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k
L= (L= A0 +(L;—40) -
i=1

gives rise to a left-invertible singular integral operator mj, on LA(N).
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The Mackey completions of some interpolation F-spaces
by

MIECZYSELAW MASTYLO (Poznai)

. Abstract. We characterize the Mackey completions of locally concave F-spaces which are
1nter.polat10n spaces with respect to a special couple of Banach Iattices. The results are applied to
the interpolation spaces generated by the K method of interpolation.

1. Introduction. An F-gquasinorm on a vector space X is a nonnegative

function || - || on X which vanishes only at zero and has the following properties
for every x, yeX and scalar t with |1 < 1:

@) foxl < b,
(i) Ix+3l < ClIxll+ Iyl for some C >0,
(i) |ltxi| -0 as t—0.

An F-quasinorm for which C = 1 is called an F-norm, and an F-norm which is
p-homogeneous for some 0 < p <1,

(iv) |Ax| = |4]P||x] whenever A is scalar,

is called a p-norm (a norm if p = 1). An F-quasinorm which is 1-homogeneous is
called a gquasinorm.

A linear space equipped with a Hausdorfl vector topology determined by
an F-norm (p-norm, quasinorm) is called an F*-space (p-normed space,
quasinormed space, respectively). A topologically complete p-normed space
(quasinormed space) X is called a p-Banach space (quasi-Banach space).

Two topological vector spaces (tvs) X and Y are considered as equal
(X =Y) whenever X = Y as sets and their topologies are equivalent. If 7 is
a t(l))pology on X and Z is a subspace of X, then 7|5 is the topology induced on
Z by

A pair 4 = (4,, 4,) of normed (Banach) spaces is called a normed (Banach)
couple if A, and A, are both algebraically and topologically imbedded in some
Hausdorff tvs. .

For a normed (Banach) couple 4 = (4,, 4,) we can form the sum X(4)
= A, +A, and the intersection A(A) = A, ~ A,. They are both normed (Banach}
spaces, in the natural norms |ajy=K(,a; 4) and |all,=J,(1, a; A),
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116 M. Mastylo

respectively, where for any teR, =(0, o0)

K(t, a; &) =mi{lagla+tllayle: a=as+a}, acZ(d),

J.l(t’ a; Z) = ”a“Ao+tl|a“A1! HEA(J).

A Hausdorff tvs 4 is called an intermediate space with respect to a normed
couple A if A(A) 5 A o Z(A). Here and in the sequel we let the symbol & stand
for continuous inclusion.

We denote by #(A4) the normed (Banach) space of all linear operators
T: Z(A)— Z(A) such that the restriction of T to the space 4, is a bounded
operator in A, i =0, 1, with the norm

1T 2@ = X { | Tl 4o 0s ||T||Awm}~

A Hausdorff tvs (a quasinormed space) A intermediate with respect to
a normed couple A is called an interpolation space (an exact interpolation space)
with respect to 4 if every linear operator from #(4) maps continuously A into
itself {respectively |Tal , < [T #m /4l for ae A).

The Mackey topology of a tvs X = (X, 1) is the strongest locally convex
topology ¢ on X which produces the same continuous linear functionals as the
original topology t of X. If X is metrizable, then x coincides with the strongest
locally convex topology t° on X which is weaker than t (see [18]). Obviously, if
4 is a base of neighbourhoods of zero for 7, then the family {conv V: Ve®} is
a base of neighbourhoods of zero for 7°. So if the dual space (X, 7)* separates
the points of X, then the Mackey topology p is metrizable. The completion
X of (X, W) is an F-space (ic., metrizable and complete) which we call the
Mackey completion of X.

