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Multipliers of weighted I” spaces
by
PETER A. DETRE (Springfield, Mo))

Abstract, It i3 an open question whether polynomials (that is, sequences that are eventually
zero) are dense in the multiplier algebra of I"(w) if and only if (w) is a convolution algebra. An
investigation of compact multipliers leads to an affirmative answer when @ is a regulated weight,
that is, when lim, , _ w(n+k)/w(n) =0 for some k>0,

Introduction. If w is a positive sequence on Z*, we define () to be the
space of all complex-valued sequences x = {x(n)}.ez+ for which >,
|x(m)[Pw(ny < wo. We will assume that pe[1, o) so that {P(w) is a Banach
space under the obvious norm. We also will restrict ourselves to weight
sequences, », for which the right translations are bounded linear operators on
(). The main purpose of this paper is to provide a partial answer to
a question posed by Shields [4, p. 95] concerning the convergence of partial
sums of maltipliers on *(w). To this end we also investigate in some depth the
compact multipliers on I”(w).

In Section 1 we define and list some elementary results about the multiplier
algebra, " (w), of I*(w), consisting of those bounded linear operators on P(w)
which are given by convolution with a sequence. The proofs of these results
have been omitted since they can be found in [4] for the case p =2 and the
generalizations to any pe[l, o) are straightforward.

In Section 2 we study the properties of those multipliers which are compact
operators on I?(w)—the compact multipliers. We show that the Cesdro means
of compact multipliers converge uniformly and so establish that the compact
multipliers are contained in the norm closure of the polynomials in the
multiplier algebra. Following Bade, Dales, and Laursen [2, p. 18], we say that
w is regulated at keN if limy.,w(r+j)/wHn) =0 for all jz k We then
characterize the compact multipliers as precisely those elements, o, i the norm
closure of the polynomials which satisfy a(k) = 0 if w is not regulated at k.

The main result of Section 3 was motivated by studies of certain special
cases. In [2], Bade, Dales, and Laursen assume that e is submultiplicative, so
that !*(w) is an algebra, and investigate the multiplier algebra, (M), of that
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132 P. A. Detre

ideal of I () consisting of sequences x for which x{0) = 0. This is a special case

of the multiplier algebras we are dealing with since # (M) is isometrically

isomorphic to (1! () where «' is the left shift of w. They then suppose that
w is regulated at 1 and show that, in this case, the polynomials are dense in
A (M) if and only if I' (&) is an algebra [2, Thm. 1.11]. In [4], Shields surveys
results about the multiplier algebra of [*(w) (though his notation is different
from ours) and raises the question of whether the partial sums of multipliers
necessarily converge if and only if *(ew) is an algebra. In Section 3, we
generalize the result in [2] mentioned above and, as a corollary, provide an
affirmative answer to Shields’ question for those weights which are regulated at
some keZ?*. Our result, in fact, holds for 1< p < .

I would like to take this opportunity to thank Professor William G. Bade
for suggesting the problem I have considered and for his guidance and
encouragement during its solution.

1. Preliminaries. We will begin by defining the weighted [’ spaces
(1 <p< o) and their corresponding multiplier algebras which will be the
focus of our attention. We will also reformulate in our notation some
well-known results about these spaces which will provide the basis for our later
work.

A weight sequence on Z* is a real-valued sequence o = {&(n): ne Z™} such
that @(n) > 0 (neZ™), ©(0) = 1 and sup,ez+ @(n+k)jew(n) < oo for each keZ™.

If @ is a weight sequence and 1 < p < o, we define {w) to be the linear
space of complex-valued sequences, x == {x(n): neZ*}, for which the sum
Yo olx(@Perm)? is finite. Then P(w) is a Banach space under the norm

o= (3 IGF0E) (1< p< o).

The map x—x- @, with {x- ©)(n):= x(n)w(n), establishes an isometry between
I*(w) and {” (where I denotes /*{w) when c(n) = 1). Thus the choice of weight is
irrelevant as far as the Banach space structure of IP(w) is concerned.

