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The Rockland condition
for nondifferential convolution operators II

by
PAWEL GLOWACKI (Wroclaw)

Abstract, The aim of this paper is to present a slightly refined version of the following theorem:
Let K be a singular integral operator on a homogeneous group N. Assume that the kernel of K is
C™ away from the origin. Then K is left-invertible on I2(N) if and only if for every nontrivial
irreducible representation x of N, my is injective on the space of C®-vectors for x. In addition, some
consequences for the problem of characterization ol the Hardy space H!(N) by means of
generalized Riesz transforms are indicated.

Introduction. Let N be a homogeneous group, a nilpotent Lie group
endowed with a family of awtomorphic dilations. Denote by @ the homo-
geneous dimension of N, and let x —|x| be a homogeneous norm on N. We
consider a singular integral operator

Kf(x)=1lim { f(yx k(y)dy, [feCL(N),
=032
determined by a smooth function k: N\{0} — C which is moreover assumed to
be homogeneous of degree —Q and satisfy the mean value zero condition

k(x)dx =0
1/2<|x| <2

It is well known that for every unitary representation = of N on a Hilbert space
H,, ng is well defined as a bounded linear operator on the dense subspace
C>(n) of H, consisting of smooth vectors for z. In particular, K = g, where =*
is the right-regular representation of N on I*(N), extends to a bounded
operator on I*(N), still denoted by K. '

The aim of this paper is to present a slightly refined version of the following
theorem:

THeOREM. K is left-invertible if and only if my is injective on C*(xn) for every
nontrivial irreducible unitary representation m of N.

1980 Mathematics Subject Classification: 42820, 22B27, 42B30, 43A05,
Key words and phrases: homogeneous groups, singular integral operators, kernels of order r,
stable semigroups of measures, representations of nilpotent groups, Hardy spaces.
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Let us remark that in the case when N = R" with the usual dilations, our
theorem says that K is invertible if and only if the Fourier transform of the
principal value distribution
< PV = lim J fOk(x)dx
E7U Ixlze
does not vanish except at the origin, which is well known and easy to see.

This and other similar problems have been dealt with by Calderén and
Zygmund [CZ], Christ [C1] and [C2], Christ and Geller [CG], Moukaddem
[Mo], and the author [G2]. Some of these papers were motivated primarily by
the study of Hardy spaces. Although our theorem seems to be of interest in its
own right, I would like to stress here its actual and possible significance for the
theory of Hardy spaces on homogeneous groups, as initiated by Folland and
Stein [FS1. ‘

In particular, the above theorem applies to the problem of determining
which families of singular integral operators on N have the property of
characterizing the Hardy space H'(N). Recall that a finite collection
K,, ..., K, of singular integral operators with smooth kernels k,, ..., k,, (see
above) characterizes H' (N} if and only if for every tempered distribution f on
‘N, f belongs to H*(N) if and only if K,feI'(N) for all j, and the norm

For 3K o
j=1

is equivalent to the norm in H*(N). Classical examples are Riesz transforms on
R" (sec, e.g., Fefferman and Stein [FeS], p. 144).

It is a conjecture of Christ and Geller [CGJ, p. 573, that the following
condition is sufficient for a finite collection of real singular integral operators
K,,..., K, to characterize H*(N):

(*) For every nontrivial irreducible unitary representation = of N on
a Hilbert space H, and every nonzere vector ve H,, the subspace of H_
spanned by the vectors mg,v, ..., fig, v is of dimension at least 2 over R.

Christ and Geller prove their conjecture only for the Heisenberg group
where (») turns out to be necessary as well. However, as pointed out by Daryl
Geller (in a personal communication), in the general case the problem boils
down to proving the aforementioned theorem. ‘

A partial result in this direction has been subsequently obtained by
N. Moukaddem who proves the inversion theorem in the case when the group
N is a graded homogeneous group of step less than or equal to 3 (see
Moukaddem [Mo]).

The idea of our proof consists in reducing the problem to certain maximal
estimates for convolution operators of positive, though small, order. This, in
turn, is accomplished much along the lines of Helffer and Nourrigat’s proof of
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the Rockland conjecture (see Helffer and Nourrigat [HN]). Surprisingly, the
theory of semigroups of probability measures also plays an important role.

The methods used here aré by no means new. All the ingredients of the
proof have already been prepared in [G3], and we merely choose those
ingredients and adapt them for our present purpose. Consequently, this paper
is far from being self-contained. It should be rather regarded as an integral part
of [G3]. However, for the convenience of the reader, all the necessary results
have been listed in Section 2.