¥ X =(X,||)is a quasinormed. space, then the Mackey topology u of
X is seminormable (normable, if X' has a total dual and in consequence X is
a Banach space). In this case the Mackey topology u of X is generated by the
Minkowski functional of the convex hull of the unit ball {xeX: ||x|| < 1} of X,
which is called the Mackey seminorm (norm, if X has a total dual). If X is
a concrete space, one may attempt to describe p as the topology induced by
another concrete space which is locally convex (or even Banach). This has been
done e.g. for the Hardy spaces H? (0 < p < 1) and some other spaces of analytic
and harmonic functions (see [18, 19]). M. Cwikel and C. Fefferman [5] have
computed the Mackey seminorm of a Weak L! space. A, Haaker [9] has shown
(under some assumption on the function ¢) that the Mackey topology of
a Lorentz space L(¢, q) (0 < g < 1) coincides with the topology induced by
L(¢, 1) (for a more general result see [15]). N, J. Kalton [10] has shown that
the Mackey topology of a separable Orlicz sequence space coincides with the
topology induced by another Orlicz sequence space (for the nonseparable case
see [8]). In [13] it was shown that the Mackey completions of some
quasinormed interpolation spaces with respect to a Banach couple .4 may be
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identified with other concrete Banach spaces which are interpolation spaces
with respect to A (see Theorem 4.4). This result and [15] were the main
motivation to write this paper, in which we describe the Mackey completions
of some interpolation F*-spaces. The resuits obtained are applied to the
well-known interpolation quasi-Banach spaces generated by the real method of
interpolation.

2. Technical results. In this section we give some technical resulis needed in
the sequel. We give first some notation and definitions.

Let (£, v) be a measure space with v complete and o-finite. Denote by
I? = 1°(Q, v) the F-space of all equivalence classes of v-measurable real-valued
functions defined and v-a.e. finite on Q, equipped with the topology of
convergence in measure on v-finite sets.

A subset U of I? is called solid (in L®) if the conditions xeI?, ye U, Ix] < |y
a.e. imply that xe U. A vector topology on a subspace of I° is solid if there is
a base of neighbourhoods of zero consisting of solid sets. In the sequel by
a solid tvs we shall mean a solid space with a solid topology. Every salid tvs
contained in I° is continuously imbedded in I° (see [17, Proposition 2.7.2]).

We say that an F-quasinorm [f: || on a solid subspace of I? is monotone if it
satisfies the condition

(V) Ixi < |yl ae. implies || < [y].

A solid subspace X of I® together with a2 monotone F-norm (p-norm,
quasinorm) will be called an F*-lattice (p-normed lattice, guasinormed lattice,
respectively). A topologically complete F*-lattice (p-normed lattice, guasinor-
med lattice) will be called an F-lattice (p-Banach lattice, quasi-Banach lattice,
respectively), Recall that if X and Y are F-lattices in I°, then X — Y implies
that the inclusion map is continuous (by the closed graph theorem and the fact
X, Ys I

Denote by I respectively LY the Banach lattice in I°(R,, dt/r) which
consists of I such that | f ()], respectively | f (t}l/t is essentially bounded. Put
L* = (L*, LY).

Let # denote the set of guasiconcave functions defined on R, ie, Y@ if
0 < {s) < max (1, s/p(t) for all s, ¢t > 0. By £ we denote the set of all
nonnegative concave functions defined on [0, co). We say that yr,, Y, are
equivalent (f; ~ ¥,) if c il () < W, (8) < ¢, (t) for some ¢;, ¢, > 0 and all
t>0.

For every feZX(L*) and all >0, we put

J0) = inf{g(): g = 1f| ae, geZ},
so fis the minimal concave function which is a.e. greater than |f|. In [4] it
was shown that f(:)= K(-, f; L.
For a Banach couple 4 and a quasiconcave function pe# we denote by
Aw(Z) the space of all aeX(A4) which can be represented in the form
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(convergence in X(d)),

a,eA(4)

with Yoo _ (27 1J, (2%, a,) <o, where Jy(t,a)=J{t, a; A) =
+t|a|4, for agA(A) and t > 0. The space A, Z) with the norm

el 4

inf{ Z e 1,2 a,): a= Z a,, a,ed}

y=—0 = —o0

|fa”,1¢u)

is an exact interpolation Banach space with respect to A. Note that if in the
above definition we replace J, by the well-known functional J, then A,(A) is
a special J-space A, 1,; (see [6]). Throughout the paper the space A (E“") is
often denoted by 4.

The proof of the following proposition is similar to that of Theorem 3.5.2 of
(3]

PropostTioN 2.1. If A is a Banach couple and A is a Banach space
intermediate with respect to A, then |la| , < c¢|la| 4 o Jorae A (/T) zf and only if
lall 4 < e@(2*) ' J (2%, a; A) for each acA(A) and veZ.

