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A note on Olech’s Lemma

by

7VI ARTSTRIN* (Rehovot) and TADEUSZ RZEZUCHOWSKI (Warszawa)

Abstract. A variant of Olech’s Lemma in multifunctions integration is presented; it covers
conditions for weak implies strong L,-convergence.

We provide a version of the Olech Lemma concerning convergence to
extreme points in set-valued integration. Terminology and notations are
recalled after the result is stated. We then compare our observation with the
original Olech Lemma. After the proof is presented, we show how the new
version covers, and somewhat generalizes, some results in the compensated com-
pactness theory, of how weak convergence in L, may imply strong convergence.

The main result is as follows.

ProrosITION. Let {(Q, s, v} be a measure space with v an atomless, positive
c-additive measure. Let F () be a measurable R" set-valued map with closed
salues. Let e be an extreme point of [F(wydv. If f(*) k=12 ..., is
a uniformly integrable sequence of selections of F (+), and | f; (@) dv converges to e,
then the £, (- ) form a Cauchy sequence in L, (Q,R". In particular, there exists
a unique selection e () of F () such that | e (w)dv = e, and the 1. (+) converge to
e(+) in the L, (Q,R") norm. ‘

The terminology we use is standard, a good source is Castaing and Valadier
[4]. For completeness we recall that | F(w)dv is defined as the set
{[flw)dv: f(-) s integrable, and f (w)& F (w) for v-almost every w}. The set
§ F () dv is convex, since v is atomless (see e.g. [4, Section IV.4]). A point ¢ is
an extreme point of the convex set C if e = }a+4b with g and b in C implies
¢ =a = b. An extreme point of C may not be an extreme point of clC, the
closure of C, and this may be the case in the proposition, as | F (@) dv may not .
be a closed set, '

The Olech Lemma is an extremely useful tool in the theory of existence and
robustness of solutions to optimal control and variational problems; it was -
verified in Olech [5], see also Olech [6]. In the original version of the lemma,
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the sequence f,(-) is not required tc be uniformly integrable; in turn e is
required to be an extreme point of the closure of [ F (w) dv, It is easy to see that
in our Proposition the uniform integrability cannot be dropped. Our proof
is based on the verification of the Olech Lemma contained in a proof of the
* related Theorem in [1, Appendix], combined with the Fatou Lemma (or rather,
the Fatou—Lebesgue Lemma) in [2]; the latter was given a different proof by
Balder [3], see also Olech {7]. The prool goes as follows.

Proof of the Proposition. We start as in [ 1, p. 413]. For convenience
we assume e = 0. If the R"™valued fonctions £, () = (£ (*), ..., /i*(-)) do not
converge in I.,, then for one of the coordinates, say 1, the sequence Jt(-)is not
Cauchy in L,. Therefore one can find an ¢ > 0 and two increasing sequences of
integers n, and m, such that

FLAA () = (N dv = ¢
for all k. Define

h (@) = fu (@) fil (@) 2 fi, (@),
= fou () otherwise,

gi (@) =fo (@) i fis () < fom (),
= fom (®) otherwise.

Then k() and g, () are sequences of measurable selections of F (-) and are
clearly uniformly integrable. Therefore | #, (w)dv and { g, (w)dv are bounded
sequences in R”, and, without loss of generality, we may assume that they
converge, say to a and b respectively. By the three displayed formulas

la~bl > &
where [j-|| is the sup norm in R". On the other hand,
' “a+b =0

since [ (k, (w)+ g, (w)) dv converges to e = 0. The uniform integrability of the
selections A, () and g, (+) allows us to use Theorem A of [2], and deduce the
existence, of pointwise cluster points {(hence selections of F (), say h(-) and
g(*), such that .

[ B (w)dy =a and [g(w)dv=bh.

Hence a and b belong to | F (w) dv, which together with a4-b = 0 and a % b
contradicts the extremality of 0 in [ F () dv. This proves that J () converges in
L. Its limit is a selection of F (since a subsequence.converges pointwise, and
F(w) is closed), and the integral of the limit is equal to e. This verifies the
existence of the promised selection e (-); it is unique since alternating between

two distinct selections, ¢, (*), e, (), would give rise to a sequence f, () which -

contradicts the first statement of the result, This completes the proof.

