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On hyperreflexivity and rank one density
for non-CSL algebras

by

MANOS PAPADAKIS (Athens)

Abstract. If o is a reflexive algebra with invariant subspace lattice generated by two atoms, we
prove that its tank one subalgebra is w*-dense and that & is hyperreflexive precisely when the
angle between the atoms is nonzero.

Introduction. In the study of nest algebras two properties have proved very
useful, the density of the rank one subalgebra, first proved by Erdos in [5], and
the existence of an estimate of the distance of an operator from the nest algebra
in terms of the projections of the nest, obtained by Arveson [2] and Lance [&].
It is of interest to investigate whethcr these properties are valid in more general
reflexive algebras.

Longstaff [11] has shown that a necessary condition for the first property is
the complete distributivity of the lattice, while Laurie and Longstaff [107] have
proved for commutative subspace lattices that this property is also sufficient.
We are able to prove the denmsity of the rank one subalgebra, in the
wt-topology, for the case of reflexive algebras whose invariant subspace lattice
consists of two nontrivial complementary subspaces. This is, to our knowledge,
the only noncommutative subspace lattice for which this property is known.
The problem remains open even for an atomic Boolean lattice with three
atoms, and also for a Boolean lattice with (infinitely many) one-dimensional
atoms. ‘ '

The density of the rank one subalgebra does not yield a distance estimate.
Davidson and Power [4] have constructed a comumutative subspace lattice
which satisfies the first but not the second property. We show that our reflexive
algebra [ails to satisfy a distance estimate if and only if the angle between the
two subspaces is zero. This is perhaps surprising since our lattice is finite and
Boolean.

Kraus and Larson [7] have also given an example of two noncommuting
projections whose invariant operator algebra does not satisfy a distance
estimate. We generalize this example by provmg that for a general two-
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atom lattice hyperreflexivity fails precisely when the angle between the two
subspaces is zero.

Davidson and Harrison [3] have obtained formulae for the distance of
a projection from a lattice. It is interesting to note that, in the case of a lattice
consisting of two complementary subspaces, such a distance estimate may hold
even when the angle between the subspaces is zero. Thus our result combined
with those of Davidson and Harrison shows that the nofion of a distance
estimate for lattices has, in general, a W]dBl‘ applicability than the correspon-
ding notion for algebras.

I would especially like to thank my advisor Prof. Katavolos who suggested
the problem to me, and for his encouragement and cooperation during the
preparation of this paper, and the referee for his useful observations, especially
for the simplification of the proof of Theorem 3.2.

1. Preliminaries. H will denote a complex Hilbert space and L(H) the space
of all bounded linear operators on H. C (H), C, (H), or simply C, C,, stand for
the compact and trace class operators respectively. We will use the duality
between C, (H) and L(H). So for Te Cy, tr(T), ||T||; will denote the trace of
T and its trace norm respectively, and the rank one operator e ®f is defined by
e®@f (x) = {x, ed f for all xeH. Now if &/ = L(H), we write

tof = {TeC, (H): tr(TA) = 0 forall Aesf}.

We will be concerned with two subspaces M, N of a Hilbert space H.
Halmos [6] has given two useful geometric characterizations of the projections
on these subspaces when they are in generic pasttwn that is, when
MnN=M'nN=MnN'= M'AN* = {0}:

1.1. THEOREM. If M, N are subspaces of H in generic position, there exists
a Hilbert space K and positive commuting injective contractions C, S on K with
C*+5% = I such that P, Q (the orthogonal projections on M, N) are unitarily

equivalent to
I0 c? C§
0ol |cs s§2

1.2. THEOREM. With M, N, H as in 1.1, there is a Hilbert space K and positive
injective commuting contractions C, § such that C*+52 = I, C is invertible and

¢t ¢Sl [ ¢ —cs
cs 2 | —-cs s

are unmitarily equivalent to P, Q respectively.

