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Added in proof (April 1991). L. Condition 2.2(2) implies convergence of the serics in 2.2(1)
and the summability assumption implies condition 2.2{2). However, & large part of the theory
holds assuming only 2.2(1)~(2). The summability assumption is required lor the density result
(Theorem 2.10) and to commutate the interpolation functor and IP (Theorem 3.3), '

IL Thearem 2.6 can be proved directly (without appeal to Lemmas 2.4 and 2.5) by means of
decomposition and ideas similar to the ones already used in Theorem 2.3.

III. The interpolation result 2.7 can be improved to obtain the consiant 2M, §(M /M ). One

has to follow Gustavsson-Peetre’s ideas and recall the symmetry properties of the Rademacher
fimctions,
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On two classes of Banach spaces with
uniform normal structure

by
J1 GAOQO (Philadelphia, Penn} and K A-SING LAU {Pittsburgh, PPenn.)

Abstract, We give two classes of Banach spaces X that have uniform normal structure. The
first class is closed under duality, and contains the uniformly convex spaces as well as the uniformly
smooth spaces. The second class is defined by J(X) < 3/2, where J{X) = sup{ix+yl A [x—y]:
lxff = llyll = 1}. Both classes of spaces are uniformly nonsquare, their properties are being studied.

§ 1. Introduction. A Banach space X is said to have normal structure [2, 8] if

for each bounded closed convex subset K in X that contains more thah one
point, there exists a point xeK such that

sup{[lx—yl: yeK} < diam K.

X is said to have uniform normal structiwe if there exists 0 < ¢ < 1 such that for
any subset K as above, there exists xeK such that

sup{[lx~y|: yeK} < cdiam K.

It is well known that uniform convexity in every direction implies normal
structure [8, 28], whereas uniform convexity and uniform smoothness imply
uniform normal structure {8, 27]. Our main purpoese in this paper is to give two
new classes of Banach spaces with uniform normal structure and study their
relevant properties. .

Let $(X) = {xeX: |x| =1} be the unit sphere of X. For xeX, let P,
denote the set of noerm 1 supporting functionals f of S(X) at x. In [16] Lau
introduced the following notion to study the Chebyshev subset of X:

DerNTIoN 1.1, A Banach space X is called a U-space if for any & > 0, there
exists & >0 such that _
1.1y Vx,peSX), |(x+y)2l >1=6 = (f,y> > 11—, Vfel,

Some of the properties of U-spaces in [16] are summarized in the following
theorern.
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radius, strongly exposed points, uitrafilter, ultraproduct, yniformly convex, uniformly nonsquare,
uniformly smooth.
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TueoreM 1.2. () If X is a U-space, then X is uniformly nonsquare, in
particular, X is superreflexive [8];

(i) X is a U-space if and only if X* is a U-space;

(i) Uniformly convex spaces and uriformiy smooth spaces are U-spaces.

One of the main results in this paper is

THeorReM 1.3. If X is a U-space, then X has uniform normal structure,

In an attempt to simplify Schiffer’s notion of girth and perimeter [22], the
authors studied in [12] the parameter

J(X) = sup{llx+yil A |x—y|: x,yeS(X)}.

They showed that \/5_ < J(X)<2; J(X) <2 if and only if X is uniformly

nonsquare; J{,) ﬁ J{1) =J(l,) =2, and more general, J(I))= LI,)
= max {217, 2”‘1} where 1/p+1/g =1, p= . Our second main theorem 18

THEOREM 1.4. Let X be a Banach space with J(X) < 3/2. Then X has uniform

normal structure.

Let 6(g) = inf{1 ~4jx+yl: x—v] =& x,yeSX)}, 0 <& < 2, be the mo-
dulus of convexity of X. The relation of J(X) and 8(g) is: J(X ) < ¢ if and only if
o(g) > 1 —g/2 (Corollary 5.5). As a consequence, we have

CororrLary 1.5, Let X be a Banach space with 6(3/2) > 1/4. Then X has
uniform normal structure.