It is my pleasure to thank D. Geller for bringing the problem considered
here to my attention and for his illuminating remarks. I am also grateful to
B. Helffer and J. Nourrigat for inspiring conversations on the subject of this
paper. :

Notation. As usval R and C denote the fields of real and complex numbers,
respectively.

Let ¥ be a finite-dimensional real vector space of dimension #, and let V*
be its dual. The vector space norms on V and V* are denoted by §+]. The
duality between xeV and £eV* is denoted by {x, &>. If W is a vector
subspace of V and £e V*, then the restriction of & to W is denoted by £|W.

A one-parameter family {4,},., of linear mappings of V into itself is called
dilations if there exist strictly positive numbers d,, ..., d, and a basis {e;}] of
V such that

(0.1) be;=tYe;, 1>0,1<j<n.

A homogeneous norm on ¥V is defired to be a continuous function

_Vax—|x|e[0, oo} which satisfies

02
03)

18,x| = tlx|, xeV, t> a,

x| =0

For any family of dilations on V, there exists a homogeneous norm. In fact,
one needs only take |0| = 0 and {x| =t, where [J,-:x| =1, for x # 0. (The
t with this property is, as is easily seen, unique) Note that the norm thus
defined is symmetric and C™ away from the origin (see Folland and Stein fFs],
p- 8). _ :

There is alsc a homogeneous norm on ¥*, still denoted by ||, induced by
the dual family of dilations :

if and only if x=0.

{x, 0FE> = {6,x, &, xeV, EcV*,

We use the standard notations C'(V), C2(¥), and & (V} for the spaces of
continuously differentiable functions, C*-functions with compact support, and
C=-functions rapidly vanishing at infinity. We shall often refer to C*-functions
as, simply, smooth functions.
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For p=1 or 2, I’(V) is the usual I7-space with respect to Lebesgue
measure dx on ¥, The norm in IP(V) is denoted by || [ Lew.
If fe C2(V)and T is a distribution on V, then {f, T) denotes the action of
T on f. For a distribution T, we define its reflection Toy (f, T>=<J, T,
" where f(x) = f(—x), xe V. The space of compactly supported distributions on
V is denoted by &*(V). ‘
If, in addition, ¥ is endowed with a Lie algebra structure, then the Lie
bracket of x, yeV will be denoted by [x, ¥].

1. General set-up. Let N be a komogeneous group, a nilpotent Lie group
endowed with a family of automorphic dilations {6,},. . Being homogeneous,
N is connected and simply connected, which permits the identification of N as
a differentiable manifold with its Lie algebra by means of the exponential map.
Therefore, we shall be assuming throughout the paper that N is also equipped
with a Lie algebra structure related to its group structure by the Camp-
beli-Hausdorff formuia. In this setting Haar measure of N is simply Lebesgue
measure of N as a vector space. In addition, the dilations &, are Lie algebra
automorphisms, and they induce a dual family of vector space dilations on the
dual vector space N*.

Denote by 1 = d, < ... <d,, the exponents of homogeneity of the dilations.
We have

N= @ N,
Jj=1
where
(1.1 N;={xeN: §,x = t¥x, t > 0}

Also, set N,y ={0}. For 1<p<m, let’

(1.2) N{p)= @ N,
. i=» :

A continuous complex function f on N is said to be homogeneous of degree
reR if f(6,x) =tf(x) for xeN, t > 0. A distribution T on N is said to be
a kernel of order reR if T coincides with a Radon measure dT on N\{0} and
satisfies

{Jod, Top=v{f, T
for feCZP(N) and t > 0. A kernel T of order r is said to be Lipschitz if the
measure 4T has a density F relative to Haar measure which is Lipschitz. The
latter, by definition, means

[F(x)—~F{y)l < Cly™'xI°

for 1/2 < Ixf, |y} < 2 and some constants C >0, 0 <s < L. :
If T is a kernel of order » > 0 and = is a unitary representation of N on
a Hilbert space H_, then n, is well defined as a clogable linear operator on the
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space C®(n) = H_ of smooth vectors for m, The closure of Tty is denoted by ;.

If V and § are vector subspaces of N such that V@ S = N, then VS = N,
and there exist polynomial mapings

(1.3) v NoV, o N->§S

such that every ae N decomposes uniquely as a = v{a)o(a).