Now, we give some properties of the spaces A‘P(L?“) needed in the sequel,
First we give some auxiliary results. The following interesting result is due to
I. U. Asekritova (see [2]). For the sake of completeness and availability we give
the proof.

Lemma 2.2. Let fy, fi, f€& be stuch that [ < fy+f,. Then there exist
Jor J1€ P, with [y < fo. fy < f, and f=F+f-

Proof. We consider the set & = .(f,, fi, f) = {{go» 91): Yo: 9162,
go < fo 91 < fy and go+g,; = f}. Since (fy, fi)e.o, we have of # . Let
(90 91) € {ho, hy) if go < ho and g, < k. Then & is partially ordered by <.

Since the infimum of functions from &, is concave, it follows that every chain in

& has a lower bound in &. Consequently, by Kuratowski-Zorn’s lemma,
o/ has a minimal element (f,, f,). We show that f,+f, = f. Assume that
Jo+Ji # [ then Folso), Fi(so) > f(s,) for some s, > 0. Let a =inf{s >0:
Folso)+F1(s) > I(s)}, where ! = I(s) is the tangent to f at the point {s5, f (so))
Since 0 < a < 55, two cases are possible:

fol@)+1,(a) < Folso)+T1(80) or Jyl@)+71(a) = Folse)+F1lso)-

In the first case, we have either fy(a) < folse) or fi{a) <f.(sy). Let, for
example, fo(a) < fy(so), and let I, be the line through (a, fy(w) and
(505 Fo(so)—#), where & > 0 is sufficiently smafl. Now if g, = min(l;, ), then
obviously goe, go < fo, 9o #Jo and (g, fi)es#; a contradiction, since
(fo» f1) is the minimal element of 7.

Now consider the second case, fo(a)+f;(a) = fo(so)-i—]'l(so) From con-
cavity of f,+f, we have fo(s)+7,{s) = const for s > a, so by the definition of
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filsg) for all s>0 (i=0, 1)
Without loss of generality, we can assume that f, is positive. Let I, be the line
through  the points {0, fy(sp)—¢/2) and (s, folse)s,  where
& = min {fo(s0) +J1(s0)— I(s0), Jo(so)}. Then for h, = mim{l,, fo}, we have
ho€ P, hy < fo. by #-fy and (hy, fi)e o, a contradiction. Consequently
Jo+J1 = f, and the proof is complete.

_ ProrostTioN 2.3. If E is an exact interpolation normed space with respect to”
L™ such that A(L™) is a dense subspace of E, then there exists a completion of
E in Z(L™).

Proof This follows by Theorem 2 of [13].
PROPOSITION 2.4. Let ge®P. Then for any f in A = A(L™) (AnP)
U@L ) = Y G}

v=-k

1 la =inf{ 3 0@)

v=-—Fk

where the infimum is taken over all finite representations f = Z:=—k £y with
fy€4 (respectively f,eAn &), k, neN,

Proof Let E be the space A with the norm

Ifle=inf{ 3 @@ 1@ f): f= 35 fufocd, n, keN}

v=—k v=—F
for fe 4. Obviously E is an exact interpolation space with respect to L®. Thus
there exists a completion E of E in £(L®), by Proposition 2.3. Since for any
fed and velZ

Ifle=1flg< @) 10, (2", f)
and E is an intermediate space with respect to L*, it follows by Proposition 2.1

that | flly < |flla, for fed. Since {|fig= [f]4, for fed, we get |fig
= ||/l 4,-

Now let fedn . Fix ¢ > 0; then by the above there exists a finite
sequence {g,}i- , with g,ed, f=3¥7_-.,¢g, ae on R, and

n

(1) )3

v=—k
Hence |f] < Y5 _lg, ae, so f=F<3"_ _,§, By Lemma 22, we obtain
f=33=-if,, where f,<g, and f,eZ, so f,ednZ,. Since J,(2',g,)
= J, (2", d,) = J,(2", f,), we have