For 1 < p < oo, define p’ by 1/p+1/p’ = 1. We call p’ the conjugate index to
p. We define the dual of I"(w) to be I(w) with duality

st e

(1) G pyi= 3 xymo@?  (xel@), yelP(@).

n=0

Boundedness is, then, a consequence of Holder’s inequality since

PELEUE So(x(n)w(n))(ﬁ(n)w(n)) < 1% pio 1Y o

This definition of dual spaces and duality may seem somewhat artificial. It is
however “natural” in the sense that, when p = 2, formula (1) defines an inner
product which makes *(w) into a Hilbert space.

icm
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We now define the convolution, xsy, of two sequences, x and y, by

o

o) = 3, x(y(n—j) (neZ”).

i=0

Note that if we identify sequences with elements of C[[X]], the algebra of
formal power series in one independent variable over the field C, in the obvious
way (x+-+ Y reox(m)X"), then xxy is identified with the product (3 ;% x(n) X")
(Yo y(mX"). We also define the sequences {e,}nz+ by ¢,—X"eC[[XT].
Then, for fixed p and o, {¢,} = ["(w) and e[, = o) (ReZ™).

Given a complex sequence, o, we will denote the operator which maps
x—axx by T,. Note that then T, is the unilateral shift. If T, e B(I*(@)), | T,llp..
will denote the operator norm of T, {the subscripts p and w may be omitted if
they are clear from the context). It is then easily seen that our definition of
a weight sequence implies that T,, is a bounded linear operator on {*(w) for
each keZ™ with

1 Toclpo = 1Tl p0 = sup w(n kYol (keZ7).
neZ*

DerINITION 1.1, Let m? () denote the set of all complex sequences o with the
property that a*x e P(w) for every x&/”(w), and let A7 (w) = {T,: xem’(w)}.
We call .4F(w) the multiplier algebra of 1?(w) and elements of .47 (w) multipliers
of IP(w). :

It follows from the closed graph theorem that for each aem(w), the
operator T, of convolution by « is a bounded linear operator on (w).
Furthermore, the commutativity and associativity of convolution yield that
T,T; = T;T, = T,,,. Thus .#"(w) is an abelian subalgebra of A(IP(0)). In fact,
it can be shown that .#”(w) is the commutant of T, in #(I"{w)) and it follows
that .#”(w) is a maximal abelian subalgebra. It can also be shown that .47 (w)
is the closed algebra generated by T,, and the identity operator in the strong -
operator topology. Hence, in particular, .#"{w) is closed in the uniform
operator topology and so is a Bapach algebra. ‘

Tt will greatly simplify notation later on to define the norm [[| ||, on m"{w)
as the one inherited from .#7(w) so that |||#]||,.0 = | Tyl p.o. The use of triple
bars should avoid confusion as to which norm is meant when a sequence, o, is
simultaneously in m?(w) and P(w). This is by no means an uncommoun
occurrence since the existence of an identity for convolution of norm 1 in ()
{namely e,) ensures that m?(w) < IP(w) and that [|x|| < [|ix]|} for all x & (w). Of
course, it is only in the case that I”(w) is an algebra under convolution that we
have the reverse inclusion. Hence, in the algebra case, m?(w) = I (w) as Banach
algebras since the open mapping theorem implies that the two norms are
equivalent. We refer to [3] for a discussion of which weight sequences do make
F{w) an algebra. '

Let 5,(0): = Yo a(k)e, be the nth partial sum of o. It follows immediately
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from the above remarks that if #{w) is an algebra, then
o=, @] = [ Ta— Tl =0 a8 noco  (xem”(@)).

That is, if /P(w) is an algebra, then the partial sums of multipliers converge. We
may now ask whether the converse to this statement is valid: if the partial sums
of multipliers converge, is I*{w) necessarily an algebra? In the case p = 1, this
question has been investigated by Bade, Dales, and Lauisen [2]. When p = 2t
has been posed by Shields in [4]. We will return to this question after
discussing compact multipliers and regulated weights.