We shall write {e H(V) for a linear functional £ in N* if ¥ is an isotropic
subalgebra of N subordinate to £ If S is as above, and e H(V), then the
unitary representation 7" of N induced from ¥ by the unitary character
x—e*% can be realized on I?(5) in the following way:

(14) T Df () = D (o(xa)),

where feI*(S), aeN, and xeS. Recall that a unitary representation x of a Lie
group N induced by a unitary character y from a closed subgroup V of N is
called menomial. -~

A subspace § of N is said to be homogeneous if it is invariant under
dilations. Note that for every subalgebra V of N, there exists 2 homogeneous
linear complement § (cf, e.g., [G3], Lemma (2.7)). In particular, let N be
a homogeneous linear complement to N(m). The corresponding projections

(1.5) v: N—»N(m), o: N-N
are homogeneous and linear, and the muitiplication
(1.6) xoy =o(xy), x,yeN,

makes N into a homogeneous group isomorphic to N/N(m), ¢ being the
canonical homomorphism. Dilations on N are simply those of N restricted to N.

For Ae N(m)*, let
(1.7 | 7t = g

Then, as is easily seen, the right-regular representation =! of N decomposes as

(18) mf(x) = [ emeeRalrio(x)da,
N(m)*

where ( )‘

(19) FHot)= | f(xpem 2w dgy(x)

Nim)

for feC(N).

If T is a kernel of order r >0 on N, then
(1.10) S, Ty ={fos, T)
defines a kernel T of order » on N such that

(1.11) i} = 3,



104 P. Glowacki

where ! is the right-regular representation of N.

Let P be a smooth symmetrlc accretive kernel of order 0 < r < 1. Recall
that a real distribution P on N is accretive if {f, P> = 0for real functions f in
CZ(N) assuming their maximal values at the origin. A kernel P of order r is
said to be smooth if the measure dP on N\ {0} has a C*-density with respect to
Haar measure of N. We may take, for instance,

fO~10d,

(1.12) 0%

Py =lm JeCeN),

el |xze
where |x| is a homogeneous norm on N. We shall always assume that our

homogeneous norm is symmetric and smooth away from the origin. The
number

¢=Y ddimN,
j=1

ig called the homogeneous dimension of N.

Let {1} be the convolution semigroup of probability measures generated
by P. It follows, by Lermnma (3.28) of [G1], that g,(dx) = f,(x)dx, t > 0, where
f,eLX(N). Let

(1.13) F() = [ef()dt, xeN.
]

Then FeL'(N), and, by elementary properties of semigroups of measures,
(1.14) FxP=§~F,

where = stands for the convolutlon on N, and 4 is the Dirac point mass located
at the origin.

(1.15) LeMMA. For every nontrivial monomial unitary representation n of N,
Lp is infective on its domain, and the space of vectors of the form npf, where
JSeC®(xn), is dense in H,.

Proof. By Duflo [D], 7, is essentially selfad_]omt on C*(r) so it is sufficient
to show that %, is injective.

Let 7, f = 0 for some f in the domain of %,. Then 7w, S = f for every t > 0,

whence
[<S maf D plda) = | £ |12
for, say, ¢ = 1. Since p, is an absolutely continuous probability measure,
{fimf>=|f|? and, consequently,
(1.16) rf =r

for every aeN.
Now, since n is monomial, it can be realized as = = =" on L*(8), where
V is a subalgebra of N, e H(¥), and § is a complementary vector space to V.
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By (1.16) and (1.4),

|f (elxa))] = Lf 3},

S being a function in L2(S), which implies that |f] = const. Since fel?(S), it
must be zero, which completes the proof. m

xeS, aeN,

2. Main lemmata. The whole of our consideration here is based on the
following results which have been proven elsewhere.

(2.1) LemmA. Let 1 < p < m be an integer. Let V be a subalgebra of N(p). Let
S be a homogeneous linear complement to V in N. Let T be a kernel of order
O<r<1 on N. Then, for any &, neH(V) such that ¢ =n on N(p+1),
¥ — " extends to a bounded operator on I*(S), and
(2.2) lim  |2f"® —af P, = 0,
& ~nll -0
where |||, denotes the operator norm on L*(S).