@Y L2, g) < [ flla, +e-

e [f > Y 0@)NL @ )= 1S

y=—k

=inf{ Z o@Y L@ £ f= 3 fu fEAND, 1, keN])

y= -k
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by (1). Thus [f]|4, > |f]%. The inequality ||f]l4, < | fI¥ is obvious. Con-

sequently [ flly, = [lfI} and the proof is finished.
In the sequel let % denote the subset of # defined by

n
F={fe?: f=13 ¢f, coticRy, i=1,...,

i=1

where for t > 0, f,(s) = min(1, s/¢) for all s > 0. Let us remark that & < 4(L™),

n, neN},

ProposiTiON 2.5, Let {t;}'-p < [0,
Qe ty <ty <00 < Ly,

c0) be a given sequence such that

(a) If f is a positive, nondecreasing, continuous function on [0, o) with
f(0) =0, linear on the interval [t;~y, t], i=1,..., n, and constant on [t,, o),
then there exists a unique representation of f of tke Jorm Y-y ¢ f,, with ¢; > 0.

(b) Let ¢,,...,p, be positive functions in %,. Then Z?=1 ¢ fu,
=310, if and only if

n

P, = E aivflta

i=1

where a;, > 0, Y qap=c,i=1,...,nv=1,.., m

Proof. (a) is obvious. The proof of (b} easily follows from the following
fact: if @,, o€ and @y(0)+¢,(t)=at+b for tel =[s,,s,], where
0<5s,<58, <o, and az0,b >0, then ¢, and ¢, are convex on I. Hence
from the concavity and convexity of ¢, on I,i = 0, 1, we have ¢,(t) = a;t+b; on
I, where 4,20, b, >0, i=0, 1. So (a) applies,

Now we observe that the norm of A,(L”) has a special property on &:

PROPOSITION 2.6. The norm of the space E = A,(L*) is additive on & for any
e e, || f+glle=1flz+lglg for all f,ge.

Proof It is sufficient to show that if f=Y7.,¢,f,€%, where
O<t <...<t, < oo, then || fllg 2 31 ¢l fullg Fix e > 0. From Proposition
24 it follows that there exists a sequence {¢,}7 ., = A(L*)n 2, k, meN,
such that f=37._, ¢, and

m
2 2 @Y, 9 D) < | flls e
v=—k
By Proposition 2.5, we obtain ¢, = Y ., a;, f,, where a;, > 0, v= —k,..., m,
and
m
3) Y awy=c, i=1,..,n.

v=—k
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Thus

(2v (P)“'J (2v @Dy EOG)_ Z aw+2 Z w/ti'” Z J (2v ivﬁi)'

=1

Hence by (2) and (3), we get

g+ Sl > Z 2'112" M2 anfi)

v=—k =1
iz zk “a“’f‘t(“E 2 C ]lfH”E
1 v=-— =

Since ¢ is arbitrary, I/ lg 2z ¥0=1601lg and the proof is complete.

Define J/5(t) = [ f,|g* for t > 0, where E is an F*-space intermediate with
respect to I™ equipped with an F-norm || ||, If E = A,I,(L“’) we write \ instead

of V.

CoROLLARY 2.7.
X = !ﬁ(t)ft

(b) 47 (O <P < (@) for all t>0.

Proof. (a) easily follows from Proposition 2.6. Let £ > 0. Choose veZ such
that 2°~! < t < 2°. Then

V)t =1l <@L £ L)
< 29 () ‘max(l, 27/ < 4y (e) "t
Now let ¢ > 0. From Proposition 2.4 it follows that there exists a sequence

{o. )5 k= ALY~ 2, k, meN, such that f,=>7-_,¢, and

S @) 0 IF) < B e

@ {fes: liflspes =1} =conv{x,: teR .}, where

v=-—kK
By Proposition 2.5; we obtain 9’% =a,f, wherea,>0 for v=—k,...,m,and
Y _pa, = 1. Thus J(2°, @,; L) > a,max(l, 2”/t) and
e+ ()" > E a,y (20 max(l, 22/ 2 Y et =y

=k v=—k

Y(t)~* for all t> 0, and the proof is finished.

3. Locally concave interpolation F-spaces. A subset U of Z{L™) is called
Z(I®)-monotone if feU,geZ(I®) and §< f impliess geE. Note that
a X(I*)}-monotone set is solid in I°=I"(R,,dtft). Let X be a tvs
set-theoretically contained in Z(L®). We say that X is monotone (in Z(L*)) if
there is a base of neighbourhoods of zero in X consisting of Z(L*)-monotone
sets. Let us remark that if an F-space X is monotone, then X is a complete
solid tvs contained in I°, so it is continuously imbedded in Z(I®). This implies

Consequently §()~! >
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that X has a separating dual. The following proposition gives more infor-
mation about monotone and metrizable topological vector spaces.