This result is closely related to a theorem of Goebel [13], namely: if
d(1) > 0, then X has uniform normal structure. It is worthwhile to mention
that if a modulus of convexity & satisfies the condition 6(3/2) > 1/4 and the
function § is convex, then 4(1) > 0 (since §(1) = 0 implies §(27) = lim,..,- 5(t)
< 1/2). Therefore Corollary 1.5 is a new result for the spaces with nonconvex
maoduli of convexity. Prus [22] and we both independently found different
examples of Banach spaces with §(3/2) > 1/4 and 6(1) =

In [12], it is shown that J(X) can be estimated through isomorphism. We
improve that result when X is isomorphic to [, or L

THeOREM 1.6. For any isomorphism T from X to I, or L,
JX)< | TY - T max {247, 214}, where 1/p+1/q = L.

As a consequence we can conclude that certain isomorphs of [, or L, are
uniformly nonsquare {Corollary 6.3).

The paper is arranged as follows: In §2, we prove some preparation
lemmas. The main result is Lemma 2.3. It amounts to saying that if X does not
have w-normal structure, then the unit ball contains a hexagon with a certain
property. As a direct application, we give a.simple proof of a result of Turett
[27] concerning the modulus of smoothness and normal structure (Corollary
2.4). In §3, Lemma 2.3 is used to prove the normal structure of U-spaces. We

1 <p<oo,
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also obtain some equivalent forms of U-spaces. The ultraproduct of U-spaces is
taken up in §4, which leads to uniform normal structure for such spaces. In § 5,
we use Lemma 2.3 again to prove the uniform normal structure for J (X) < 3/2.
We also establish the connection of J(X) and 6(g), the modulus of convexity of
X. In §6, some isomorphism results for J(X} are obtained. Finally in §7, we

. give some remarks in connection with the works of Bynum [5] and Pichugov

[21] on the normal structure coefficient, and also pose some open questions.

§2. Some lemmas. Let ¥ be a Banach space. For r >0, xeX, let
[x—yl| <r}, and let B{X) = B(0, 1) be the unit ball of X.

Lemma 2.1, For 0 < e < 1, let L=[x,; x,] he a line segment in B(X) such
that 3l x, +x,|| > 1—& Then for any zeL, |z > 1 —2e

Proof Let z=1tx,+{(1-0x,, 0t For 0<zr<1/2,

7= mx+%

(120 x,,
and hence |z] >{(2— 2:)(1—5) —(1=2t) = 1—2¢& A similar proof holds for
12<t< 1.

A Banach space X is said to have w-normal structure if for each weakly
compact convex set K in X that contains more than one point, there exists an
x&K such that sup{{x—y|: veK} < diam K. It is clear that if X is reflexive,
then normal structure (as defined in §1) and w-normal structure coincide. The
following is a special case of a result of van Dulst [11]. '

LEmma 2.2. Let X be a Banach space without w-normal structure. Then for

any 0 < < 1, there exists a sequence {z,} = S(X) with z,”>0 and
1_8 < HZ,,+1-~ZH < 1+i';,

for sufficiently large n, and any zeco{z,}hi-1.

LemMa 2.3. Let X be a Banach space without w-normal structure. Then for
any 0 < g < 1, there exist x|, x5, %3 in S(X) satisfying

(i} x,—xy = ax, with la—1]| <eé;

(i) | [, =50 — 1], | bxg —(—xy)| ~ 1} < &, and

(i) 4 lxy x50, 31%5 +(—=x) > 1—e

The geometric meaning of the lemma can be succinctly described as: if
X does not have w-normal structure, then there exists an inscribed hexaggn in
S(X) with length of each side arbitrarily close to 1 (by (i) and (i), and‘ _Wlth at
least four sides whose distances to S(X) are arbitrarily small {by (iii)).

Proof. Let n = ¢/4 and let {z,} be chosen as in Lemma 2.2 with & replaced
by . We claim that for large n,

(2.1) l—n< fz,— 2,2 < 1+n:
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In fact, since 2,70, 0 is in the weak closed convex hull of {z,}, which equals
the norm closed convex hull €6{z, };% ¢, and there exists n, and yeco {z,}00.,
with |yl <n We may assume n, also satisfies

T—y/2 < z,— 2] < 149/2,

for n 2z ny and zeco{z,}j%, as in Lemma 2.2. The claim follows by observing
that for n = n,,

12, —=21/21 2 |2, = +2)/20 = 1y/2] > (1 —nf2)—5/2 = 1 -7,
Hza—21/20l < Iz, = +2)/21 + Hy/2] < (L+0/2)+5/2 = L+1.
Let f; be the supporting functional of z, € S(X), ie. Ifflﬂ% Cfia2y0 = 1.
Since z,”+0, we can assume, in conjunction with (2.1), that Zy, Satisfies
I<fis Zaodl <1, 1emg < 12na— 21 I, |2g—24/2) < L+1.

