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Choose & = 1/{2min(e,, &)). Then
(3—81$1*e“52@2)(x): T e—51l31(y)“52ffz(x—3’)dy
o
< g W™ j e—exﬂf:(y)ﬂe—szlh(x—y)ﬂdy

— o0

=4]
éce“zﬂ;‘(x) j’ e"*ﬂilﬁl()’)ﬂdy

. < Oy < Cylyy) e
by Lemmas 2 and 3. This completes the proof. =

Proof of the Theorem. Let el and suppose that (1) = 1. If the
number of terms in  is 1, then the theorem was proved in Lemma 4. If the
number of terms in W is greater than 1, then we split  as ¥, +y, where
Yy, W, el and the number of terms of y is less than the number of terms in .
By the induction hypothesis, we know that there are positive constants C, and
g (j=1, 2) such that

| | e ¥dx| < Cp(f)e™ 9,  j=1,2.
Without loss of generality, we may assume that y(y,) > 1/2. Then
” 1
00 @®© .
I J‘ e"""“’(x)d,xl =| I eixrwwl(x)~\bz(x)dxi < CT(‘}’l)}’(‘//z)(e_eN”*e—”%)(f)

< Cp(ohe™Fiae™ ¥ (1) < Cem 0

by Lemma 5. If y(1) # 1, we again make a change of variables x —y(/)x, This
completes the proof. =

A final remark. It would be very interesting to see whether our theorem
holds for general smooth convex functions.
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Point derivations and prime ideals in R(X)
by

JOEL FRANCIS FEINSTEIN {Leeds)

Abstract. Let X be a compact plane set, Then R{X) is the uniform algebra of all continuous
functions on X which may be uniformly approximated on X by rational functions with poles ofl X
We give an example of a compact plane set X such that R(X) is normal, and R{X) contains a prime
ideal whose closure is not prime. In order to construct this example, we give an example of
2 compuct plane set X with O& X for which R(X) has a non-zero, continuous point derivation at 0,
but such that the polynomial Z2 may be uniformly approximated on X by functions in R(X) which
vanish on 4 neighbourhood of 0.

1. Introduction. Many counterexamples to conjectures in the theory of
uniform algebras have been obtained by studying R{X) for suitable compact
plane sets X. In this paper, we shall work with one particular kind of compact
plane set, the Swiss cheese.

In [M], McKissick was able to produce the first known example of
a non-trivial, normal uniform algebra by constructing a suitable Swiss cheese.
Wermer has found a Swiss cheese X for which R(X) is non-trivial, but has no
non-zeto, continuous point derivations at any point of X (see [WE]). In
[WAZ2], Wang gives an example of a Swiss cheese X for which R(X) is strongly
regular at a non-peak point. O'Farrell, in [OF], has given an example of
a Swiss cheese X for which R(X) is normal, but has a non-zero, continuous,
infinite-order point derivation at a point of X.

We shall use methods adapted from those of these papers to produce
various examples of Swiss cheeses, including an example of X such that Oe X
and R(X) has a non-zero, continuous point derivation at 0, but such that the
polynomial Z* may be uniformly approximated on X by functions in R(X)
which vanish on a neighbourhood of 0. In Section 5, we sball give an example
of a Swiss cheese X and a prime ideal P in R{X), such that P is not prime.

Other results on point derivations of various orders have been obtained
using the tools of analytic capacity. See, for example, [H].
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2. Preliminary results, definitions and notation. Throughout this paper, all
algebras considered are over the complex field C.

The following result aboul prime ideals follows immediately [rom Theorem
2.2 of [C, Chapter 91.

2.1. ProposiTION. Let I,, I, be ideals in a commutative algebra A, with
1,1, and I, # A. Then the following statements are equivalent.

(i) There exisis a prime ideal P with I, € P < [,.

(ii) No element of I, may be expressed as.a finite product of elements of

AN, =

2.2. DEFINITION, Let A be a commutative algebra, and let ¢ be a character
on A. A point derivation at ¢ 1s a linear functional d on A satisfying

d(ab) = ¢{a)d(b) + @ (b)d(a)

A point derivation of order n at ¢ is a sequence (d,)i=o of linear functionals
on 4, with d, = p, and satisfying

(a, be d).

dy(ab} = zd (@ dj—;(b)

j=0

(a,bed, ke{0,1,2,...,n}).