2. Compact multipliers. Compact multipliers, as one would expect, are those
elements of .#7(w) which are compact operators on i"(w). We will denote the
ideal of compact multipliers in #7(w) by A ?(w). The question of whether
a given multiplier is compact turns out 10 be closely related to a property of the
weight which we now define:

DermniTION 2.1, Given a weight sequence o and keN, we say that o is
regulated at k if ’
lim a(n+k)/w(r) =0.
(It follows that Iim,.,w(n+ JYom =0 for all j=k) We say that o is
regulated if there exists keN such that o is regulated at k.

In order to demonstrate the relationship between compact multipliers and
regulated weights, we will require the following lemma:

Levma 2.2, Let X be a Banach space, {U)} © #(X) be a bounded net, and
Te B(X) be compact. If U, —»UeB(X) in the strong operator topology, then
U, T—UT in the uniform operator topology. ‘

Proof. Replacing U, by U,— U, we can assume, without loss of generality,
that U, -0 in the strong operator topology. Let M:= sup, 1T,]l. Given xe X
and & > 0, define B(x, £):= {ye ¥: ||y—x| < ¢}. Since T is compact, TB(@, 1)
is totally bounded and so, given &> 0, there exists a fmite set,
{x}7=; < B(0, 1), such that TB(O, 1) = | -, B(Tx;, ). Choose Ao such that
|U,Tx,li < & for A 2 A; and j = 1,..., m. Then, if xe B0, 1), Tx e B(Tx;, ¢) for
some j, and so,

U, Tx|| < | U, Tx= Uy Ty + U, Ty < (M + e
Hence U, T—0 in the uniform operator topology. w

DeFINITION 2.3. For ne Z*, we define the complementary subspaces E, and
F, of P(w) by E, = {xeP(w): x(j)=0forj>n} and F, = [xel(w): x()=0
for j < n}. We also define the projections P,, Q,€#(I"(w)) onto E, and F,
respectively by
x() Hj<n,

(P = {0 it j>n

@ ‘
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for xelP(w), and @, =I1—P,.
Given xem?(w), P, T, is a finite-rank operator foreach ne Z* and it follows

that if
r}in:) [ Torﬂp.a) = ]Lm 1T,—P, Ta”p,m =0

then T, & "(e). The converse to this statement is immediate from Lemma 2.2
since Q,—0 as n— oo in the strong operator topology. Thus we have:

PrOPOSITION 24, Given aemf(w), T,ed"(w) i and only if
limrx-' o ” Qn Tm”l’»w = 0'

For xem?(w) and neZ™, we denote the operator norm of T, restricted to
F, by | Tde)pw = e lilp0. We then have:

PROPOSITION 2.5, Given aemH(w), T,eH*(w) if and only ¥ | T)s,l0 =
Nodg,Jll s =0 as n—c0.

Proof. If T, & # ?(w), then, since @, T,x = T,x for all x& F,, it follows from
Proposition 2.4 that lim,.q | T, = 0.

Conversely, suppose that lim,. || T,lr,| = 0. Then [T,—T.P,[ = | T,
< | TJp |0 as n—co. But T,P,ex"(w) for each neZ" since P, is
a finite-rank operator and so T,e XF(w). =

The following corollaries are straightforward but useful.
CoroLLaRY 2.6. If T,e X P(w) then
[+
lim ¥ |a(k)l(on+k)/w{m)? = 0.
BT k=0
Proof By the proposition, | T,y | —0 as n—oc and so, in particular,

tim | T ()] = 0,

which is equivalent to the conclusion. m
CoroLLARY 2.7, If T,eX*(w) then a(0) = 0.

Note that when p = | the converse to Corollary 2.6 is also true. Further-

more, in this case, there is a nice expression for the norm of a multiplier,
namely,

4]
2) 1Tl = sup 2 lalnle(+kywlk).
keZ* n=0
These characterizations of compact multipliers and of multipliers in general
lead to simplified proofs of some of the results to follow for p = 1. We refer to
[2, Ch. 1] for a diséussion of this special case.
Setting « equal to e, in Corollary 2.6 yields the result that if T,, is a2 compact
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multiplier then lim,_ , w(n-+k)/w() =0, which is exactly our definition of
a weight being regulated at k. The converse of this result does hold for all p:

ProPOSITION 2.8. Given keZ', T, e A () if and only if @ is regulated
at k.