PROPOSITION 3.1. (a) A metrizable tvs X is monotone in Z{L™) if and only if
there is a monotone F-norm || - | on X such that | f)| = | f|| for all feX and the
original topology of X is induced by |- ||.

(b) A metrizable monotone tvs intermediate with respect to the couple I™ is
an interpolation space with respect to L*.

Proof. (a) Let X = (X, 1) be a metrizable tvs, monotone in X(L*). So theré
is a base & = {V,: neN} of neighbourhoods of zero in X, consisting of
Z(L*)-monotone sets. Without loss of generality we can assume that V,+V,
+V, e V,_,, neN, where V,=X. Define on X a functional ¢ by

27" for feV,_,\V,,
Q)= 0 for fe () V,.
. n=j

Then the functional defined on X by
I =nf{ 3, e(f: f =Y. fi)
k=1 k=1

is an F-norm on X which generates the original topology © of X (see [14]).
Since the sets V, are solid, o(f) = ¢(|f]) for all feX and this implies that
1 £l < |lgll whenever |f| < igl ae., f, geX. Thus | -| is a lattice F-norm on X.
Moreover, by the Z(L*)-monotonicity of ¥,, we have o(f)} = o(]) for all feX
and in consequence we easily get | ] = [ f4.

For the converse let || - | be a monotone F-norm on X such that | f]| = || ]
for all feX. If the original topology of X is generated by | - |, then the family
ofsets U, = { feX: |f] < I/n}, neN, is a base of neighbourhoods of zero in
X cons1stmg of X (Lr”)-monotone sets.

(b) Let Te#(I*). Then TF < Cf for all f e Z(L*), where C = ]|T|| #Toys
whence T(X) « X if X is a monotone F-lattice i - in 2(I®). Moreover, if f,~0 in
a topology of X, then || f,| =0, and | Tf,}| = | Tf | <C+DILI = (C+DIAI
by the above properties of the F-norm |- || given in (). So 7f,—0 in X, thus
T is continuous in X and the proof is complete.

If X is a solid tvs (= L*(R ., dt/t)) containing the set & and V is a solid and
absorbing subset of X, then we define the function ¥,: R, —(0, ca] by

Uy() = sup{A > 0: Af,e ¥} for t> 0.

It is obvious that ¢, is nondecreasing (quasiconcave if it is finite). If
# = {V,: ne N} is a fixed base of solid neighbourhoods of zero in X, we write
¥, instead of ¥y, neN, It is easily seen that if X is continuously 1mbedded in
Z(L™), then y,, is finite for some nyeN.
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Throughout the remaining part of this paper we will be interested in special
F-spaces which are interpolation spaces. Let X be a monotone, metrizable tvs,
intermediate with respect to I, and let U be a Z(I™)-monotone subset of X.
We say that U is concave {in X) if

Unconv({cfy: c,teR, \U)=@.

The space X is called locally concave (in Z(I™)) if there is a base
# = {V,: neN} of neighbourhoods of zero in X consisting of concave sets
such that every function , is finite. Note that if a base & = {V,: neN} of
neighbourhoods of zero in X is such that ¥V, o ¥, ; and V, are concave, neN,
then 4,,= {V,: n>n,}, where n, = mm{neN ¥, is ﬁmte} is a base of
neighbourhoods of zero in X equivalent to # such that y, is finite for all
n 2 ng, so X is locally concave. The following proposition gives examples of
monotone and locally concave F*-lattices in Z(I™).

Proposrrion 3.2. Let E be a quasinormed exact interpolation lattice with
respect to I®,
(a) E is monotone in X(L™).

(b) If
(+) lef+Bglle ol flg+Blglz
for all f, ges and a, 8 20, u+ B =1, then E is locally concave.