Proof. See [G3], Proposition (3.1). =

To state the second result we need some preparation. We introduce the
following notation: If V is a subalgebra of N, and ¢ is a functional on N, we set

N3 = {neN*: qiV = ¢&[V},
Vi ={xeN: {[x,y]. & =0 for all yeV},
= [Ad¥¢{: xe Vi),

where Ad* denotes the co-adjoint action of N on N*.
Following: Helffer and Nourrigat (see [HN], Definition 5.1.6) we say that
a pair (V, &) is maximal of order 1l < p<mif VS N(p)and V() =V nN(j)is
a maximal lSOtI‘OplC subalgebra of N(j) for &; = £|N(j), where p <j< m.
If (V, &) is maximal of order p, then

2.3) (V, ) is maximal of order p for e N§(Z),

(2.4) Vir=Vi¢ for neN§(Z),

2.5) (%) = Ny (Q),

(2.6) there exists a subalgebra W of N(p—1) such that W~ Nip)=

[W, W] =V, and (W, x) is maximal of order p—1 for qu O = 2)

(2.3) follows by general considerations concerning polarizations on nilpotent
Lie algebras (see Pukanszky [P7]), while (2.4){2.6) are proved by Helffer and
Nourrigat (see [HN], Sections 5.1 and 5.5).
Let _
disty (£, O() = inf |&W—L|W].
Led(n)
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(2.7) LEMMA. Let {V, £) be maximal of order 2 < p < m, and let W be as in
(2.6} above. Then, for every F in L'(N),

lim |z ||, =0 as disty(n, O&)—co with ne NP().
Proof This is a straightforward consequence of Proposition 5.5.1 of
Helffer and Nourrigat [HN] as explained in Melin [Me], Proposition 59. m

Let ¥ and W be subalgebras of N-such that [W, W] c V= W, and let
Sy &Sy be linear complements in N to W and V, respectively. Let T be
a linear complement to Sy in S,. For fel?*(S,) and neW™*, let

(2.8) ) = I F(ty)e=2mnT gy
T

where a = ty is the unique decomposition of g€ 8, as a product of te T and
yeSy.

(29) Remark. If fe CZ(Sy), then f" e CE(Sy) for every ne W*. Conver-
sely, for every g e CP(8y) and every n e W¥*, there exists f in CZ(S),) such that
fh=g

(210) LemMa. Let £€ H(W). Then the representation o9 acting on 1*(S,)
is unitarily egquivalent to the direct integral

® [ z"dy
Ntw

with f— @ [xsw fMdy being the. intertwining operator from I*(S,) to
D fm@mw L'(Sy)dn, where dn is Lebesgue measure on the linear variety
NE(HW = W*.

Proof. This is well known. See, e.g., Helffer and Nourrigat [HN], Sect. 2. m

(2.11) CoROLLARY. Let P be a kernel of order 0 <r < 1 and let feCZP(8,).
Then the mappings ‘

N¥O\Wan—-[Te*(Sy) and NYE|Wan—nff7el?(S,)
are continuous.

Proof. This is a direct consequence of Lemma (2.1) and (2.8). »

3. Maximal estimates. In this section we prove maximal estimates for
kernels of order 0 < r < 1 satisfying the Rockland condition, which is the
essence of the proof of our inversion theorem (see Section 4 below).

(3.1) TueoreM. Let R be a kernel of order 0 < r < 1 on a homogeneous group
N. Suppose that R satisfies the Rockland condition:

(3.2) For every nontrivial irreducible unitary representation m of N, the

operator Ty is injective on its domain.
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Then, for every kernel T of order r,

Inzff < Cllakfll,  feCP(N).
(Cf. Remarks (3.14) and (3.15) at the end of this section.)

Proof. Suppose first that N is abelian. Then the Fourier transform R of the
tempered distribution R is a continuous function on N* homogeneous of
degree r, and by (3.2), R does not vanish outside the origin. Therefore, there
exists a constant C > 0 such that

IRQ)I = Cielr,  ZeN™,

which immediately implies the assertion of our theorem.

Now we proceed by induction. Assume that Theorem (3.1) holds true for-
N = N/N{(m). Once we prove that this implies that the theorem is valid for N as
well, the proof will be completed.

By the induction hypothesis and (1.11),

In%f]l < Clnkfll, feCE(N),
whence, by Lemma (2.1} and the homogeneity of both T and R,

(33) I3 S < Collimkf I +1S1),  feCP(N),

for |4 = 1 and some C, > 0. Here and below we set ||| = |- ||zs for an
appropriate § < N.
Our next step will be proving the following claim:

(3.4) For every subalgebra V of N containing N(m) and every (e H (m such
that £, =1,

721 | < Colln&2f 1+ 11D,
where feCY(Sy), and the constant C, is that of (3.3).