Proof As we remarked above, it remains only to prove that if  is
regulated at k then T, _e#"(w). Also, since w can never be regulated at 0, we
can assume k > 0.

We begin by noting that for n =k,

3 [ Te— Py Tl = sup w(j-+kye(j).

J=n—k
For, in this case,

w [l

1 To~ P, Tox? = ¥ x(-HFo(f= ¥

j=a+1 J=ntl—k

{Ew(j+ k)

< sup (o(+k/o()f =7,

J=n~k

while, if j > n—k,
wU+M

ENIR T EN T

Now, if @ is regulated at k, then (3) implies that ||
But, for each n, P,T,,

T,, is compact. m

g,,—-P,,TekH—>0 as n—'oo.
is a finite-rank operator and, hence, compact. Thus,

We noted in Section 1 that .#P(w) is the closed algebra generated by
T,, and the identity operator in the strong operator topology, or, equivaleritly,
that .#7(w) is the closure in the strong operator topology of the polynomial
multipliers, i.e. those multipliers given by convolution with sequences which are
eventually zero, This can be proven as in [4, Thm. 12] by showing that if
aem?(w) then a—o, (2} —+0 in the strong operator topology as n — oo, where
op(0) 1= (n+1)7! Y70 5(0) is the nth Cesiro mean of x. We will now show
that the Cesdro means of compact multipliers converge uniformly and so
HP(w) is a subset of the closure in the uniform operator topology of the
polynomial multipliers,

Following Shields [4, p. 88], for xe/"(w) and teR, we define o, by

on):=exp(ina(n) (neZ™).
It is easily verified that (a*x), = o,*x, and it is then straightforward to show
that if xem”(w) then o, e m?(w) with ||jof|| = {lle]l|. For fixed , the map t—, is

continuous from R into .#7(ew)} with the strong operator topology and T,,, is
then given by the Bochner integral

icm

Multipliers of weighted spaces 137

n
(2m)~ [ K {—0) T, dt
0
K,} denotes the Fejér kernel. Thus,

" k| oo b fsin(n 12\
K=Y (1 —m>exp(nkt) =3 1\ Snij2 ) {(teR).

“n

where {

We will begin by proving the following lemma:
LemMmA 2.9. If T,eA7(w) then lim,_q||la—alj= 0

Proof, If p = 1 then the result follows easily from Corollary 2.6 and (2).
Hence we will assume 1 < p < o0.
If T,eX'P(w) then, by Lemma 2.2,

4 Q,(@*x)| 0 as n—oo
uniformly for xeB(I’(e)), the closed unit ball of #(w). Furthermore, for all
teR,

1@, %) = |[(@ x|} = [|Qu{xx))]| = 1@y (et %)l

For fixed teR, x+—X, is an isometry of B(I’(w)) onto itself, and so we conclude

that
sup [ Qu(a*x)| = sup [Q,(axx}[—-0 as n—oo.
xeB{10(m)) xaB(In{w))
Thus, @, Tl = | n—+ o0, Given & > 0, choose NeZ* such that
19x(T,— T.)ll < & (teR). Then

IT,~Ta P = sup f(a—a)»x|”

xeB(r{w))

k)P ooy + 7

< sp 3|3 (0-a@)s-

xeB(IP{w)) n=0 k=0
N "
= sup |3 (1 —explikt)(kyx (n—K)F () + &
xal(iP(o)} n=0 k=0
N ol \pv
) ( S [1—exp(ikt)|” ja (k) ( )k p) +ef < 28°
= \ k=0 ( )
for t sufficiently close to 0. W
ProposiTion 2.10. If T,e 4P (w) then || T,~ Tyl 0 as n—co.

