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Generators of perfect ¢-algebras of Z4-actions
by

B. KAMINSKI (Toruf)

Absiraet, Let @ be o Z%-action, d 2 2, with finite entropy h(d), on a Lebesgue space (X, 4, 1)
and let Iy, be the set of all countable measurable partitions P of X with finite entropy such that the
mean entropy h(P &) equals A{P). Tt is shown that if @ is strongly ergodic then the set of all finite

partitions of X which generate perfect g-algebras of @ is dense in Iy X h($) > 0 then it is also
a boundary set in Iy,

1. Introduction and notations. Let (X, &, u) be a Lebesgue probability space
and & the set of all countable measurable partitions of X with finite entropy.
We consider in & the Rokhlin metric

o(P. Q) =H(PIQ)+H(Q|P), P,QeZ.

.Let z d_enote the group of d-dimensional integers and < the lexicogra-
phical ordering in Z° for 4 2 2 and the natural ordering for d = 1. Let e'e Z9 be
the ith unit coordinate vector. We put

Zo={g=(my,....,m)eZ m, =
Z4 = {geZt g < (0, ..., 0)}.

Let @ be a Z%-action on (X, B, p), ie. @ is an isomorphism of the group Z¢
into the group of all measure-preserving automorphisms of (X, 4, w).

The restriction of @ to Z¢ is denoted by @,. We denote by T}, ..., T, the
generators of the group ®(Z%) which are the images by & of the vectors
e, “ respectively. We call them the standard automorphisms determined
by &.

A Zf-getion & is said to be aperiodic if

plixe X: ®1x =x1)=0 for every geZ7\{(O0, ..., 0)}.

@ is said to be ergodic if for any ®¥-invariant set A% and geZ” either
1A) = 0 or u(X\A) = 0. We say that ¢ is strongly ergodic if the automorphism
T, is ergodic. 1t is clear that every strongly ergodic action is ergodic.

Let o7, i€ ], be a family of measurable subsets of X. The smallest ¢-algebra
containing all o, iel, is denoted by \/iey.of,. For a given set 4 = Z* and

=m,=0}, 1<n<d,
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12 5. Thangavelu

Consider now the Heisenberg group H" and the sublaplacian % on H". Let
@%{z) stand for the function Iy '(2|4]|z1%) e 1#1#"* where ze C" and Ly ! are the
Laguerre polynomials of type n—1. Define

(1.7) Wiz 1) = e oi(2).

Then it ean be checked that f*4(z, £) is an eigenfunction of the sublaplacian
with eigenvalue (2N +-n)|A|. If we define the kernel Gz, 1) by

(1.8) Gz, 1) = ¢,s" Y. v"*1cos(vst) py(s'*z)

N=0
where v = (2N+n)"" then P_f=fG_ will be an eigenfunction of & with
eigenvalue s. The spectral decomposition of % can be written as

9 _ #f = jstds

This is the analogue of (1.3) and is known as the Strichartz formula for the
spectral decomposition of & (see [6] and [7]).

Motivated by the estimate (1.5) D. Miiller {5] investigated the mapping
properties of the operator P,. To state his results let us introduce the spaces
IPO(H™ = IP(C", L(R)). Let | £ 5. stand fox the norm of f in I/#"(H"): Then
Miller proved the following theorem.

TueoreM (D. Miiller). Let 1 < p <2 Then for all f in IPV(H")

1Ps f gty < 5™ fl 1
Moreover, the result fails when p > p, = 4n/(2n—1),

The aim of this paper is to give two extensions of the restriction theorem of
Miiller. To motivate the first extension let us recall the following theorem of
Zypgmund for the Fourier transform [9].

TueorEM (A. Zygmund). If feIf(R?), 1 <p < 4/3, g= p'/3 then for s> 0

(1.10) ([ Ifeede)r < 2| £ ],

x| =5

We would like to see if a similar result is true for the restriction operators
P,. In other words, does there exist an inequality of the form

(1.11) 1Psflligeony < Cll fllpny
where g is smaller than p'? When f is zonal, i.e,, f is of the form f(z, ) = f (|2, )
we can prove the following theorem.

TreOREM 1. Let 2n—1)/2n+1) <y <(2n+1)/(2n ), 1<p<1+7 and

g =yp'. Then for feL‘" YH", f zonal,

(1.12) 1Ps S g oy < Coll f gy

icm
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It would be interesting to see if this theorem remains true for all functions.
The proof we are going to give works only for zonal functions.

To motivate the other extension let us write the Buclidean Plancherel
theorem in the following way:

(1.13) 1 f13= fetdr( | |f(m)|2da).