An infinite-order point derivation at ¢ is a sequence (dp)i=¢ such that, for
each neN, (4,)j=¢ 18 a point derivation of order n at ¢.
A point derivation of a given order is degenerate if d, =0.

2.3. DeEFINITION. Let 4 be a normed algebra, and let (4,) be a point
derivation of some order on 4. Then (d,) is continuous if each linear functional
d, in the sequence is continuous.

Let § be a set, and let f be a bounded, complex-valued function on §. For
each set E contained in S, the uniform norm of f on E, denoted by |flg, is
defined by {f|z = sup{|f(x)|: xeE}.

In our terminology, a compact space is a compact, Hausdorff topological
space.

Let X be a compact space. Then C(X) denotes the uniform algebra of all
continuous functions from X into C. Let 4 be a uniform algebra on X. Then
A is trivial if A= C(X).

Let 4 be a uniform algebra on a compact space X. For each xe X the

evaluation character g, is defined by e (f) = f(x) (fed). We define ideals

M., J. by
M, =XKerz,, J ={fed: f7*({0}) is a neighbourhood of x}.
The uniform algebra A is strongly regular ar x if J is dense in M|,

24. DeFmrTION. Let X be a compact subset of €. Then RO(X ) is the set of
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restrictions to X of rational functions with poles off X, and R(X) is the closure
of Ry(X) in C(X).

For any compact plane set X, the character space of R(X) is just X itself.
For this, and other standard results about R(X) see, for example, [BR].

Notation. Let aeC, and let »>0. We denote by A(a,r) the set
{zeC: |z—d| < r}, and by Afa, r) the set {zeC: |z—a| < 1} :

Let A be any disc in the plane. Then r(4) denotes the radius of 4, and s{4)
denotes the distance from 0 (o A.

Remark. In this paper we shall work with the particular peoint 0, but we
could have chosen to work with any other point in the open unit dise 4(0, 1).

Notation. Throughout, Lebesgue measure on the plane is denoted by m. Let
X be a compact plane set. Then Z denotes the coordinate functional on X. If
X is an infinite set, then, for each neN, we set

,(f) = 1 S90) (e Ro(X)).

Clearly the sequence (8}, is an infinite-order point derivation on Ry (X))
at 0.

2.5, ProrOSITION [WE, p. 28]. Let X be an infinite compact set with Oe X.

(i) Let d be a point derivation on R(X) at 0. Then the restriction of d to
Ro(X) is a muitiple of &,.

(i) There is a non-zero, continnous point derivation on R(X) at O if and only
if the linear functional 8, is continuous on Ry(X). m

_The following result is elementary.

2.6. LeMMA. Let X be an infinite, compact subset of C such that 0e X, Then
any second-order point derivation at 0 on Ry(X) has the form (8,, ad,, 08,
+f6,) for some a, feC. m

The compact plane sets X for which R(X) is trivial can be characterized in
terms of point derivations,
2.7. ProrosITION [BR,
R(X) =

It was conjectured by Browder that this result would be false if “point
derivation” were replaced by “continuous point derivation”. This conjecture
was proved by Wermer in [WE], where he gave the example, mentioned in the
introduction, of a cornpact plane set X for which R(X) # C(X), and R(X)} has
1o non-zero, continuous point derivations.

p. 1781 Let X be a compact plane set, Then
C(X) if and only if there are no non-zero point derivations on R(X). m

2.8. DermTION. Let X be a compact plane set. Then R(X) is regular if, for
each closed set F contained in X and each xe X\F, there exists f e R(X) with
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f(x)=1and f(F) = {0}; R(X) is normal if, for each pair E, F of disjoint closed
sets contained in X, there exists feR(X) with f(E) = {1} and f(F) = {0}.
In fact, whenever R(X) is regular it is also normal (see [S, 27.2]).
We now introduce a useful family of compact plane sets, the Swiss cheeses.
For the rest of this section, & will denote a countable family of open discs in
the plane, & = {4,, 4,, ...}.

29, DEFINITION. The Swiss cheese obtained from the family 2 of discs is the

compact plane set _
X =40, WJ{4: 4e2].

‘We shall only be interested in Swiss cheeses X for which R(X)is non-trivial.
2.10. Lemma {BD, pp. 28-29]. Let neN, and set
X, = A0, INU{4: 1 <k<n}
Then the boundary of X, provides a closed contour I, satisfying:

fi) I', has winding number O round each point of C\X;
(i) I', has winding number 1 round each point of the interior of X, m

The following lemma is a slight generalization of a result of Browder (see
[WE], p. 34).