Proof As noted above, we have

n
Ta"(a) = (27('-)"1 j Kn(—t) Tutdr
0
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where {K,} is the Fejér kernel. Since K,(2) > 0 and (2m) ™' [§" K, (—t)dt = 1, we
have

T~ Towll = 20) " [ (T,— TK(—0dt]| <@m)™* [ | T, T K, (- 2)de.
Let & > 0 be given. By Lemma 2.9, there exists § > 0 such that | T,— T, [ < eif

jtl < 8. Since lim, ., {5, K, ()dt = 0, we can choose N eZ* such that

@m)~' [ K,(Odt<ef2T,l) for alt n N.

|tie[d,x)

Then, for n = N,

[T Tl S @07 [ | To= Tl K (—0dt+ [Tz [ K(—t)dt <2
NES; [¢l€fd,x]

and the result follows. m

Defining =/?(ew) to be the closure in the uniform operator topology of the
polynomial multipliers, we have the following immediate corollary:

COROLLARY 2.11. A P(w) & o/ (w).

We can actually specify which elements of &/P(w} are compact. Given
a weight sequence, w, define

k,:=inf{k: o is regulated at k}.
(If w is not regulated, we set k, = c0.) We then have:

ProposITION 2.12. AP (w) = {T,e & P(w): alk) =0 for k <k,}.

Proof Let T, & "{w). Assume « is not zero and let j = inf{k: a(k) # 0}. -

By Corollary 2.7,
lim Y [a(k)P(w(r+ k) wn) =0,

P p=

and it follows that lim,_, ., w(r+j)/w(n) = 0. Thus w is regulated at j. But then
Jj=k, and so

AP w) = {Taeﬂf’(m): a(k)=0 for k<k,}.

Now, by Proposition 2.8, e, ed*{w). Clearly, {T,es/?(w): a(k)=0 for
k < k,} is just the uniformly closed ideal of .#”(w) generated by e, . Hence we
have the reverse inclusion. m

3. The multipliers of [*(w) for a regulated weight. We will now return to the
question posed at the end of Section 1. Recall that when I?(w) is an algebra, the
partial sums of multipliers converge, so certainly .#7(w) = o/%(w) in this case,
‘We can now prove the converse of this statement if we assume that w is
regulated. That is, given w regulated, we will show that if .47 () = «7(w), then
¥(w) is an algebra. This was proved in [2, Thm. 1.117 in the case p = 1 under
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the additional agsumptions that o be regulated at 1 and that [*(w’) be an
algebra, where o' is the weight sequence defined by w'(0)=1 and
o) =wr-1)(Hm21) That proof suggested the method used below. We wiil
firstly require a couple of lemmas.

‘Note that if P{cw) is an algebra, then it follows from our remarks in Section
1 that there exists a constant M > 0 such that |}jjx||| < M [|x|| for all xeP(w)
and so |x*y| € M whenever x, y& B(I"(w)). If I’(w) is not an algebra, then this
is of course no longer true, however the next lemma shows that boundedness
still holds as long as y is restricted to polynomials of a fixed degree.

LemMAa 3.1, Glven jeZ”*, there exists a constant C;>0 such that
%% ¥]l 50 < C; whenever x & B(I"(w)) and yeB("(w) N E;.

Proof Let xef(w) and yek; Then we have

5 ”x*y"p.c.u = sup [{xy, 2
2aB{P ()

J w
< sup ) I Y xmlizte+ Rl +k)?

zeli(lr(m)) k=0 n=0

/ @ -
< 3 WRI(L kP o+ Ry)e
k=0

B

J
< (sup om+kom)lxle 2 PE.
£

But then, by Hélder's inequality (seeting j47 =1 in case p = 1), we have

Ejfly(k)l < (sup Yo (k) i (ol < 7% (sup He®)lylpo-

k=0 ke[0,)) k=0 kel0,]
Substituting into (5) and letting
C;=j""(sup 1/w(k)){ sup w(n+ ko)
kel[O, 13 : k:.s[a%“