0 sn-1

The Stein-Tomas restriction theorem is a result about the inner integral. It
states that

(1.14) [ 1fruPde<Cr

sn—1

| 112,

On the Heisenberg group we have a Fourier transform. To define it, let us
recall that all the infinite-dimensional irreducible unitary representations of H"
are parametrized by 1eR, 1 #0, and are given by

(1.15) (2, 1) @(§) = eIV Z —x)

where z = x-+iy and @eI*(R". The Fourier transform of a function f is
defined by

I [z

(1.16) fh= ,(z, t)dzdt.
For cach 450, f(1) is a bounded operator on L*(R"). For this Fourier
transform we have the Plancherel formula

' - 1 o
(1.17) If13= prE f A" (2

)its dA.-
We want to rewrite this formula in a form which resembles {1.13). To de that
let us introduce the following notations.

The one-dimensional normalized Hermite functions are defined by the

formula
(1.18) hi(s) = 21f1

where H (s} = (_'_1);652 (d/ds) (e ™). For each multimdex o = (¢ty, ...,
define the n-dimensional Hermite functions &,(x) by

ﬁ Bo (X))
f=1

Let P4 be the projection of I*(R") onto the Nth eigenspace spanned by
{@,: |of = N}. Let ®(x) = (2]AI"*"2 @, (2|4]**x) be the scaled Hermite func-
tions and let PL(A) be the corresponding projections. Let V¢ be the span of
{®%: |o] = N}. Then it has been observed in [2] by Geller that Vi are the

1/22~s2,'2Hj(s)

o,) we

P, (x} =
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natural analogues of the spheres ¥S*~* in R" and Vi can be thought of as
a sphere in IZ(R") with radius (2N +mn)[d].

Let (V) be the space of all bounded linear operators from Vy into I(R").
On this space we can define an inner product by setting

(1.19) (R, S)y = QY™ ) (R&;, §87).
la} =N

This space @(F) is the natural analogue of L*(r$"~'). Observe that for
operators T on L*(R"

(1.20) (T, Thy = LA™ ITP(A) s-

Having made these observations we can write the Plancherel formula (1.17}
in the form

n—*

11z = io j 417 1.7 () Py(2)) | s dA-

By making a change of variables we have

n—1 w

2
(121 [l = ,,Hfr Z v L (L F () P(om) s + | F (= vr) PROvr) ls)

where we have set v =1vy(N)= 2N+n)~ . If we define

(122) (RSP ij V(1L 0r) PR lis + | (—vr) PROT 1)

then (1.21) becomes

2n 1w

w1 § RO dr

0

and (1.23) is the analogue of (1.13). So we would like to obtain an analogue of
the Stein-Tomas restriction theorem for the “restrictions” R(f, r). The fol-
lowing is the restriction theorem we can prove for R(/, r).

<p<2 and fel'V(H". Then
(1.24) R(f, )< Cr7 ™ fllpny-

Miiller’s theorem is the analogue of the estimate (1.5) whereas Theorem 2 is
the direct analogue of the Stein—Tomas restriction theorem (1.6). In the case of
R", (1.6) is derived from the estimate (1.5). Similarly in the present case we can
derive Theorem 2 from Theorem 1 (with g = p’) for zonal functions. In fact, in
[5] Miller derived Theorem 2 from his Theorem for polyradial functions
(Corollary 3.6 of [57) though it was not stated in the present form. We remark
that Theorem 2 is valid in the full range 1 < p < 2 whereas the Stein-Tomas
restriction theorem is proved only in the smaller range 1 < p < 2(n+ 1)/(n+3).

(1.23) 115 =

THROREM 2. Assume that 1 <

Restriction theorems 15

For notations and results concerning the Fourier transform on the
Heisenberg group we refer to [1], [2] and [5]. Finally, the author wishes to
thank E. M. Stein for bringing this problem to his attention and the referee for
many useful comments which helped improving the exposition.

2. Proof of Theorem 1. The restriction operators P, are convolution
operators with kemnels &, where

2.1 Gz, 1) = C,s" i v

N=0

Lcos(vst) pi(stf?z).

By means of dilation we can assume that s = 1. It is therefore enough to study -
the operator Pf=f{= G where

(2.2) Gz, £} = i VTl e B ().

N={

Let us recall the definition of the twisted convolution of two functions
f and g on C" The A-twisted convolution is defined by

(23) f*lg z) j f(Z W)Q(W) pPIAT(Z W) gy,

When 4= —1/4 we simply call it the twisted convolution. I Yx(z, 1)
= e M p4(z), then a simple calculation shows that
@4 Frydle )= 7" f %, @i(2)
where f* is the partial inverse Fourier transform:

== _Dj? flz, e dt.