Firstly, note that ¥ = N(p) and ¥V & N(p+1) for some 1 < p < m. We shall
make an induction on p starting with p = m. In this case V = N(m), and our
claim is reduced to (3.3).

Assume now that (3.4) holds true for some 2 < p < m, andlet V € N(p—1),
V & N(p), EeH(V). Then (3.4) holds for W=V~ N(p) and £ Moreover,
W< Vand [V, V] € W, which permits an apphcatlon of Lemma (2.10) (with
the roles of ¥ and W interchanged). Therefore, if S} is a linear complement to
V in N, there exists a constant C, such that

=270 < Collin® ™ f + 1S

for fe C°°(S,,) and almost all ne N3(£)| V. Actuaily, since both.sides of the
estimate are continuous in # (see Corollary (2.11)), it remains true for all

nENHEIV. |
Qur next claim is the following:
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(3.5)  Let V be a maximal isotropic subalgébra of N for a functional Ee N* such
that |&,} = 1. Then

I <Claf2 71,  feCe(Sy)
where the constant C depends only on V and £.

For the sake of simplicity, let = = "9, By Kirillov [K], = is irreducible.
Let P be an accretive kernel of order r with dP being absolutely continuous
relative to Haar measure on N\{0} (see (1.12)).

We are going to show that the assumption that (3.5) is false leads to
a contradiction. Indeed, under this assumption, there exists a sequence
£;€ CZ(Sy) with || f;| = 1 such that nzf; tends to zero in I*(Sy). It follows from
(3 4) that the sequence 7, f; is bounded in L?(8). Let F be the resolvent for P as
defined in (1.13}. By (L. 14), we have :

(3.6) npfpf; = fi— e f;

for every j. Since = is irreducible and F € L'(N), 7 is compact (see Kirillov [K]).

Consequently, by (3.6), there exists a subsequence of f; which converges to an

f in I[3{S}). Consequently, f is in the domain of &, and 7#gf = 0, which is

a contradiction as 7, satisfies the Rockland condition (3.2) and ||/ = 1.
Having established the estimate (3.5) for irreducible representations, we

now want to “lift” it to n¥’s. More precisely, we aim at proving the following:

(3.7) Let e N* with|£,| = 1. Then, for every 1 < p < m and every subalgebra
V of N such that the pair (V, £) is maximal of ord,er p, there is a constant
C(&,) depending only on {,= {|N(p) such that

IF1 < CEMNROf N, feCo(Sy).

Note first that the case p == 1 has just been proven. Indeed, in order to see
this one only has to know that for every £e N*, there exists a subalgebra V of
N such that (V, &) is maximal of order 1. This, in turn, can be proven by using
(2.6) and a simple induction.

‘Suppose, then, that (3.7) has been proven for some 1 < p<m—1, and let
(V, &) be maximal od order p+1 with |£,| = L. By (2.6), there exists a subalge-
bra W of N(p) such that W N{p+1} = V, [W, W] < V, and (W, ) is maximal
of order p for every ne N¥(£). Therefore,

(3.8) If1 < Conlng s,
for ne N§(£).

Once we show that the function n— C(x) is bounded, we shall be able to
complete the proof by integrating both sides of (3.8) over N¥E)|W and
invoking Lemma (2.10). Thus, we want to show that C(s) is bounded for
ne N¥{f). Firstly, we may consider only those n which coincide with & on
N(p+1). It follows from Lemma (2.1} that C(#) is locally bounded. In addition,
it is invariant under thé co-adjoint action of N on N*, In particular, it is

FeCI(Sy),
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constant along the V*-orbit @, of £ Therefore, to complete the proof that C{r)
is bounded on N#(¢) for a glvcn Ee H(V), it is sufficient to know that C(n) is
bounded for dist,(y, @{£)} being large enough.

For simplicity of notation, let 77 = n™. Let P and F be as above. Then,
by (1.14),

(3.9) LA < ImblapUlmaf I+ 1)
for ne N¥(£). Since FeL'(N),
(3.10) [7Fllop— 0

as disty (7, @(é))-a co (Lemma (2.7)); therefore, for every £> 0, .