Let w = (2, —z,,)/||z —2,,/|. Then w, z, and z,, will play the role of x,, x, and
x5 respectively: condition (i) is satisfied by the definition of w; for (ii) we need
only observe that

- 1
Hzy—~wll = ||(1—1121—Zm||)w—2m|| < 7] N —lz; =z | [+ |20 1)
o
n+1 |
g"*—' =

1_’?<1+411 1+6,

lz, —wl| > woll =112, =2, [ 2 s 1—dyy = 1 —s
1— W] HZ;—%H(HZ =11~z =zl .1+ﬂ> y =1—¢,

Hfancc [ lzy —w[ —1] < ¢. Similarly we have | W+ 2y, [l — 1] < &. Finally to prove
(iii), we observe that

iw+z |l = {(fy, wtz,> = L+<{fis wy

= 1+<f1’ 212 = S P > 1+11'Z >2—dy,
“Zl "znu” 1 ]

200 =Wl 2 Nl2ny— (21 = Zne)l| — 2y = 20) — Wl > 2120y —2,/2] — 5 > 2—dby.

 Let o(z) = sup{(|x+1y|+ |x—ty]| —2)/2: X, yeS(X)} be the modulus of
smoothness of X. As a simple consequence of Lemma 2.3 we have

‘ COROLLARY 2.4 (Baillon, Turett [27). If X is a Banach space with
lim, g o{t)/T < 1/2, then X has w-normal structure. :

~ Proof Suppose X does not have w-normal structure, I ort =0, let g =1?
~and choose x;, x,, x, in S(X) satisfying the conditions in Lemma 2.3, Let

X=Xy, ¥=(X;~x;)/[x,—x;|l. Then for 0 <z < L x4+ >1-2¢ (by
Lemmas 2.1 and 2.3(jii), and
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le—=yll 2 Iy =20, = ;)| = | 2o, — 1) —

= +1)x, —tlax, +xa)l =] x,—x, | — 1]
2 (142 %, — (x4 %) — 1 — al — 78

T 1
T+ 15
= (1+7)(1—2e)~ 2er.

= {141) —2et

(“x1)

Hence
o(7) < T—dg—4der 1

T/-%z’t - =§—2T(1+T)

We have lim,, 0(t)/z > 1/2, which contradicts the assumption on g.'

§3. The U-spaces. We begin by giving a useful equivalent criterion for
U-spaces. For 0 <6 <r <1, xeX, we use N,(x, 8) = B(X\B{—rx, 1 +r—5)
to denote the lune determined by the two balls.

Tueorem 3.1. Let X be a Banach space. Then X is a U-space if and only if
for any £ >0, 1 >r >0, there exists r > § > 0 such that for any x=S(X), and
Jor any y,,v,.2€N,(x; §),

(3.1) IS =yl <&, for all fel.

Proof. The necessity is given in [16, Lemma 3.17]. To prove the sufficiency,
fore>0,1>r>0,let 0 < d <rbe chosen to satisfy (3.1). For any x, yeS(X)
with [|(x+y)/2|| > 1—6/2, we have

ly+rx) = (x+y—(1=7x| = [x+y]|—-(1-7)
> (2—8)—(1—1) = 1+7r—8.

" This implies that y¢B(—rx, 1+r—49), and hence yeN,(x, §). Now for any

feV., (3.1) implies |{f, x—y>| = 1—{f, y> <&, and therefore <f, y> > 1 —¢
for all feV,. X is then a U-space.

Turorem 3.2. Suppose X is a U-space. Then X has normal structure,

Proof For 1/3=>¢>0, [ >r>0, let § be defined as in (3.1), and let
¢ = min{e, 8/(2(1+r))}. Note that X is reflexive (Theorem 1.2(i)). Suppose
X does not have normal structure; then it does not have w-normal structure
either, There exist x,, x,, X; € S$(X) satisfying the conditions in Lemma 2.3 with
respect to £, We claim that x,, —Xx;¢B(—rxy, 14+r—4). In fact, let
¥ = (x;+rx}(1+r). Then ye[x,; x;], and by Lemma 2.1, '

ez e, ] = (L) [y 2 (147 (1-2€) 2 147 =8,
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The same argument holds for —x5. Let feV,,. Then by (3.1), we have
2 =24f, x5 <IKfo =2+ 1A % (= xS, %= %30
Lete+|x,—x;5.