2.11. LemMA. Let X be the Swiss cheese obtained from the family %. If
D satisfies
(1) 3 r{d)fs(4) < o,

deP
then there exists a non-zero, continuous point derivation on R(X) at 0.

Proof We shall use the notation of 2.10. Clearly 0eInt(X,) (neN). Let
f be a rational function with no poles in X There exists NoeN such that 1 has
no poles in X, (n> Ng). By 210 and Cauchy’s formula for the derivative,
. 1 . f(2)dz
T'(0) = 5~ 3

iy oz

(n2 Ny).

Since I, is the boundary of X,,

f(z)dz " 2nr(d i)
Jj"n zl < (j;l S(Aj)z +2n)|f'.’fn>

and o0 |/ (0)| < C|flx, (n = No), where C =1+ 4ear(d)/s(d)*. Taking the
limif as n—> 0, we obtain |f'(0)] € C|f|x. The result now follows from 2.5(i). =

3. Point derivations of order one or two. In this section, we shall consider
point derivations of order less than or equal to 2 on R(X). First we recall the
definition of an approximate limit.
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3.1, DerFmNITION. Let E be a Lebesgue measurable subset of C. Then E has
full area density at a point zeC if

m(E n A(z, 7))

lim T 1

Fo0+ nr

3.2. Dermarion. Let § be a subset of C, let £ be a function from § into C,

and let z,eC. Then f has an approximate limit as z—z; if there exists
a Lebesgue sct E contained in S satisfying:

() E has full area density at z;
(i) f{z) is convergent, as z— z, through values in E.

The limit in (ii) is independent of the choice of E, and we shall denote it by
applim,, f(2).
The following lemma is a special case of [BR, 3.3.9].

3.3. ProrOSITION. Let X be a compact plane set, and let zeX. If z is
& non-peak point for R(X), then X has full area density at z. w

The following result is the case p=1 of [WAI, 3.6], taking x = 0.

3.4. ProrosiTioN. Let X be a compact subset of C containing 0, and suppose
that d, is a continuous point derivation on R(X) at 0, extending 3. Then for each
feR(X), (f(z2)—f@)/z has an approximate limit as z-0, and

. f@)~1(0)
app lim ~~———= = d, (f).
z-+ 0 Z :

3.5. CorOLLARY. With the same assumptions as in 3.4, and denoting the
evaluation character at O by d,, the following further conclusions may be drawn.

() There is a linear functional d, on R(X) extending &,, such that
{dy, dy, d,) is a second-order point derivation on R(X) at 0.

(ii) Let I be the closed ideal My Kerd,. Then I is not prime in R(X), but
Jo &1, and there exists a prime ldeal P with Jo, = P< L

Proof. (i) Let f, ge M,. Then, by 3.4, applim,.., f(z)g(2)/z* exists, and is
equal to d,(f)d, (g). It now follows that there exists a linear functional d, on
R{X), such that dy(1) = 0, d,(2) = 0, and d,(h) = app lim, ..o h(z)/z* (he MF). It
is clear that (d,, d,, d) is a second-order point derivation on R(X) at 0. By 2.6,
d,|Ro(X) is of the form 8,4 Bé,, for some feC, Since dy(Z) = 0, we deduce
that f == 0. Thus d, has’ the required properties.

(i) Set I == M, Kerd,.Itis clear that I is a closed ideal in R(X), and that
1is not prime, because Z2 eI, but Z ¢ [. The fact that J, < I is immediate from
3.4. By 2.1, to show that the prime ideal P exists it is sufficient to show that no
element of J, may be expressed as a finite product of elements of R(XNI.

It is easy to show that if f e R(X), then f ¢ if and only if there exists C > 0,
and a Lebesgue set E contained in X with full area density at 0, such that | £(z)|

§ = Studia Mathemation 98.3
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= C|z| (z€ E). The result now follows gasily, since the intersection of finitely
many sets of full area density at 0 also has full arca density at 0. =

The following result can be obtained from the calculations in [OF), or from
first principles. The proof is similar to that of McKissick’s theorem (see [M]).
The extra property is obtained by eliminating some of the redundancy in the
usual choice of the discs to be deleted,

3.6. PROPOSITION. There is a countable collection & of open discs in the plane
satisfying (1), and such that i X is the Swiss cheese obtained from the Jamily &,
then R(X) is regular, and R(X) has a non-zero, continuous point derivation at
0 =

The following result is known. We provide a short proof.

