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PROPOSITION 2. A measure of the form ¢ o can never be a semi-Kronecker
medasure.

Proof. This measure has positive Fourier coefficients; hence it is impossi-
ble to approximate the constant —1 by characters.

COROLLARY 1. (W, §), which is spectrally isomorphic to a rank one system, is
not of rank one.

COROLLARY 2. Rank is not a spectral invariant. Also, WCT is not a spectral
property, and it is still not a spectral property when we restrict ourselves to the
class of systems which are spectrally isomorphic to rank one systems.

Remarks. The rank of (W, S) is not known.

For any measure ¢ on the circle, we can define the systems (Y, T) and (W, 3)
in the same way. These give spectrally isomorphic systems; in several other
cases we can prove that they are not metrically isomorphic, for example when
o is singular and ¢ ¢ is absolutely continuous ([7]) or when o is concentrated
on a semi-Kronecker set (using Thouvenot’s [8] theory of Gaussian—-Kronec-
ker factors). Is this true for every singular ¢?

References

[1] R. V. Chacon, Spectral properties of measure preserving transformations, in: Functional
Anpalysis, Proc. Sympos. held at Monterey, 1969, C. O. Wilde (ed.), Academic Press 1970,
93-105.

2] L. P. Cornfeld, 8. V. Fomin and Ya. G. Sinai, Ergedic Theory, Springer, 1982.

31 8 Ferenczi, Some Gaussian-Kronecker systems are of rank one, Bull, Soc. Math. France,
submitted.

[4] A.Del Junce, 4 transformation with simple spectrum which is not of rank one, Canad. J. Math.
29 (1977), 655-663, .

[5]1 T King, The commutant is the weak closure of the powers, for rank-1 transformations, Brgodic
Theory Dynamical Systems 6 (1986), 363-384.

[6} D. Newton, On Gaussian processes with simple spectrum, Z, Wahrsch. Verw. Gebiete 5 (1966),
207-209, :

[7] D. Newton and W. Parry, On a factor automorphism of a normal dynamical system, Ann.
Math.. Statist. 37 (1966), 15281533,

[81 J. P. Thouvenot, The metrical structure of some Gaussian processes, in: Proc. Conf. Ergodic
Theory and Related Topics II, Georgenthal, Teubner-Texte zur Math. 94, 1986, 195-199.

CNRS, URA 225
70 route Léon Lachamp
F-13288 Margeille, France

INSTITUTE OF - MATHEMATICS
NICHOLAS COPERNICUS UNIVERSITY
Chopina 12/18, §7-100 Torus, Peoland

Received February 5, 1990
Revised version April 27, 1990

(2651)

icm

STUDIA MATHEMATICA 98 (3) (1951)

On the Fourier transform of ¢~ %%
by

HYEONBAE KANG (Minneapolis, Minn.)

Abstract, We prove that the Fourier transform of ¥ where y(x) is a convex polynomial
with positive coefficients can be estimated by ¢V where i (x) is the Legendre transform of y(x).

1, Introduction. In this paper we investigate the behavior of the Fourier
transform of the function e %™ where 1 is a convex polynomial on R. Since
¢~V belongs to the Schwartz class, we know that the Fourier transform of
e~¥ decays faster than the reciprocal of any polynomial. But, since the decay
of e~ js exponential, we should be able to say more about its Fourier
transform. In fact, we prove that the behavior of the Fourier transform of e V™
is controlled by e where J is the Legendre transform of iy when y belongs
to a certain class of functions. The Legendre transform of a convex function
W(x) such that (0} = y/'(0) = 0 is defined by
(1) F(x) = sup (xp—(p)).

paR

For a geometric meaning of the Legendre transform, sece {1]. A precise
statement of our result is as follows.

THEOREM. Let /(x) = 3 Ty a,x*/ be an even convex polynomial. Assume that
4, 0 for all j. Then there are positive constanis C and e depending only on
m such that

(2)‘ ‘ j P dx| £ C.//ﬂ.(l)e—aii‘(r)_

where W' (1) is the positive number w such that W(u) = 1.