Proof. (a) It is enough to establish that || f||; = || || for all feE (cf. [4] if
E is a Banach space), by Proposition 3.1(a). To see this, define p: Z(I)
~Z{[*) by p(x)==% for xeZ(L®). Then obviously p is sublmear ie.,
p(x+1) € p(x)+p), p(Ax) = |} p(x) for all x, yeE and 1eR.
Fix feE. Then by the Hahn-Banach extension theorem (see [1, Theorem
2.1 there exists a linear operator T: Z(I*)— %(L*) such that

4 ITx] < p(x) ae. for all xeZ(L*) and Tf = p(f) ae.

Hence || Tx[i 1= < [[p(X)]| z for all xe L” and || Tx| ;e
so Te#(L?) and |T| i < 1. Thus

IIfIIE (e = 1TF e < 1f g

by (4) and by E being an exact interpolation space with respect to I*. On the
other -hand, |f| < J a. s0 |f1s< |flls Consequently ||flz = I fllz-

(b) From (a) it follows that the fa.mily of sets V,={fekE: ||flz<1/n},
neNN, is a base of neighbourhoods of zero in E consisting of X(I**) -monotone -
sets. Now let f =37 ;o f,, where D7eqo;=1, 0,20, ¢,>0,i=1,.

Then

< "p(x)||_[.i° = ﬂxﬁLgo for all
xel3,

n

L ||c-,fuu's

[flg =
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by (+). This implies that the ¥, are concave sets. Since ¥, () = n~ ") for
t>0, E is locally concave.

The following lemma easily follows from Proposition 6.2 in {4].

LEmMMA 3.3. For any q > 1 and any concave function feA(L®) there is
a function ge & such that
~1
—g=<f <49
P f<aqg
THEOREM 3.4, Let A(I®) be a dense subspace of an F-space X = (X, 1)
contained in Z(L*) and let B = {V,: ne N} be a base of neighbourhoods of zero
in X consisting of concave sets. Then X is contained in A,(L”) if and only if
sup{y, () (1): teR,} < co for some neN. 7

Prool Assume X < A,(I*). Since X, A, (L") 5 L?, by the closed graph
theorem the inclusion mapping is continuous from X into A,(L*). This implies
that there is neN such that | f|| = |/ .iuz= < 1 for every feV,, whence it
follows that ¥, (t) < oo for every t > 0. Put x, = §,{t}f, for ¢ > 0. Then x,¥,
and

for all t > 0.

L0 =, @10 = lIx] <1

For the converse, assume that sup{y, (&) (#): teR } = C < cc for some
neN. We shall show that V,n4(L=) < {feA, L) ||f] <6C}. We first
establish that V,n&¥ cB={feA,I™): |fI<C}. To see this, fix
feV,n&. Thus by Corollary 2.7(a) we have

k
) . f= 3 alf s

where Y¥_ o, =1, 2,2 0, x,, = ¥(t)f,,, i = 1, ..., k. Suppose that f ¢ B, Then
I£] >'C and hence | £11%() > (&) (otherwise [£1§(5) < o8, s0 C < i f|
< ¥, (t}P(t) < C, a contradiction). Hence | fjx,¢V, for i=1,..., k, by the
definition of ,. Since V, is concave, f¢V, by (5), a contradiction with
feV,n&. This shows that V,n% < B as desired. Now assume that
feV,nA{I®). Then by Lemma 3.3 there is ge & such that

(6) g<f<2

Since V, 1 A{L®) and B are X([*)-monotone, f¢6B, by ¥,n¥ = B and (6).

But |f| < f a.e. and the set 6B is solid, so f&6B. In consequence -
V,nA(L®) < {fe AUL™): | f] <6C}.

Hence the inclusion mapping 4(L°) = 4,(L*) is continuous if we equip 4(L%)
- with the topology induced by <. This and the density of 4(L®) in X imply that
X ¢ A,(L*) and the proof is complete.
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4. Mackey completion. In this section we describe the Mackey compietions
of locally concave (in Z(L®)) F-spaces in which 4(I*) is a dense subspace. Next

applying some results from [13] we give applications of our results. We need
the following easily verified

PropOSITION 4.1. The convex hull of any solid (Z(L®)-monotone) subset of
Z(L®) is solid (X(L*)-monotone).

For any quasiconcave function  let {U,(¢): neN} denote the base of
neighbourhoods of zero in A,(L*) formed by the sets

U, () = {f e Ay (L) | [ apze € Y},  neN.