In the context of variational problems, in particular for the cqmpensated
_compactness methods Visintin [9] proved a result that under the conditions of
our Proposition reads as follows:
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Let f,(*) be a sequence of selections of F which converges weakly in L, to
e(). If for all @ the point ¢(w) is an extreme point of clco F (w), the closure of
the convex hull of F(w), then f, () converges in norm to e(-).

This result was generalized by Rzeiuchowski (8] to the case where the
extreme point e (w) is replaced by an extremal face of F (). We show here how
Visintin’s result is contained in, and somewhat generalized by, our version of
the Olech Lemma.

An extreme point e of a convex set C in R" can be characterized as the
lexicographic minimum ol the vectors

{vyoe,.on 0,00 cel}

where vy, ..., v, i5 an orthonormal basis of R” and v ¢ is the scalar product. We
then set e = C,,,...,,. In particular,

e (CD) = (Cl co F (w))ul(w)...‘,nn(m)

and standard selection techniques (see Castaing and Valadier [4]) would yield
v, (*),.. 0y v, () measurable. The measurable change of coordinates T (@) which
maps v, (w) tow; = (1,0,...,0), v, (w) tou, = (0, 1, ..., 0), etc. transforms the
set-valued map F(w) to the set-valued map G(w) == {T(w)x: xeF (w)} and
then T(w)e(®) = G (),,,..n, Clearly | T{(w)e{w)dv is an extreme point of-
[ G (w) dv, characterized by the orthonormal basis uy, ..., u,. It is also clear

. that the T'(w) f, (w) are uniformly integrable, and | T(w) f; (w) dv converges to

[ T{w) e(w) dv. By the Proposition, T(w) f, (@) converges in the L, norm to
T (e} ¢ (@); hence, by inversing the coordinates, f, (-) converges in the L, norm
to e(-), which is Visintin'’s result. What our result adds is that in case
e(w) = (cl co F(w)),,,....., for vy, ..., v, the same for all w, there is no need to
assume weak convergence of f,(-) to e(-); uniform integrability of f,(-) and
convergence of |f; (w)dyv to [e(w)dv suffice.
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Weak vs. norm compactness in L,: the Bocce criterion
by
MARIA GIRARDI (Urbana, 11L)

Abstract. We present a new simple proof that if a relatively weakly compact subset of Ly
salisfics the Bocce criterion (an oscillation condition), then it is relatively norm compact. The
converse of this fact is easy to verily. A direct censequence is that, for a bounded linear operator
T from L, into a Banach space ¥, T is Dunford-Pettis if and only if the subset T* (B (X*)) of L,
gatisfics the Bocce oriterion.

A relatively weakly compact subset of L, is relatively norm compact if and
only if it satisfies the Bocce criterion (an oscillation condition) [G1]. We shall
present a new simple proof that if a relatively weakly compact subset of L,
satisfies the Bocee criterion, then it is relatively norm compact. The converse is
easy to verify.

Recall that a Banach space X has the complete continuity property (CCP) if
each bounded linear operator from L, into ¥ is Dunford-Pettis (ie. maps
weakly convergent sequences to norm convergent ones). The CCP is a weaken-
ing of the Radon-Nikodym property and of strong regularity. Since a bounded
linear operator T from L, into ¥ is Dunford-Pettis if and only if the subset
T* (B (%*)) of L, is relatively norm compact, the above fact gives that T is
Dunford-Pettis if and only if T* (B (¥*)) satisfies the Bocce criterion. This
oscillation characterization of Dunford-Pettis operators leads to dentability
and tree characterizations of the CCP [G2]. Namely, X has the CCP if and
only if all bounded subsets of X are weak-norm-one dentable. Alse, X has the
CCP if and only if no bounded separated d-trees grow in %, or equivalently, no
bounded S-Rademacher trees grow in X.

Throughout this note, X denotes an arbitrary Banach space. The triple
(©, ¥, ) refers to the Lebesgue measure space on [0, 1], £ to the sets in Z with
positive measure, and L; to L, (2, 2%, @), All unexplained notation and
terminology is as in [DU]

[G1] introduces the following definitions.

DEFNITIONS. For f in L; and 4 in Z%, the Bocce oscillation of f on A is
given by :
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