 9.
i€l i=1

o.X; = A,
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For a function f on N and # € N we define
Fe P g, t)(@) = [ f(zo(y))P%(a;s,1, dy).
G

We fix a < b and we would like to estimate
Mf(z) = sup{ [1f(ea)lus(y)dy = £+ i5(x) @ S e < b}
For a fixed trajectory g of the diffusion on R generated by 83 — k0, we
let
Ty = Tola) = inf{t : a(t) = a},
For f = 0 we have
M) = sup Bl + P(ai0,Tey2)} < Mef(x) + NES(2)

Ty = Ty(a) = inf{¢ : a(t) = b}.

where
MEF(z) = sup E{f*P(a;0,Ty,2);Ta< T:},
a<e<h

NEf(z) = sup E{f+ P(2;0,Tq,2);Ta > Ty} .
agelh
Assume first that Ty < Ty. Forn = 1,2,...let
nMEf(z) = sup Bo{f* P(g;0,To,2)in—1< T S n,Tu<Th}.
aLegt
Then obviously

00

Mef() < 3" MEf(2).

n=1

Since by Theorems (5.14) and (5.21) for ¢ < 1
P%g: 5,1, 2) < C(a, b) min((t —~ 8)~9/%, (t - 3)1/2|m|“q“1) .

we have

P%(a;0,t,2) S ky(z) fort<1,
where

ki(w) = Cla, (1 + [s)=97,

k() = 1~ kg (84-372()) .

On the other hand, in view of {HJ]

sup f * ki(z) < m*(f)
1<1

where m*(f) is the Hardy-Littlewood maximal function, which is of weak
type (1, 1). 'l“herefore

IMEf(z) £ sup E.{sup f=* ky(2);Ta <1} £ Cm*(f)
agegh <1
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is of weak type (1, 1).
Let 8 be such that [,(1+4 7¢{y))? dy < cc. For f € L1(N) we define

Ri(z)= [ f(ao(y)")(1+76(2))"Pdy, =z€N:
G

Then
12 Az < ([ (4 7a(@))* dy) ]l
[e]

and by (5.20)fort > 1 and a K
f* P(a;0,t,2) < C(a, b, X Rf(x).
Hence
M2 f(z) < Cla,b, ¥ Rf(z)Pefn -1 < Ty <n}.
But there is g < 1 such that foralla < c¢ < ®
P{n-1<T, <n}<qt.
Therefore finally
ML f(2) < C(m*(f)(z) + Rf(2))

for a constant C' depending on a and b.
On the other hand, if T} < Ty, then

sup Ec{f* P(Q;OaTba y)* P(Q; To, T, I)}
a<e<h

ai.l::]ib EC{EC{f * P(g'.; O,Tb’ ) * P(Q;TbaTﬂa z) ] fTh}}

= &up Eﬂ{f*P(g-;():Th')*EC{P(-@;Tb,Tmz) | }-Tn}}
a<e<hd

- S(ll[éb Ec{f * P(g; O’Tb’ ) * Ef’{P(Q; 0, Tm m)}}

=8 Ec P ;O,T,- T .
o {f*P(g;0,Ty,) % 15 (=)}

Again we write N2 f(z) < 3°°°, "M? f(z) but now
"MLf(z) = sup, Eo{f * P(a;0,Ty,-) * ih(z)in > Ty > n — 1}.
ageg
Therefore by Proposition (6.5)
"M @) sup Eoff+ POa;0, T, )+ Cple)i1 2 Th)
where “4f is the harmonic measure (3.8) corresponding to £. As before for
t<T, <1
P%(g;0,Ty,z) < ki(z)
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and

RUHORSAL LEMHOR
We are going to show that -
(7.22) (e) = sup k, + “ig(z) € LY(G).

But for Jz| > land £ <1
ki(z) < 29%1C(a,b) 2|~

50

sup [ ku(y) Opb(ye) dy
=y

belongs to L'(G). On the other hand,
sup [ ke(y) pb(ye) dy < sup Tph(ys).
<1 lv[g1
lvlst
Let pz(y) = it (y=). Then

sup ps(y) < f 10y - - - Oz, ()| dy

lvls1 lyi<a
<Sas [ 1) €Y apliyice + 8 Ge(2)
) lv|<2 B

where the summation is over all multiindices such that || < n, 9 =

X’i@‘ o X P with X1, ..., X, right-invariant and a5 are constants depending

only on the group. Since 3 b is integrable, (7.22) follows. As before

"Mf(2) < Clayb, B Rf b (z)Pe{n < Ty S m+ 1},
and the rest of the proof is as in the first case. =
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On a dual locally uniformly rotund norm on a dual Vasik space
by
MARIAN FPABIAN (Praha)

Alatract, We transfer a renorming method of transfer, due to G. Godefroy, from
weakly compactly generated Banach spaces o Vaddk, i.e., weakly K-countably determined
Banach spaces, Thus we oblain a new construction of a locally uniformly rotund norm
on a Vaddk space. A further cultivation of this method yields the new result that every
dual Vagdk apace admils a dual locally uniformly rotund norm.,

0. Introduction. Let ¥V be a (subspace of a) weakly compactly gen-
crated Banach space. Then, according to Troyanski [10] modulo Amir and
Lindenstrauss [1], V has an equivalent locally wniformly rotund (LUR) norm.
I V is moreover a dual space, then it even admits a dual LUR norm [6].
Howaver, the proof of the lagt Tact is quite different; in fact, starting from
[1], theo a method of transfer due to Godefroy [5] is used.

Let us consider a more general situation when V' is a Vadék space, that
is, V, provided with the weak topology, is countably K-determined; see
below for an exact definition. Then, replacing [1] by a result of Vasék [11],
Troyanski’s theorem [10] also yields.a LUR norm on V. In this paper we show
that @ Vaddk space which is, moreover, dual admits an equivalent dual LUR
norm; thus a question raised in [4] is settled affirmatively. This assertion
really extends the theorem from [6] mentioned above because Mercourakis
las constructed a dual Vagdk space which is not a subspace of a weakly
compactly generated space [8].

Of course, a hopeful candidate for a proof of our result is the method
of transfer, Indeed, it does work bul we have to refine this approach in
accordance with the more complicated structure of the Vadik spaces.

In the paper we consider three stages of complexity: from weakly com-
pactly generated space thraugh Vaddk space to dual Vagik space. In the
second section we reprove the well known facts thal o (dual) weakly com-
pactly generaled Banach space admits ¢ (dual) LUR norm (2, p. 164] (I8,
Corollary 2.2]). We present here the method of transfer but we translate
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