For simplicity of notation assume that f(z, t} = h{f)g(z). Then

(2.5) . Pfz,n= Z Ve TMA(—v) g, o (2).
N=0

Since |A(v)| < k], we have the estimate

1B 1 a0y < {15114 Z Vg =, en(@)ll,

Now by making a change of variables it is easy to see that

g, ox(s) = (2ﬁ)-2"(gr X @) (2/72)

where @4(z) = L *GlzH) e 12, g¥z) = g(z/2/v)) and x stands for the
twisted convolution:

gt x oyld) = [ ghz—whpyw)e™ VmET dy,
C“ .
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With this observation we have obtained

{2.6) 1Pf Moy < ClAT, 3, v Mgt x @yl
N=0

Up to this point we have not used the fact that g is a radial function.

When g is radial the twisted convolution g¥ X @y is given by a simple
formula. To obtain it we need to recall several properties of the Weyl transform
W (see [4] for all the properties we use). When g is radial the Weyl transform
Wi{g} reduces to the Laguerre transform:

WG = ¥ Rylo) P},

Here Ry(g) is defined by

N1
Rylg) = mgng(Z) pylz)dz.

It is clear that W{g,) = P%. In view of the Tormula W(fxg)=W{f)W(g) one
obtains

g¥ X on = Rylg¥) oy
Since N!/(N+n—1)! = O(N~"*1), Hslder's inequality gives the estimate

@7 gt xoxll, < O gk, oyl loyl, = CV gl ol lonlly.

Thus for zonal functions we have proved the estimate
(2.8) 1PS ooy € Clf g1y 30 @NAm) = 4ma=mizjig ) lowll,.
N=0

To prove Theorem.! it is therefore necessary to find estimates for the norms
of ¢y. The required bounds are given in the following lemma.

Levmma 2.1,
i loxl, < CNwa172 Fag<-T
‘ n—-1
(i) lowly < CNE=D2N=100g Y12 47 22—4—11-,
n—.
n—1 a7 —nf ; 4n
(i) lowl, < CN7=1 N =ns fa>

These estimates will follow from some well known estimates for the
normalized Laguerre functions. If

. % — F(H+ 1) 1 3 —r{2 af2
.{ZJN(T) = (m) L,,(r) e I

icm

Restriction theorems 17

are the normalized Laguerre functions then the following bounds have been
proved in [3] (see p. 24).

Lemma 2.2 (C. Markett).

| L5 r =52, < CN Y~ tiz=p12 ifg<4, f<2/g—1/2,
S CNWTIRTIR log Y if g <4, f=2/q~1/2,
< CNPZ=li if g<4, f>2/q—1/2

or q =4, B> 4/(3q1—1/3.

It is easy to see how Lemma 2.1 follows from Lemma 2.2. A simple
calculation shows that

lonly < CNEZI2 132 () rm 82

where f = 2(n—1}{1/2—1/q). From this the various estimates of Lemma 2.1
follow from Lemma 2.2.

Now we can complete the proof of Theorem 1. In view of (2.8) it is enough
to prove the convergence of the series

[=s]

Y, EN )™ out oy,
N=0
First assume that | < p < 4n/(2n+1) so that p’ > 4n/(2n—1) and ¢ > dn/(2n+-1).
There are three cases to consider. When g > 4n/(2n—1) the series reduces to
i (2N+n)—n—nfpi-njq-rn—l~n,lp’+n—1—n]q — 2 (2N+H)_2 g C
N=0 N=0

When ¢ < 4n/(2n—1) the series reduces to

20

Z (2N+n)—1 ={nt+1/2Y+2n/g é C

N=0
since g > 4n/(2n+1). Similarly when ¢ = 4n/(2n—1) the series converges. This
settles the case when 1 < p < 4n/(Zn+1).

Next assume that 4n/(2n+1) <p <1+y. Since g=7yp’ we have p <
1+y < ¢. Again there are three cases to consider. Here p’ < 4n/(2n—1) and so
when ¢ > 4n/{(2n—1) the series becomes

43

E (2N+n)—l+(n*1/l)—2n/’p _‘<_‘ C
N=0

since p < 4nf(2n—1). When g < 4?1*/(211—1) we need to check if

2 — Sivdia Mathematica 99.)



18 5. Thangavelu

Since p < 14y << g, we have 1/g—1/p <0 and the above series converges.
When g = 4n/(2n—1) again a similar calculation shows that the series is
convergent. The case p = 4n/(2rn+1) can be ireated in a similar way. This
completes the proof of Theorem 1.