(3.11) £ < ellndfi
if disty(n, 0(f) is sufficiently large. Consequently, by (3.4),

LI < Coellmkf I +1/1) < InkSli+20 1

with &= 1/(2C,), whence |f|| < |nkf| for disty(n, @) sufficiently large,
which concludes the proof of (3.7).
In the case p=m, (3.7) reads

(3.12) 17} < CAImif1, FeCEN),

for |A| = 1. But, by the same argument as above, C(4) is locally bounded, hence
bounded, on the compact sphere {A| = 1, which finally implies | /|| < Clnkf ||
for Al =1 and C = supy=; C(A). This, combined with (3.3), yields

(3.13) Indfli < Clmkfll,  feCP@),

for |A| = 1, and, by homogeneity, for all le N({m)*.
To end the proof of Theorem (3.1), it is sufficient to integrate both sides of
(3.13) over N(m)* with f replaced by f?, f being now a CP-function on N. m

(3.14) Remark. The restriction r < 1 in Theorem (3.1) can be removed if we
assume that dR has a density on N\{0} which is, for example, a Lipschitz
function. As a matter of fact, if r £ 2, it is sufficient to assume that R is
symmetric. This, however, will not be discussed in this paper.

(3.15) Remark. If R is smooth away from the origin, then the kernel of i,
is contained in C*(x) so that in the Rockland condition (3.2) the domain of 7y
can be replaced by the space C*(n) independent of R. (Cf. Lemma (4.9) below.)

4, The inversion theorem. Let ¢ be a CZ-function on N equal to 1 in
a neighbourhood of the origin. For >0, let ¢(x) = ¢@(ex). Let K be
a Lipschitz kernel of order 0, and let

(4.1) Ky = 0. K>, [eCEN).
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It has been proved by Goodman [Go] that if 7 is a unitary representation of N,
then there exists a dense subspace H, of H, contained in C*(r) such that

@2 limng, f = mef

exists for fe H, and defines a bounded operator 7y on H,. The choice of the
cut-off function ¢ is immaterial.
We recall that =' is the right-regular representation of N on L*(N).

(4.3) THEOREM. Let K be a Lipschitz kernel of order O on N. Then the
operator iy is left-invertible on L2(N) if and only if the operator y is injective
for every nontrivial irreducible unitary representation = of N.

Proof. First, we shall prove the “if” part.
Let 0 < s < 1 be the exponent in the Lipschitz condition for K on N\{0}.
Let O <r < 5 and let P be the smooth kerne!l of order r as defined by (1.12).

(4.4) LeMMA. There exists a Lipschitz kernel T of order r such that
(4.5) Tgflp = Ty
for every unitary representation m of N.

Proof of the lemma. As Ked*(N)+I*(N), and Pe&*(N)+
{(LMN) n C=(N)), the convolution T = K =P is well defined. It is also obvious
that {fod,, Ty =1t"¢f, T, and if = is a unitary representation of N, (4.5)

holds true. It remains to show that T is Lipschitz away from the origin.
To this end, let >0, and let K,, P, be defined as in (4.1}. Then

T=K#*P,+K*P-P)+(K-K)*P.

As the support of K, *P, can be as small as we wish, it is sufficient to show that
the remaining two terms are Lipschitz. But K #(P—P)e C®; therefore, we only
have to concern ourselves with (K — KB)*P = k*P where k is a Lipschitz
function with Lipschitz exponent s.

Indeed, for any x, yeN,

[k*P(x)—k*P(y)|

[k (x)—k(xz™ 1) [k(y)— k(xz ")

< dz+ d
ey (2% e 2T
() = k()| e(yz~) —k(xz"Y)
+ ) ——Wdi-"l' j Orr dz
Iz} |y~ 1x| 2]y~ x| |z]
<20( | EeTdtlyTixF [ ET0dg)= Cly i,
lz) iy~ 2 fel > 5~ 1]

which shows that k«P is Lipschitz with exponent s = s—7. a
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(4.6) LEMMa. Let T be as above. For every nontrivial irreducible unitary
representation © of N, fip is injective.

Proof.-Let v be a vector in the domain of #; such that .0 = 0. Since 7Ty is
bounded and injective and 7,7, = @i (see {4.5) above), and 7, is closed,
v belongs to the domain of 7, too. Therefore, by the assumption on K again,
#ipt = 0. As 7 is monomial, it follows by Lemma (1.15) that v =0. m

We return to the proof of Theorem (4.3). By Theorem (3.1),

Inpf | < Clmif | = Cliagnif

for feCZ2(N). Consequenily, by Lemma (1.15), || f| € C|7kf| for feI*(N),
which shows that 7k is left-invertible. Thus, the first part of the proof is
completed.