TrroreM 4.2. Let A(L™) be a dense subspace of a locally concave F-space
X = (X, 1) and let # = {V,: neN} be a locally concave base of neighbourhoods
of zero in X. Then the Mackey completion of X is the F-space

E = () 4y,(I*)
neN
equipped with the natural projective topology .
If V is a bounded concave neighbourhood of zero in X, then X = A, (L®).

Proof. By Corollary*2.7(b) we have sup{y,(t)¥,(5): teR .} < 1/4 for all
neN, Thus X & Ay, (I®) (by Theorem 3.4) and E & A, (I*) for all neN (by
definition of the topology =) implies X s E, Hence mx < 1. So mx < y since
u is the strongest locally convex topology on X which is weaker than 7. Now
we show that y < m)y. By density of 4(L¥) in (X, ) (4 < 7 and A(T™Y is dense
in X) it suffices to show that p,g«) < Mgy To see this it is enough to
establish that A(L®)~U,(¥,) = 6conv ¥, for all neN. We show first that

(*) F U, W, <convl,
Fix fe# U, (f,) Then by Corollary 2.7(a) it follows that

H
Jo= 121 0y S 1| 4y, (255 Xy

where ey =1, 0,20, x, =)/, i =1,...,n. Now, since convl, is
solid and x,&V,,i=,..., n, and f < ¥ Ju; X, it follows that feconv V.
Thus the inclusion 4(L*) U, (y,) = 6 conv V, follows by (x), Lemma 2.2 and
Proposition 4.1 (¢f. the proof of Theorem 4.2). Finally, u = mx. Since E is an
F-space and the density of 4(I”) in Ay (L®) for all neN implies that X is
a dense subspace of E, we have X = E.

If V is a bounded concave neighbourhood of zero in X, then obviously
X = Ay, (L*) from the above, and the proof is finished.

for all neN.

Now we give an example showing that in general the Mackey completion of



126 M. Mastylo

a locally concave F-space is not locally bounded. It follows that in Theorem 4.1
the assumption that X is locally bounded is essential.

ExAMPLE. Let @ (f) = min(l, t*) for ¢ > 0 and neN, where 4; <a, <...,
and x,e(0, 1). Let X, = A,,(L°) for neN. Then the space

X= m Xn
neN

equipped with the natural projective topolegy = is locally concave (by
Proposition 2.6 and Corollary 2.7(b)), with 4(L*) a dense subspace, by density
of A(I®) in X, for all neN. Since X is a Fréchet space, it is a Mackey space.
Therefore the Mackey completion of X is (X, 7). We have () 2 V... 1 (t) for
every t >0 and neN, so X,+; 5 X, Hence (X, n) is not locally bounded,
otherwise there exists n, € N such that for some 4, > 0, [ix]x, < 4,/1x| %,,, for all
xeX and n> n,, neN. In consequence the norms of X,, and X, are
equivalent on X for n > n,. Since || fllx! = ¥,(t), neN (by Corollary 2.7(b)}
and ,, {,5, are not equivalent, we obtain a contradiction.

Now we give applications of our results, Recall the definition of a real
interpolation space. Let A be a couple of normed spaces. For any F*-lattice
(p-normed lattice, quasinormed lattice} E = (£, || - |) intermediate with respect
to I, we define the real interpolation space Ay to consist of all 4 & X{A) such
that K(-, a; A)eE. 4, is an F*-space (p-normed space, quasinormed space)
with F-norm (p-norm, quasinorm) defined by

lellaz = 1K¢, a5 Al

We say that a Banach couple 4 = (4,, 4,) is mutually closed if Ay~ = A,
and A, = A, isometrically.

We give an example of E with L3 locally concave. Namely, let ¢ be
a positive and concave function on R, such that ¢(0) = 0 and let a positive
function weIP(R,, dijt) be such that

§ @(min(l, w()dt/t < 0.
R'{’*

Put _ ‘
Low={feZ@: Ifl={ ?(f(l)/w(t))dt/t < oo},

. R,

and write A,,, instead of A; for E= L,,. Observe that for o(t) =, 0 <p

<L wih= ,0 <6 <1, we obtain the 4, , space of Lions—Peetre (see [3]).
If 4 is a Banach couple, then by Z(A)® we denote the closure of A(A) in

Z(A). An easy proof of the following proposition may be omitted.
ProposITION 4.3. Let E = (L, [ |). Then
(a) Eis alocally concave F-lattice with the topology © defined by the F-norm

A1
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(b} A(L*) is a dense subspace of (E, ) if and only if E < Z(I®)°.
(¢) If there exists a constant C > 2 such that

20 < o(Ct)  for all £ >0,

thenU = {feE: ||f| <1} is a bounded concave neighbourhood of zero in (E, T)
and the topology t is generated by the monotone quasinorm

|f] =inf{i > 0: | /A < 1}.