If () = x?, then (x) = x*, and hence the theorem holds for e~ * since the
Fourier transform of ¢™*" is ﬁe”’"‘”‘“’“’) [21. '

3. Proofs. Let I' be the class of all nonzero even convex polynomials
W(X) = Ty ax* where a,2 0 (not all zero). We prove the theorem by

induction on the number of terms in the polynomial in [ We bégin with some
preliminary observations on convex functions and their Legendre transforms.
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LemMa 1. If ¥ is a convex function such that W{0) = ¢'(0) =0, then
@) Py = )" e

In other words, () is the inverse function of W'

Proof For any yeR, we have

'y

1710}
YN0 = ] t!f'(t)dt=y{lV)"l‘(y)—,r[(tff’)"l(S)dS

by a change of variable s==y'(). Therefore, since xp—Y(p) attains its
maximum at p = (f) "1 (x),

F(x) = sup(xp—w (p)) = x(@) " A=Y () () = i(llf’}" (.
This completes the proof. m

DeFNITION. Let  be a convex function. We denote by y(i} the positive
number such that ¥(y(¥)) = 1.

LEMMA 2. Let i € I'. Then there are positive constants ¢ and C depending only
on the degree of \ such that

¢ <y < C.

Proof Let y(x) = Y7 a;x¥ with 4;> 0. Suppose that y() = 1. Then
™ a;=1 and hence there are positive constants a, b, ¢, and d depending
only on m such that a < 1 < b and ¢ < y/(a) <1 < y’(b) < d. Since [ (Y (x)dx
<1 and since [3*(J)(x)dx > [3*(F) (x)dx = 1, we have ¢ < y() < 2d.

B y(y) 1, then let o(x)=y(y(¥)x) Then y{(p)=1 and hence
¢ < 3(@) < 2d. Since G(x) = Y{p0) " x), 2F) = v(¥)7(¥). So Lemma 2 follows
with C=2d. =

LEME[A 3. Let e I. Then there exists a constant C > 0 depending only on
the degree of ¢ such that :

{ e™¥dx < Cyy) and [ eTFdx < i)
—-_m -0

Proof Let (x) = Y7, a,x* be in the class I". Suppose that () = 1. Let
a=1'(1)= Y7 2a; Then ax<y'(x)<ax®"! for x> 1 and e
< W (x) < ax for x < 1. Hence o™ 'xM@ D < (f)(x) € a7 'x for x> | and
&~ 1x € (@Y (x) € o 1x3 Y for x < 1. This implies Lemma 3 when (i) = 1.
If y() 5 1, then we use the same change of variables as in the proof of Lemma
2. This completes the proof. =

LemMma 4. Let y(x) = ax®™ where a is a constant. Then there are positive
constants C and e such that
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[£4)
| j u“‘"""“‘)dx{ < Cg~ H@m =5,
¥ 7]

Proof We [irst assume that a==1, Observe that there are positive
constants o« and f§ depending only on m such that Re(l -+ iw)*" > « — pu*" for all
ueR. And Re(x+iy)*™ 2z ax*—fy* for all x, yeR. With this f, we put
y =Y (B, Then ¢ = pi'(y) and we have

o ) o0
[ gt WYy e j’ DY) e o o P ODY s P O~ x4 1) gy

iy ey ]

Here we made a contour change x — x4-iy. Therefore,

=t

| T et 'f’(“’dxlﬁ,. e'"fhll’(m' T gl = - "’(*“y’dxls E~N’(y)y| sf e-Rm,'r(x»»-iy)dx]
- ”‘.C(I o

< e how| ? PR PP T e~ )
i o

< Cem P@IE @y @ 1 P,

‘But, by Lemma 1, the last exponent equals

LY DV =B { FONy = B0,
and hence

oy
l j efxtw-lfr(x)dx| < Ce—ﬂﬂi(p"i[) < Ce—aqp(z)
-5}

for some constant ¢ depending only on m since (1) = (2m)~ >~V (2m--1)
w (2mi2m =1 If g = 1, we make a change of variables x—a”Y?™x as in the
proof of Lemma 2. This completes the proof. m

LEMMA 5. Lel W, 5, and s be in the class I' and let ¥ = yry iy, Assume
that y() = 1. Then for any v, and ¢, there exist positive constants ¢ = (e, &)
and C = Cley, &y, degl)) such that

et wg b € Coin(1/3(0,), 1vWa))e.