The “only if” part will follow immediately as soon as we prove the
following lemma:

(4.7) LEMMA. Let K be a Lipschitz kernel of order 0 on N such that 7y is
lefi-invertible on I2(N). Then, for every nontrivial monomial unitary represen-
tation © of N, Ry is left-invertible on H_.

Proof Let n =79, where V is a subalgebra of N and £e H(¥). Let
1< p<m+1 be the smallest integer such that V = N(p).
We shall proceed by induction on p. If p=m+1, then ¥V = {0}, and
¥ = m so that our assertion follows by hypothesis. Assume now that it
holds true for some 2 < p+i<m+landlet W=V N({p+1) Slnce A< is
left-invertible, we have

(a9 < Clnf2f ||
for f € C¥(Sy), where T is as in Lemma {4.4), and S, is a linear complement to

W in N. It follows now, by Lemma (2.10) and Corollary (2.11) (with the roles of
V and W interchanged) that

(4.8) - Inf 1l < Clafmfo|

for feC®(8y) and neN¥(E)|W. In particular, (4.8) holds for n = £|W.
But, for every ge C2(S,), where V@S, = N, there exists fe CZ(Sy) such
that f* = g. Therefore, by Lemma (4.4) again,

o951 < Claft g Og]

for ge C2(S,). Since, by Lemma (1. 15) the functions of the form = 9g, where
g ranges over C®(Sy), are dense in LZ(S,,) we conclude that a9 is
left-invertible on I?(Sy). m

(4.9) CoroLLARY. Let K be a smooth kernel of order O on N. The operator
ik is left-invertible on I2(N) if ‘and only if my is injective on C* (n) Jor every
nontrivial irreducible . unitary representation m of N.
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Proof. In virtue of Theorem (4.3), it is sufficient to show that if = is an
irreducible unitary representation of N and feH,, then #igf =0 implies
feC=(n).

Let n =n™% and H, = LI(S) where V is a subalgebra of N and § is
a complementary subspace to ¥ in N. Then, by Kirillov [K], C*(r) = &#(S)
and for every differential operator & on S with polynomial coefficients, there
exists a distribution D e &*(N) supported at the origin such that m, = é. Let
P be a smooth accretive kernel of order r > 0 on N (cf. (1.12)). By Theorem (2.2)
of [G2], there exist a constant C> 0 and a positive integer k such that

(4.10) b Fl| < C(l(m¥ i Fll +1Fl)

for Fe C2(N). (The assumption in [G2], p. 58, that 7} has a two-sided inverse
is superfluous. It is sufficient to assume that it is left-invertible, as we do here)
Now, by the “decomposition” of the estimate (4.10), as was explained in the
course of the proofs of {3.4) and Lemma (4.7), we get

(411) 174 < C(ltmp)mef [ +1S1)

for feCZ(S). As CZ(S) is dense in C*(r) (cf. [G3], Lemma (2.9}, (4.11) holds
for all f in C*(n), which immediately implies that the kernel of 7 is contained
in C®(n). m

5. Applications. We denote by H'(N) the Hardy space on N, as defined by
Folland and Stein [FS], p. 75. We say that smooth kernels K, ..., K,, of order
0 are generalized Riesz transforms if they characterize H'(N) in the sense
described in the introduction.

(5.1) ProPOSITION. Let K, ..., K,, be smooth real kernels of order 0 on N. If
for every nontrivial irreducible unitary representation n of N on a Hilbert space
H_, and every nonzero vector v in H_, the vectors ng,v are not collinear over R,
then the kernels K; are generalized Riesz transforms.

Proof. This is a consequence of Theorem A of Christ and Geller [CG], p.
548, and our Corollary (4.9), as explained in [CG], Section 6, and Moukaddem
[Mo], Section 6. =

Let {e;}] be a homogeneous linear basis of the Lie algebra N, as defined by
(0.1). Let '

(fo Dy =dfdt,-of(te), [eCT(N).

Let P be a smooth symmetric accretive kernel of order 1 on N (cf,, e.g., (1.12)).
For every d > —Q, the fractional power P?, as defined in [G2], (3.9) and (3.10),
is a smooth kernel of order 4.