respectively,
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A weakly closed unital subalgebra &/ of L(H) is called hyperreflexive—
a term first introduced by Arveson {1]—if and only if every operator in *.f can
be written as the sum of an absolutely convergent series of rank one operators
in *¢f. This is equivalent [1] to the validity of a distance estimate, ie. the
existence of a positive constant #"(«#), called the hyperrefiexivity constant of o,
such that

sup {[|P *TP||: PeLat sf} < d(T, o) < A (o) sup {||P*TP||: PeLat.os}

for all Te L{H). If & is a nest algebra, then 4 (o) = 1 as shown by Arveson
[2] and Lance [8]. Note that hyperreflexivity always implies reflexivity. Now if
X etof take k(X, -.&/) to be the infimum of all sums 3 2%, [| X}, where each
X,c*sf is of rank one and X =3, X,. Arveson [1] proved that

(1.3) A(sf) = sup {k(X, *of): X etes with [ X||, < 1}.
We conclude this section with some useful lemmas.

1.4. LemMa. If % is a reflexive lattice of subspaces of H and Alg ¥ denotes
the algebra of all operdtors on H leaving each element of & invariant, then

(a) e®fe H(Alg &£) if and only if there exists P € & such that fe P and ee P*.
(b) e @fe Alg & if and only if there exists Le & such that fe L and ee(L )"
where L_ =\/{Pe%: L& P}.

(a}) has been proved in [9] and (b) in [11]. For {b) we only need
a completeness hypothesis for .%.

If we denote by R the subalgebra of Alg & generated by its rank one
operators then a trivial argument using the previous lemma vyields the
following:

1.5. ProrosiTiON. Let % be a complete lattice of subspaces of H. Then
‘R={XeC,: X(Ly= L_ for all Le &}.

1.6. LemMma (Katavolos). Set & = Alg % If tr(X) = Ofor every X € *R, then
o = R where the closure is taken in the w*-topology of L(H).

Proof. Trivially Y& < *R. Since tr (X) = O for all X € "R, I ¢ R. Since R is
an ideal of &, the lemma follows. m

2. A w*-density theorem. For the rest of this paper % = {0, M, N, H}
where M, N are nontrivial complementary subspaces of H (M nN = 0, and
Mv N = H).

2.1. TuroreM. For all M, N as above we have R = Alg ¥ (closure in the
w*-topology).

Proof We first assume that M, N are in generic position and use Theorem

1.2. Take
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X v
- Te R,
T[ZJ’E

‘By 1.6 it is sufficient to show that tr (T) = 0. Since M_ = N and N_ = M from
1.5 it follows that

(1) TP =QTP,

(2) TQ = PTQ, ,
where P, ) are the ortiogonal projections on M, N respectively. Writing (1) in
matrix form we obtain ‘

|:C2 XC?-C*YCS+CSZC*—CSQCS *} _ [XC2 —¥YCSs *:|
. .

#* %* #

Using the facts that C is invertible, $ has dense range, therefore is injective and
C?+ 8% = I we obtain

(3) CZC = —8§XC—-SYS~CQS.
In the same manner (2) gives CZC—~CQS = SXC—SYS, which together with
(3) yields

4) —CQ28 =8XC,
which is the keyv relation for the proof

Multiplying (4) on the left by C™1 §*~1 yields S¥"1QS = —C~!$*XC and
so tr([X + Q] 8% = 0, which gives for all polynomials p with p(0) = 0

tr(X+2)p(S)) =
By using an approximation argument we have
tr{(X+Q)S*) =0 for all neN,
Since $*"—T in the w*-topology, we finally get
tr(X+Q) =t (7) =0,

which completes the proof when M, N are in generic position.

For the general case, decompose H = (M*nN)@(MNYHY@H, If Te 'R,
it is easy to see that its compressions to M*~ N, M n Nt vanish. Hence if T is
the compression of T to H, we have tr (T) = tr (T") = 0 by the first part of the
proof, since MnH, NnH, are in generic position. =

It is important to realize that if the angle between M and N is nonzero, then
we can find a Hilbert space H' and M’, N all similar to H, M, N, where M', N'
are complementary and orthogonal Thls fact automallcally yields Theorem 2.1
since Te*R is then similar to [J §

3. Hyperreflexivity of Alg #. Before proceeding, it is important to present
some facts concerning o(C). In Theorem 1.1, M and N are represented
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as {(, 0): te K} and {(Cw, Sw): we K} respectively. So if (M, N} stands for
the angle between the two subspaces, we have

cos (M, N = sup {{[(Cw, t3[: |Iwll, lld] < 1} = ICI[.