3. Proof of Theorem 2. In order to prove Theorem 2 we need to recall some
more facts about the Fourier transform on the Heisenberg group. First we
recall that when f is zonal then f(4) is given by the simple formula

G3.1) =3 Ryl f)Ph)
N=0
where
(32 Ry(hf)= wm{g’—_l—),gﬂr 1T Q1A r?) e~ 31 gy,

Here w,,-; 1s the surface measure of the unit sphere in R*" and f(r, 1) is the
Fourier transform of f in the second variable:

(3.3) Jo, )= of e f(r, f)de.

The inversion formula becomes

—1 w ]
(34 1, t)::%;ﬁ [ emi( 2 ~A Y Iy 1(2|z1|r2)e‘1""’2) [A]" dA.

Therefore, if we set

H—l w
(3.5) Gylz, 1) =~ [ et rd) e AP n 4,
where r = |z| then it is clear that G,(i) = P%(4). Thus
(3.6) (f+ Gy (A) = F(A) Gy (A) = F(A) PR{A).

To calculate the Hilbert-Schmidt norm of (f'+ G,)” (1) we use the fact that
it is an integral operator. In fact, its kernel can be easily calculated. Recall that
the representations x, are given by

7z, 1) @(8) = e AR Y (¢ _ )

where z = x-+iy. For a function g on H”, §{4) is an integral operator whose
kernel can be easily calculated to be

(3.7) K(x, ) = Poag(x—y, 24(x+y), 4)

where #; 3¢ is the Fourier transform of g with respect to y and ¢ (where
_Z2 = x+iy).

icm

Restriction theorems 19

Therefore, the Hilbert—Schmidt norm of (4} is given by
(3.8} ||Q('1)||Hs ”'/'2 3g(x—y, 2A(x+y), A)*dxdy.

An casy change of variables gives that

(3.9 Ig(AEs = CIA™"[1F25g(x, y, W dxdy.
Applying the Euclidean Plancherel theorsm we obtain
(3.10) G Es = CIA ™" §1#39(x. y, D dx dy.

Thus to estimate || f (1) P%(4)||#s we need a bound for the right hand side of
(3.10) when g = f+Gy.

Assume that 1> 0. The case when A<0 is similar. I we let

g*(x, y) = F39(x, y, 1) then an easy calculation shows that
(3.11) g* (% ¥) = (f+Gp)H(x, 1) = % %, G (x, ¥)
where

n—1

Gi(2) = QHHL" e raara

Writing out the definition of the twisted convolution and making a change of
variables we obtain

(312) r* GN(—) = C, | elimED £(z 1) o, () ds
2./14 cn

where f{(z) = f"(z/(.’l\/l—/“L—I)). Thus we have proved that

(3.13) (2 ) e fi % ox(2)

where fxg stands for the usuval twisted convolution.
Thus formula (3.10) gives

(3.14) 1S PR(DEs = e A I F 2 % oyll3.
If we can show that
(3.15) [fxpyli < CNE-DO=2EY | £12

for functions f on C" and for 1 € p 2 then we are done. To see this, from
(3.14) we obtain

1F () PR(Dfifs < CIA 2 NODE=220 | 1212,
which gives || f () Py(D)|fs < C)A|~ 297 No- D=2 | 412 Since

V4 dz = §195 [z WP dz < [{§1f (2 Ol dtf dz = | £y
én
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we have proved that
(3.1¢) 17 () PR s < eld] =22 NO-Da =200 | g2

A similar estimate can be proved when A4 < 0. From (1.15) we then obtain

(3.17) (RULAP S C T voim) ™2y =2m 2
N=0

Recalling that v =(2N+n)"! we have

(RUL NP <o | 1 Hﬁ,,“(ﬁ, (2N +n)™21%),
=0

Since the series converges for 1 < p < 2, this proves that
(3.18) R{£, 1< Crm™ | £l pua.

Therefore, it remains to prove the estimate (3.15). But (3.15) follows
immediately from the estimates

(3.19) 1% @yl < CNE=D ) 1),
Ifxexl, <Clfl,

by interpolation. (3.19) is a consequence of Young’s inequality and the fact that
lpxll, < CN®=D2 (320) follows from the fact that W{(fx @y) = W(f)P%
where W'is the Weyl transform, and from the Planchere! theorem for the Weyl
transform: '

(3.20)

13 = @my™ |W (f)lEs.

For the facts about the Weyl transform we refer to the paper [4] of Mauceri.
Hence the inequality (3.15) is proved.
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