7. THEORI;:I\-{. There is a countable collection @ of open discs in the plane
with the following properties.

(i) The family & satisfies condition (1). .
(i) Set X = 4(0, )\{{4: 4€2}. Then 0€ X, and §, is discontinuous on
Ry (X).
(il) There is no non-degenerate, continuous, second-order point derivazion at
0 on Ry(X).
(iv) There is a non-degenerate, discontinuous, second-order point derivation
at 0 on R{X). ’

Proof. Set a,=27" r, =27 Y2 and A, = 4(a,,r,) (neN). Set
2 ={d,: neN}. We shall show that & satisfies {i) to (iv).
(i) This is clear.
(1) For cach neN, set
fn = rn/(an_z)'
Then f,eRy(X), and |f,]y = 1 (neN). But

8, (1) = 2r jad = 2"n?

and s0 [8,(f)]— 0 as n—co. Thus §, is discontinuous on Ry (X).

(i) By 2.11, 4, is continuous on R (X). By 2.6, any second-order point
derivation at 0 on Ry(X) is of the form (8,, 2d,, a*8,+ f8,), for some ¢, feC.
Since &, is continuous, and &, is discontinuous, such a point derivation must
either be discontinuous or degenerate,

(iv) By 3.5, there is a second-order point derivation (dq, d,, 4,) on R(X) at
0, such that d;|Ry(X) =4, (j =1, 2). Since §, is discontinuous, so is d,. =

(nelN),

4. Functions vanishing in a neighbourhood of 0. In [WA2] Wang gave an
example of a Swiss cheese X with 0 X such that 0 is not a peak point for R(X),

but the coordinate functional Z is in the closure of the ideal J o 8nd hence R(X)

is strongly regular at 0. In this section we shall give an example of a Swiss
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cheese X with OcX such that R(X} has a non-zero, continuous point
derivation at 0, but Z° & .J,. The power five will be replaced by two in the next
section, where we combine all the results of Sections 2 to 4.

We shall need some technical results. We quote the following result of
Kérner.

4,1, Lrmma [K, 2.3]. There exists Ng 2 2 such that, for each n = N, there
is a finite collection A(n) of pairwise disjoint open discs, and a rational Jfunction
g, with the following properties:

(i) Laoa (4} = 1/n%;
(ii) the poles of g, lie in | J{d: deA(m)};
(i) g, (2} < (- 1)7% (2] 2 127 @Dy,
(iv) [1—g,(2) < {n+1)7" (2] < 127G 1y,
(V) lg.(2)l < 2n* (zeC\|J{4: 4eA(n)});
(vi) the rational function g, has no zeros in C;
(vil) {4 ded(m} = {zeC: 1-272D g |z] g 127 @n+ 0},
(viii) ¢,(0) = 1 (this is not stated in Kérner’s lemma). m

Using the notation of Lemma 4.1, for m = N, set

n
Jow=Tl49, Mzm),

r=m

and let (A, )%, be an enumeration of the discs in e, A@r). Set

i = r(Am.k) (kE N),

Vo = U Ay
k=1

We shall need the following two technical lemmas. The proof of the first is
the simple induction mentioned during the proof of [K, 2.4]. The second is
essentially [K, 2.4], slightly rewritten.

4.2. Lemma, With notation as above, let m = N, and let z& C\V,,. Then, for
each n 2z m, the following three conditions are satisfied:
(), if |z € 127D then

fun@) S 20m4 1% T] (14 G+ D74):

1=m
(i), i 127029 < |2  1=27240, then |f,,,,(5)] < 20m+1Y'n"7;
(iii), if lz| = 1=2"3""0 then |f, .20 < (m+1D*(n4+1)"* =
4.3. LEMMA. With notation as above, let m 2 No. Then the following hold.

() Y1 mp € L(m—1).
(i) The poles of [ lie in V, (neN)
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(iii) The sequence (fpn)iem converges uniformly on C\V, to a Sfunction F,,.
Furthermore, F_, is nowhere zero on A(0, I\V,,, while F,, is identically zero on
C\4(, 1).

) V, = {zeC 1-27C"" P <z < 1}.

(v) The discs (4, N>, are pairwise disjoint.

(vi) Set C=2][2,(1+ (1 +n~%). Then C is independent of m, and

| fanloy.. < Clm+ D* (n=m).

(Vi) fmn(0) =1 {1 = m).