So if (M, N) = 0 we have |C|| = 1, hence 1eo (C) and ! is a cluster point of
¢(C), since S is injective and C*4+§2=1I.

3.1. Lemma. Alg & is hyperreflexive if and only if every T in “(Alg &)
decomposes as T= T, + T, with Te {Alg /), i = 1, 2, where 4, = {0, M, H}
and A, = {0, N, H}.

Proof Suppose that of = Alg % is hyperreflexive and Tels/. Then
T=7Ym16,®f ta=ilielllfill < oo, where for each n, e,®f, € o, hence
either £, eM and ¢, e M*, in which case e,®f,e*(Alg.#7), or f,e N and
e, € N*, in which case e, ®f, € *(Alg A4%). The lemma now follows by writing

T, =Y {e,®f,: e, ®f, e {Alg A7)}
and T, = T—T,. The converse follows by hyperreflexivity of nest algebras. m
Observe that if M, N are orthogonal, T has the form

0 T
T, 0

and the hyperreflexivity of Alg % follows from the lemma. Since hyper-
reflexivity is preserved by similarity, Alg.# is hyperreflexive whenever
{M, N> > 0. Our second main theorem shows that this is in fact the only case.

3.2. THEOREM. Alg ¥ is hyperreflexive if and only if (M, N> > Q.

Proof. It is enough to prove that o/ = Alg ¥ is not hyperreflexive when
{M, N> = 0. Suppose that Alg.¥ is hyperreflexive and that M, N are in
generic position. We will construct an operator Te ./ which cannot be
decomposed as in Lemma 3.1.

In Theorem 2.1 we have proved that Lo/ =
PTQ =TQ with P, ¢ as in 1.1.

Write T in 2x2 matrx form as

)

‘R, so Te'tw iff QTP = TP,

The previous relations yield
(1) CZ = §%,
() 2C=-4as,

which are also sufficient for T to be in ‘.
If T= 7,+7T, as in 3.1 we have



16 M. Papadakis

T,P=0 PT,=T T,0=0, Q=T

The above equalities yield the following matrix [orms for T,, T, respectively:

(3) [8 1;1], [‘; ’;ﬂ with

4 XC+Y,S=0and ;+Y, =Y

From the observation at the beginning of this section, 0 is a cluster point of
o (S).

Let {E,} be a spectral resolution of S. Choose a decreasing sequence {4,)
such that 1/n% < 4, < 1/n and (writing E, for the projection corresponding to
A) E._,—E, 5 0. Let u, be a unit vector in the range of E,.;—E, Note that
the restriction of (I—8%)'? to the range of E; has an inverse on this space
which has norm < 1/,/1—4}. Let D be this inverse on im(E,) and 0 on
im (I —E,). Note that, for x in the range of E;, CDx = DCx = x. et

= 1
W=3Y ——u, @,
,,ZZA,,_l n’

Then since 1/n? < A, < I/n and {A,} is decreasing W is bounded but not trace
class. However, ||Su,|| < ,—; so WS is trace class and hence so are X, Z,
Q defined by X = - WSD, Z = —DSWSD, Q = DSW.If we take ¥ = O and X,
7, 2 as above, then Te s/, But T is decomposed as in (3) and (4). (4) is also
satisfied by W in place of ¥, and, using the fact that § has dense range,

XC+Y,8=0=XC+WS

yields ¥, = W, which is absurd since ¥, has to be trace class.

For the general case if {M, N) = 0 argue as in the proof of 2.1 considering -

H, It %' = {0, MnH,, NnH,, H,}, we have constructed a 7" *(Alg £")
which cannot be decomposed as in Lemma 3.1. Then the operator T"@0®0
belongs to “(Alg &) and cannot be decomposed, The proof is now complete. m

Addendum. We have recently been informed that a result analogous to 2.1
has been obtained by Lambrou and Longstaff in Unit ball density and the
equation AX = ¥B (preprint).
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