Proof Without loss of generality, we may assume that () 2 72
Observe that

Jix) = sup (xp—Y(p) = sup (=¥ () +(x~ 2P —V3(P)

< i )+ Y le—-y).
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Choose & = 1/{2min(e,, &)). Then
(3—81$1*e“52@2)(x): T e—51l31(y)“52ffz(x—3’)dy
o
< g W™ j e—exﬂf:(y)ﬂe—szlh(x—y)ﬂdy

— o0

=4]
éce“zﬂ;‘(x) j’ e"*ﬂilﬁl()’)ﬂdy

. < Oy < Cylyy) e
by Lemmas 2 and 3. This completes the proof. =

Proof of the Theorem. Let el and suppose that (1) = 1. If the
number of terms in  is 1, then the theorem was proved in Lemma 4. If the
number of terms in W is greater than 1, then we split  as ¥, +y, where
Yy, W, el and the number of terms of y is less than the number of terms in .
By the induction hypothesis, we know that there are positive constants C, and
g (j=1, 2) such that

| | e ¥dx| < Cp(f)e™ 9,  j=1,2.
Without loss of generality, we may assume that y(y,) > 1/2. Then
” 1
00 @®© .
I J‘ e"""“’(x)d,xl =| I eixrwwl(x)~\bz(x)dxi < CT(‘}’l)}’(‘//z)(e_eN”*e—”%)(f)

< Cp(ohe™Fiae™ ¥ (1) < Cem 0

by Lemma 5. If y(1) # 1, we again make a change of variables x —y(/)x, This
completes the proof. =

A final remark. It would be very interesting to see whether our theorem
holds for general smooth convex functions.
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Point derivations and prime ideals in R(X)
by

JOEL FRANCIS FEINSTEIN {Leeds)

Abstract. Let X be a compact plane set, Then R{X) is the uniform algebra of all continuous
functions on X which may be uniformly approximated on X by rational functions with poles ofl X
We give an example of a compact plane set X such that R(X) is normal, and R{X) contains a prime
ideal whose closure is not prime. In order to construct this example, we give an example of
2 compuct plane set X with O& X for which R(X) has a non-zero, continuous point derivation at 0,
but such that the polynomial Z2 may be uniformly approximated on X by functions in R(X) which
vanish on 4 neighbourhood of 0.

1. Introduction. Many counterexamples to conjectures in the theory of
uniform algebras have been obtained by studying R{X) for suitable compact
plane sets X. In this paper, we shall work with one particular kind of compact
plane set, the Swiss cheese.

In [M], McKissick was able to produce the first known example of
a non-trivial, normal uniform algebra by constructing a suitable Swiss cheese.
Wermer has found a Swiss cheese X for which R(X) is non-trivial, but has no
non-zeto, continuous point derivations at any point of X (see [WE]). In
[WAZ2], Wang gives an example of a Swiss cheese X for which R(X) is strongly
regular at a non-peak point. O'Farrell, in [OF], has given an example of
a Swiss cheese X for which R(X) is normal, but has a non-zero, continuous,
infinite-order point derivation at a point of X.

We shall use methods adapted from those of these papers to produce
various examples of Swiss cheeses, including an example of X such that Oe X
and R(X) has a non-zero, continuous point derivation at 0, but such that the
polynomial Z* may be uniformly approximated on X by functions in R(X)
which vanish on a neighbourhood of 0. In Section 5, we sball give an example
of a Swiss cheese X and a prime ideal P in R{X), such that P is not prime.

Other results on point derivations of various orders have been obtained
using the tools of analytic capacity. See, for example, [H].
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