Moreover, if’ E < Z°, then the Mackey completion of E is £ = A,,,(f“’), where
Wi =1fI"" for t>0.

Remark. For any Banach couple 4, we have ae Z(A)° if and only if
min{l, 1/)K(t, a; A)—0 as t—0, oo (see [3, Chap. 3]). Hence E < Z(I*)° is
equivalent to

() min(l, 1/ f () =0 as t—0,c0 for all feE.

If min(l, 1/£) ¥, (t)~+0 as t 0, co, then (x) holds, since 7(£) < (1)1l 1 for all
feE and t > 0.

In [13] the following theorem was shown:

TueorsM 4.4. Let A be a Banach couple and let E be a quasinormed lattice
which is an exact interpolation space with respect to L® such thar A(L®) is
a dense subspace of E. Then the Mackey completion of Ag is Ag.

In the sequel (E, §‘|) is a quasinormed lattice as in Theorem 4.4,

CorOLLARY 4.5, Let A be a mutually closed Banach couple and let E satisfy
the condition (x) of Proposition 3.2(b). Then the Mackey completion of Ay is
A,(A), where Y@t} = £~ for t > 0.

Proof. Since 4 is a mutually closed Banach couple, 4, = Ay(A) by
Theorem 12.1 of [4] (see also Example 4.7{i) of [16]}, so cur statement follows
by Proposition 3.2 and Theorems 4.2 and 4.4. :

For a positive function [ defined on R, let M (1) = sup{f (st)/f (s}: seR.}.

CoroLLary 4.6. Let f bhe o quasiconcave function such that
min(l, 1/M, (1)~ 0 as t =0, co and let @&, be such thar M (t)~0 as £ 0.
Then for every Banach couple A the Mackey completion of Ay, is Ay.,.

Proof. Consider the space L,, with the quasinorm |-| defined in
Proposition 4.3(c). Applying Lemmas 1.4 and 1.5 of [12] it is easy to check that
|fd ™ & (t). Since M ,(£) =0, 2¢(¢) < p(Ct) for some C > 2 and all ¢ > 0. Thus
by the above remark, E = L, , &= Z(I=)°. In consequence £ = A, by Proposi-
tion 4.3, Since A, = I ;, the Mackey completion of 4 is 4, ; by Theorem 4.4,
and the proof is complete.
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Recall that any concave function ¢ generates the symmetric Lorentz space
A(p) on R, defined by

Alg) = {feLRy, m): |flaw = k,f S*(5)do(s) < oo},

where f* is the nonincreasing rearrangement of f with respect to the Lebesgue
measure m. The symmetric Lorentz spaces are important in the theory of
interpolation of linear operators in symmetric spaces (see [12] for more
details).

Consider the Banach couple (L', I*) = (L*(R,), L®(R.)), whete R, is
equipped with the Lebesgue measure. As an application of Corollary 4.5 we
obtain ‘

COROLLARY 4.7. If E satisfies the condition (¥) of Proposition 3.2(b) and
() = ||£,] 7% fort >0, then the Mackey completion of (L}, L®)g is the Lorentz

space A(y,), where yr () = t/{(t) for £>0.

Proof. Since for any quasiconcave function ¥, we have W = (see [12, p.
70]), thus A, (L', L*) = Ag(L', L*). Since A(y,)= Ag(L}, L*) (see [7]) and
(I}, L=} is mutually closed, Corollary 4.5 applies.

Remark. If 4 is a Banach couple such that K(z, b; A) < K(t, a; A) for all
t > 0 implies that there exists Te % (4) with b = Ta (such a couple is called
a Calderén couple) and A is a p-Banach interpolation space with respect to 4,
then A = 4, for some interpolation p-Banach lattice E with respect to L (see
[16]). The Banach couple (L', L) is well known to be a Calderon couple.
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