¥ields [ x%¥]|pa € €)%l p0 l¥ipo as was required. w

We noted prior to Lemma 3.1 that if I7(w) is an algebra then there exists

"M >0 such that

() =l < M x|

for all x € P(w). Of course, the converse of this remark is a_lso true. In fact, _1t is
even true that if (6) holds for all polynomials x then [P(w) is an a_dgebra. Thls. is
because if z&!P(w), we can choose a sequence of polynomials {x,} with
|z—x,]| -+0. If (6) holds for polynomials, then {x,} is a Cauchy sequence in
mP(w) and so converges in |||l as well, necessarily to z. Hence we. have
m?(w) = IP(w) and so P(w) is an algebra. Thus, if [7(w) were not an algebra,
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we could certainly find polynomials of norm cne in ["(c) whose norms in mf(w)
were arbitrarily large. The next lemma shows that a much stronger statement is
true.

LemuMa 3.2. Suppose I(w) is not an algebra. Then given j, n, NeZ* there
exists a polynomial BeB(F(w))nF; such that

NBlllpw > NBLzlp.0:

Proof. Choose K > (N+1)C,+C;, where C, and C; are as in Lemma 3.1.
Since IP(w) is not an algebra, we can find polynomials x and y in B(I?(w)) with
[x#yll > K. Let §=Q;x and y,=Q,» Then

1B*yoll = IGc—Pyxye{y— Py = [l #y[ —lxx P,y ] — 2% ol
>K—-C—C,>NC,,

by our choice of K. The conclusion now follows since C, 2 {[Blz,/[|. w

We now state the main theorem of this section.

THEOREM 3.3. Let @ be a regulated weight sequence. Then #7(w) = 7 "(w) if
and only if F(w) is an algebra.

As noted above, it remains to show that if "(w) is not an algebra then
o/ P(w) E #P(w). By Proposition 2.12, it will be sufficient to show that if I”(w) is
not an algebra, then there exists wemf(w) with a{j)=0 for j <k, but
T, & 47 ().

The proof will consist of an inductive construction of « satisfying the
properties listed above. To this end we will rely heavily on Lemma 3.2 to
guarantee the existence of polynomials such that the effect of convolving by
them is concentrated farther and farther out. More precisely, given ne Z™, we
can find a polynomial § such that |||Bir, ||| is very much larger than [||]g,|[l. The
idea will be to construct o by adding up such f’s, keeping the operator norms
of the sums bounded in order to ensure that o e .#°(w). However, we will use
the fact that the effect of the s is concentrated farther and farther out to show
that |{jels ||| does not converge to zero. Proposition 2.5 then implies that
T.¢ A P(w). It also follows from Lemma 3.2 that we can choose the fs
supported as far out as we like, That is, we can choose fe F, for j arbitrarily
large. Also, since o is regulated, we will be able to choose each § so that Tj is
a compact multiplier. Proposition 2.5 then ensures that the effect of convolving
by each of the f’s is concentrated on a finite interval of Z*. These last two
conditions wili enable us to choose the f’s nicely separated in order to ensure
that no unwanted cancellation takes place. We will now proceed with the
details. -

- DEFINITION 34. We define y, ¥ Ip(c_o)—>Z+ v {c0} i)y
y(B) =inf{n: f(m)# 0}, F(B)=sup{n: P(n) # O},

icm
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for fel®(w). If 4 < I"(w), we let y(4) = inf{y(f): fc 4} and F(A) = sup{F(B):
pe A} -
Proof of Theorem 3.3. Let f, = e,,,. Choose g, > 0 so that |||ag Bolll = 1.

By Proposition 2.12, T,,p,€ A 7(w) and so, by Proposition 2.5, we can find
j,€Z” such that

) letoBol, JIl < 1074/c
where ¢ = p2*". Here ¢ has been chosen so that
() (a+bp <a’+ceh f0€a<2and 0gb g1,

Note also that, if 0 € b < 1 and 0 € a—b < 2, then replacing ¢ by a—b in (8)
yields

9 {a—by = a"—cb.