Let = be a unitary representation of N. Recall from Section 1 that =, is
essentially selfadjoint on C*(x) which is its invariant domain. Moreover, 7, is
posxtwe and, by Duflo [D], @p« = 7 for every d > 0. If = is irreducible, then Tp
is injective on C®(n) (see Lemma (1.15)). '

icm
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In [(G2], it was claimed that the kernels K, K, ..., K,, where K, = § and
K;= Dj*P"‘f for j=1, ..., n, are generalized Riesz transforms ([G2], Theo-
rem (3.13)). As a matter of fact, the argument given there is defective since the
kernels K; are not odd. We take this opportunity to remark that the proof
presented in [G2] can be corrected if the kernels K, j > 1, are replaced by

R, = P74 %D P92,
Another possibility is to take
Sj = P_’Ij*Dj_i_Dj*P"dj-

Obviously, the kernels thus defined are odd.

Now we are going to present another, essentially different, construction of
gencralized Riesz transforms. In this construction, as distinct from those above,
only derivatives in generating directions play a role. In addition, it is no longer
required that the kernels under consideration are odd.

(5.2) ProPOSITION. Let {e;}} be homogeneous generators of the Lie algebra
N corresponding to the elgenvalues {d;}5. Then the kernels Ly, Ly, ..., L,, where
Ly, =0 and

Ly=P %D, 1<j<k,

are generalized Riesz transforms.

Proof. Let = be a nontrivial irreducible unitary representation of N.
Suppose that 7 ;v = 0 for a vector ve C*(m}and all 1 < < k. [t is not hard to
see that C®(n) is invariant under n;, and

TpiTly; = Tp;

on C*(m) {cf. [G2], ( 9) and Lemma (3.15)). Therefore, npv =0 for all
1 <j <k and since ¢;'s are generators of N, v is a fixed vector for . As w is
irreducible v must bc ZETO,

Therefore, if » is a nonzero vector in C*(x), there exists 1 < § < k such that
ng,v = 0. Thus, by Proposition (5.1), it is sufficient to show that the vectors
v and 7y v are linearly independent over R.

Suppose they are not. Then there exists a real number ¢ # 0 such that
7y, v = tv, whence (cf. above) mp, v = twpe.v and, consequently,

(5.3) {p,v, 5y = | mpariv] .

Now, the right-hand side of (5.3) is real, while the real part of the left-hand side
is zero so either £ = 0 or zpv = 0. Both conclusions are false, which concludes
the proof. =

{5.4) ExampLk. It follows immediately from the proof of Proposition (5.2)
and Corollary (4.9) that for every real k-tuple 4 =(4,, ..., 4,), the kernel
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k
L= (L= A0 +(L;—40) -
i=1

gives rise to a left-invertible singular integral operator mj, on LA(N).
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The Mackey completions of some interpolation F-spaces
by

MIECZYSELAW MASTYLO (Poznai)

. Abstract. We characterize the Mackey completions of locally concave F-spaces which are
1nter.polat10n spaces with respect to a special couple of Banach Iattices. The results are applied to
the interpolation spaces generated by the K method of interpolation.

1. Introduction. An F-gquasinorm on a vector space X is a nonnegative

function || - || on X which vanishes only at zero and has the following properties
for every x, yeX and scalar t with |1 < 1:

@) foxl < b,
(i) Ix+3l < ClIxll+ Iyl for some C >0,
(i) |ltxi| -0 as t—0.

An F-quasinorm for which C = 1 is called an F-norm, and an F-norm which is
p-homogeneous for some 0 < p <1,

(iv) |Ax| = |4]P||x] whenever A is scalar,

is called a p-norm (a norm if p = 1). An F-quasinorm which is 1-homogeneous is
called a gquasinorm.

A linear space equipped with a Hausdorfl vector topology determined by
an F-norm (p-norm, quasinorm) is called an F*-space (p-normed space,
quasinormed space, respectively). A topologically complete p-normed space
(quasinormed space) X is called a p-Banach space (quasi-Banach space).

Two topological vector spaces (tvs) X and Y are considered as equal
(X =Y) whenever X = Y as sets and their topologies are equivalent. If 7 is
a t(l))pology on X and Z is a subspace of X, then 7|5 is the topology induced on
Z by

A pair 4 = (4,, 4,) of normed (Banach) spaces is called a normed (Banach)
couple if A, and A, are both algebraically and topologically imbedded in some
Hausdorff tvs. .

For a normed (Banach) couple 4 = (4,, 4,) we can form the sum X(4)
= A, +A, and the intersection A(A) = A, ~ A,. They are both normed (Banach}
spaces, in the natural norms |ajy=K(,a; 4) and |all,=J,(1, a; A),
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