Proof (i) This follows from 4:.1(i), and from the fact that
< odt 1
m'[ B m—1

For (i) to (vi), see [K, 2.4].

{vii} This is trivial. =

The following elementary result concerning the images of open discs under
certain transformations is seen by direct calculation.

44, LEMMA.. Let a be a non-zero complex number, suppose that 0 < r <la|,
and let A€ C\{0}. Set A = A(a, r). Then the set {A/z: ze A} is an open disc 4,
with centre at o, and with radius v, where

, Aa . |4
- lal:’._rZ’ - Ialz_rZ'
If alse r < l4|/3, then
r{d’) or

—
s(a0? = wj "
For the rest of this section, our notation will be as in Lemmas 4.1 to 4.3.

4.5. Lemma. The functions F,, satisfy the following three conditions,

(i) Let ge(0, 1). Then for all sufficiently large m, A0, o) ¥,, = @, and, as
m— oo, F, converges to 1 uniformly on A(0, g).

(ii) There is a constant C > O with

iFoley, < Cm+1*  (m=Ny).
i}

(iil) F,{(0) =1 (m> No)

Proof Conditions (i) and (ili) are immediate from 4.3.
‘(1) There exists N > N, such that ¢ < 127281 For m > N, we have
g <1-27@m"1 and so A0, o) & C\¥,,.

By 4.1(iv), for n = N and ze A(0, g), we haﬁe [1—g,(2) < (n+1)"*. Thus by
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[R, 153 and 154],

]

<exp( ), (n+1)"™4)—1 (m=N).

n=m

=10, <

The result now follows. m
We are now able to prove the result mentioned earlier concerning Z3.

4.6. LiMMA, There is a countable collection 9 of open discs in the plane with
the following properties.

() The family @ satisfies condition (1),
(i) Set X =400, I\\J{4: 4e@}. Then, in R(X), Z°cJ,.

Proof. With the above notation, we shall denote by r,,, and amy,
respectively, the radius and the centre of the open disc 4,,, (m = N, keN). It
is clear that r,; < |a.l/3, and this will be important in later calculations.

For each n = N, set

M, =n|Fyloym,

and define a rational function L, by
Lz)y=4M;V5z72,
Note that L,oL, is the identity on C\{0}. Set
Aux =L Az, (keN).
By Lemma 4.4, each 4, is an open disc. We set
G ={dy n= Ny, keNJ}.

We shall show that this & satisfies the conditions of the lemma. By Lemma 4.4
again, '

r(An.k)/S(Aﬂk JT‘-&MI/SI‘Z"k (n= Ng, keN).

By 4.5(ii), there is a constant C such that, for each m = Ny, |Fhlow,,
£ C(m+1)*, Thus

M, <Cn+1)* “(n 3 Ny).

From Lemma 4.3, we have

): Pang &

k=1

< 12" 1),

and so
& r(dnw o 18 a5
] g n fﬁ - .
L Lty S B amop @t )t s e

ne N ko= 1

This proves part (i).
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To prove that (ii) is true, set
Gn(z) = FZ"(LH(Z))

Clearly each G, is continuous on C\(L,(Va»)u {0}), and is zero on

L,(C\A(0, 1)}, which is a punctured disc with centre at 0. Thus G, extends to

a continuous function on C\L, (V) which is zerc en a neighbourhcod of 0. It is

clear that G, is the uniform limit on C\L,(V5.) as k—+oc of the rational

functions fan,olL,, which have no poles in X. Thus G,|X eJ, in R(X) (neN).
We npw show that

|Z5—Z5G |y~ 0

(n2 N,, zeC\L,(V3); z # 0).

as n— oo,

For any n = N, ze X, consider the following two cases.
(a) If |z| = M, '3, then |L,(7)| < 1/2, and so

|25| G (2)— 1] < |Fpn— 112(0.1/2)-

(b) If |z < M7 Y2, then |2]* < (n|F puleyp,m) ™! < (n]G,lx) ™", Since [Fanleyyzn
= Fan(0) = 1, we also have |z° < »n™ !, and so

| 211G, &) — 1] < 2.
Combining these estimates gives us the following:

|Z5— 256,y < max{2/n, |Fon—1l30.10) (12 Ny).