Now, by Lemma 3.2, we can find a polynomial 8, with 8, (k) = 0 (ke Z™) such
that :

(10) By 1r, k> 10% el B2, .

Furthermore, by choosing f, € F, with k > k,, sufficiently large, we can ensure
that

(11) y(By*xFy) > TBo*Eg).

It follows again from Proposition 2.12 and our choice of §; that Ty, is
a compact multiplier. Hence, using Proposition 2.5, we can choose n, > j, 50
that |||8, |, ]Il i arbitrarily small. In particular, we can choose n, sufficiently
large so that

(12) B4 |ty fIl > 10*€]lIB |, M
and, by increasing n, yet further if necessary, and using (10), we can ensure that
(13) W83 1w,y Il > 10%€]I1B 4] 2, II-
Combining (12) and (13) yields
(14) 1By L, ey, I > 10 max [l L, NI, 1WAy L, W1
Now choose a, > 0 such that
(15) Il(@o Bo+ay Bl Il = L+1/2.

The proof 'will now be completed via the following steps:

(a) There exist sequences of positive integers j; and ny (with m_;, <ji < neh
positive real numbers ,, and polynomials f,eF,, with positive coefficients

- satisfying the analogues of (7), (11), (14), and {15) for each integer k = 1. That is

(setting o, := Y¥oq f, to simplify notation):
(16) Hlete— 1L, Nl < 10 2+ 1),



142 P. A, Detre

(17 Wt i) > 7B 14 B3

(18) Belsnes ] > 1024+ Demax 118,z 1. 18:le, 1.
k

(19) sz, = % 27"

(b) If a:=3 2 oa;f; then aem’(w)

() T, &4*(w).

We now proceed with the proofs of these statements.

() We will use induction and assume that j;, n;, 4;, and §, have been chosen
for 1 < i < k with (16)-(19) satisfied. As above, using the compactness of the f/'s
and Lemma 3.2, we can find Jya1 > Mg, Mty > Jjir1, and a polynomial
Bi+1€F,, with positive coefficients such that

|||akEij+1HI < 10_2(k+2)/cﬂ . _}_’_(ﬁk*l*l*ijn} > ]T(Bk*Eikn):

‘llBk+i]Enk+1r\ij+‘[|i > 102(k+2)cmax[|“ﬁk+1‘Ejk+1||l= ”lﬁk+1|FnH1”|]'

Next, we show that we can find a4; > 0 so that (19) is satisfied when & is
replaced by k+ 1. Clearly, this is possible if we can show that
k+1

Hetele.,, NIl < 2. 277
=0
Let x€E,,, nB(P(w) and let x, =P, xek,, x,=0,xeF, so that
x = X, +x,. Then, by (16) and (19) and the fact that F, = F,,

k
(21) Hak*xH < Jogxx, | + o *x, || < Z 274 !1kam1*x2||+ﬂa’kﬁk*x2”

i=o
k
< ¥ 27141072 e fla, B, |
=0 _
Now, by (18),
—2{k+1) 10~ 206+ 1)
e Bilr, Il < _'éﬁlllakﬁklEnkijk”l < —c——_“ldklE”"“l'
By (19),
10— 2k+1) K 9.10- 206+
(2 e Bl < o ¥ 27 < P
£=0
Finally, by (22) and (21),
k .3 10—2(k+1)
(23) flogxll < ¥ 275+ (x€Ey,.,, nB(P (@),

i=Q

and so,
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k41

el JI < 3 27"
j=

Hence we can choose agz..q >0 such that

k1
Motgr 1 Ly, M = H'(E,o ap;)

This completes the proof of statement (a).
(b) Let o = Y imoa,f; and let x e B(IP(w)) with x(7) = 0 for all ieZ™". Then,
for icZ”,

(24) [P o) & [ProwPrpxl il 4, 520

Given teZ", choase k so large that n, > i and y(f)) > i for all I > k. This will
always be possible since (17) implies that y(f) is an increasing segquence.
Hence, P& = Py(T¥eoa,B) = Py and so, by (24) and (19),

k+1
E“rc-HlH = z 2“’"
i=0

k
[ Plocxx}] < fagxPuxll < lZOZ""‘ <2
for all ieZ™". Therefore, llaxx| <2 for all xeB(?()), and it follows that
aemP(w) with |||l < 2.

(c) To show that T, ¢ #7(w), it is sufficient by Proposition 2.5 to show that
etz ]l 70 as i~ co. Hence, 10 conclude the proof, we will show that given
e Z”, there exists xeB((w))n F, with flaxxl = L.

Given leZ", choose k = p so large that j, = i. By (19) we can find xeE,,
with x| =1, x() 20 (feZ™), and

k
(25) log*x] 2 3, 271107 %/e.,
=0

Let x, = P, x€E,, and x, = QxeF,;. Then

(26) o | < Yoty g e 30 + EiBill + f0t %% 1+ g By Xy 1l -
Now, by (16),
(27) llotg.. s % %2 < 10~ 26+ /e
and, by (18) and (19),
-2k —a+1) &
08 laox, ] < -m-»%u|||akﬂklmlkmmlﬂ < "19""%‘“ PR
241073+ D

e
¢

Hence, substituting (27) and (28) into (26) yields
@9 - o w3l < ||y %3+ @B | 437107267 Ve,
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Also, since |||«|| € 2, we have

(30) fotg s %% +a Bexxy| €2
From (29), (30), and (8), we get
(31} o x| < [l g %y + i By X[ P43 - 107 25FD,

Then, if we use (17), (31) becomes

(32) lotgxx]|¥ < flotgm g+ |17+ [l Brx 2, 1743 10726+ D,
Now by (23),
k=1
(33) log—g %3, 17 < [{ ¥ 27) |y || +3+107 /e
=0

k—1
<(X 2P b3 1072

where the second inequality follows again from (8). By (19),

'
(34) lowBerxal < {3 27) 1%, 0.
=0
Substituting (33) and (34) into (32), we get
k—1 k
(35) lorex]|? < (3 279 xy |74+ 2 279 llxa|I” +4- 1072,
=0 I=0
Then by (35) and (25),
k k-1 k
[Y 27 =107 < (3 27 lx, 1P +( 3 279 Ixo )P+ 4107 2%,
[=0 i=0 =0
Therefore, using (9),
k k=1
(36) (X 277 A= D—( 2 279 llxy " < 5-107%,
1=0 =

But ||x, 7+ ||x,|f = [x]|¥ = 1. Hence, 1—|x,]? = ||x;]® and {36) yields
5-107 2
= < 255107 < 1075,
2lp(3 27
0

]

floe, 1P <

M-

(

I
Therefore,

(37) fix |l < 1072,
Again by (25),

k
1202_‘—10“2"/0 < flegrx] < flog#x, [+ x| < 2%, ||+ floe x5 1

icm
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Thus, using (37),
k
x| > 3 271 =107 2/c~2- 10747 > 1
1=0

since we chose kzp But |laxx,| > |log#x,]l, so we can conclude that
Jakx,)| > 1 where x, e B(I"{w)) " F,, < F;. This completes the proof of (c) and
hence the proof of Theorem 3.3. m

The following corollary is immediate:

COROLLARY 3.5. If w is a regulated weight sequence and s {a} = Y k=oo(k)e,
converges to « in i<} for all aemf(w), then M(w) is an algebra.

When p = 2, Corollary 3.5 provides an affirmative answer to Question 12 in
[4] in the case of a regulated weight. {Note that Shields denotes I(w) by H 2 (o)
and .#%(w) by H*(w). This notation comes from the unweighted case when 12
can be identified with the Hardy space H? on the unit disk and it can be shown
that its multiplier algebra is isometrically isomorphic to H®, the bounded
analytic functions on the unit disk.)

The question remains whether the hypothesis of a regulated weight can be
dispensed with in Theorem 3.3. The answer is in the negative when p = 1—see
[2] or [1] for examples where 4*(w) = o/*(w) but I*{w) is not an algebra.
However, the question is still open for p > 1.
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