Thus, by 4.5() with ¢ = 1/2, |Z°~Z*G Jy—0 as n—co. Since Z3G,|XeJ,
(neN), the result is proved. =

5. A prime ideal in R(X) whose closure is not prime. The following is a naive
conjecture: The closure of a prime ideal in a commutative Banach algebra is
also prime. We now give an example to show that this conjecture fails even for
regular uniform algebras. This example will use the results of Sections 3 and 4.
A much easier example is available for regular, commutative Banach algebras:
the Banach algebra C'[0, 1], consisting of those JSeC([0, 17) which are
continuously differentiable on the unit interval, contains many prime ideals
whose closures are not prime.

5.1, THEOREM. There is a countable collection 9 of open discs in the plane
with the following properties.

(i) The family @ satisfies condition (1).

(i) Set X = A0, IN\J{4: 4e@). Then R(X) is regular.

(i) The linear functional 8, is continuous on Ry (X)), but the linear functional
0, Is discontinuous there. The functional 8, extends to a continuous point
derivation d on R(X) at Q.

(iv) There are no non-degenerate, continuous, second-order point derivatlons
on R(X) at Q. : :
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(v) There is a non-degenerate, discontinuous, second-order point derivation
on R(X) ar 0O,
(vi) In R(X), (a) Z?eJ,, and {b) J, = M, Kerd.
(vil) The ideal J is not prime, but there exists a prime ideal P with
JosPc T,
(viii) The regular uniform alyebra R(X) contains a prime ideal P such thai
P i3 not prime in R(X).

Proof Let % be the union of the three countable collections obtained in
3.6, 3.7 and 4.6. We shall now show that for this &, properties-(i) to (viii) hold.
By the choice of &, and 3.6, 3.7, it is clear that properties (i) to (iil) hold for

the Swiss cheese X. As in 3.7, properties (iv) and (v) hold.
(vi) Since X is contained in the Swiss cheese of 4.6, it is clear that Z5&J,,.

Thus Z5R(X) = J,.

To prove (a), it is enough to show that Z* e Z* R{X). Since Ker §, is dense in
R,(X), there is a sequence (r,) of elements of Ker§, such that |r,—Z%,—0 as
n— o, Set

R, =1, ~r, @1 —r@0Z (neN).

Then each R, is an element of M, Kerd, ~ Ker§,, and R, — Z* as n— cc.

Clearly, each R, is an element of Z*R,(X), and so Z%e Z*R(X), proving (a).
[t is easy to seec that

MynKerd = Z*R(X).

Thus {b) now follows from (a). .
(vii) Since J, = M, Kerd, this is immediate from 3.5(ii).
(viii) This is immediate from (vii).
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Continuity of a homomorphism on commutative
subalgebras is not sufficient for continuity

by

BOHDAN ANISZCZYK (Wroclaw), RYSZARD FRANKIBWICZ (Warszawa)
and CZESEAW RYLL-NARDZEWSKI (Wroclaw)

Abstract. Examples of topological algebras are given to show that the structure of all
commutative subalgebras does not determine the structure of the given algebra.

1. In the list of problems [2] formulated by Professor W. Zelazko
concerning topological algebras there is the following one (Problem 4);
Suppose that there are two topologies =, and 1, making an algebra X a topolo-
gical algebra. Suppose that for each commutative subalgebra ¥ = X we have
7,| ¥ = 1,| Y, where 7| Y is the restriction of the topology  to Y. Does it follow
that 7, = 1,? A negative answer to this question provides a negative answer to
the next problem on the list: Suppose that a homomorphism h of topological
algebras X into Y is continuous when restricted to each commutative
subalgebra of X, Does it follow that h is continuous?

The following theorem helds.

THEOREM. There is an algebra X and two different topologies t, and t, such
that (X, t,) and (X, t,) are topological algebras and t,,t, coincide on
commutative subalgebras.

Proof. Recall the example given in [1]. Let § be the free semigroup (with
unit) of words over the alphabet A. Assume that A is infinite. For B < 4, let
S(B) denote the free semigroup with unit over the alphabet B; in this notation
S = S(4). Let R® be the algebra of real functions defined on §, with the
convolution x*y as multiplication. Let X be the set of those x & R® for which
there is a finite B & A such that x(s) = 0 for seS\S(B), and ) {|x(s)|: s&S}
< o0, For x & X we define two norms:| x| = Y {|x(s)|: s&8} (the usval I*-norm)
and ||xi|, = ¥ {2"@|x(s)i: seS} (the weighted ['-norm) where n(s) is the
cardinality of the set of diffexent letters appearing in s. It is easy to check that

‘both are multiplicative norms, so both (X, | -[) and (X, |- [|,) are topological

algebras.
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