But by Lemma 2.3(), ||x,—x;] =
hence a contradiction.

1 +¢, which implies that 2 < 1--3¢ and

To show that the above X actually has uniform normal structure, we need
a more sophisticated argument. We will establish another equivalent condition
of U-space which will be used in the fellowing section.

For any xeS(X), V. is a w*-compact convex subset of X*, and for any
smooth point x of §(X), . is a singleton. Let K < X* be a bounded closed
subset. Then fe K is called a w*-strongly exposed point if there exists xe S(X)
such that for any & > 0, there exists & > 0 satisfying

VgeK, {fix)<{g x>+d = jg—f]<e.

A Banach space X is called an Asplund space if every continuous convex
function on X is Fréchet differentiable on a dense G, subset. [t is well known
that X is an Asplund space if and only if every w*-compact convex subset K in
X* is the w*-closed convex hull of its w*-strongly exposed peints [1, 10, 19].
Also in this case, every sequence in K has a w*-convergent subsequence [26].

LEMMA 3.3. Let X be an Asplund space, xeS(X), and let [ be a wE-strongly
exposed poim of V.. Then there exist sequences {x,} & S{X), {f,} = S(X*) with

L, .25 F, where the x,’s are Fréchet differentiable points of S(X), and
f"e V., is the (unique) supporting functional of S(X) at x,.

In order to prove the above lemma, we will need the following three results.

LemmA 3.4. Let X be a Banach space, let 13cn}, x be in S(X), and let f, eV, .
Suppose x, Ay 5 and f~+f Then feV

Proof This follows from

L2 S = Hm [ fp x>+ fyo x50 2

I—lim |x~-x,| = 1.

Lemma 3.519, p. 22]. Let X be a Banach space. For any x,yeS§{X), let
u=(x+Ap)/[x+Ay| with 2= 0. Then for fxe fss ”

LemMa 3.6. Let X be a two-dimensional Banach space, and let f,geV,, and
zeS8{X)suchthat —a={g, zy <{f,z) =0 Let A = {yeS )y Ly, vy <, 0}
“denote the half sphere. Suppose {y,} < A with y,dsx and suppose
{f.} = S(X*) satisfies
(3.2) s V> 2 1=1ailx—y,],
Then {f,, z> =0 for large n.

for every n.
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Proof Note that x,zeAd, and y, = (x+2,2)/ix+ 4,z
ly,—xli—0, it is clear that 1,0 as n—o5. By Lemma 3.5,

A = 0. Since

timinf (g, x—y,)/4, = iminf[lx+ 4,2 — )+ 4,60/2, 2 <f, 2> +2 =,
hence there exists N, such that for n > N,
(3.3) G Yoy = 1~Lg. x~y, > < 1-1,0/2 < T=}allx—y,ll.

Let u, be the support point of f,. We claim that u, € 4. Suppose this is false. By
passing to a subsequence, we can assume that {u,} is contained in the
complementary half sphere A4'= S(X)\4. The hypothesis implies that
{f» X» —1, 80 that no subsequence of {1} converges to —x; hence there exists
N, and ¢ > 0 such that if N > N, then {ju, ~{~x)|| > 8. Also there exists N,
such that for n > N, ||y, ~x|l < 8. For n> N = max {N,, N,, N5}, x can be
represented as

X = M’ A = 0.
(TR |

Apply Lemma 3.5 again: we have {f,, y,» <
of (32) and (3.3), and the claim is proved.
Now for n> N, u,e4, either u, = (x+2,2)/|lx+ 2,z or u, = (—x+41,2)
N—x+4,2, 4,20. In the first case, Lemma 3.5 implies that {f,, z>
= {f, z» = 0. In the second case, take —f as a support functional at —x. Then
Lemma 3.5 again implies that {f,, z> = {—f, z> = 0. This proves the lemma.

{g, y,». This is impossible in view

Proof of Lemma 3.3. If F_is a singleton, the assertion is clear. Assume
containg more than one point, and let f be a w*-strongly exposed point of F,.
Then there exists a zeS(X) such that

(3.4) g, zy < {f,zy, for all geP\{f}.

Without loss of generality, assume {f, z) = 0. Let X, be the two-dimensional
subspace spanned by x and z. Let

A = {yeS(X,): g, y> S S,y for all geP\{f}}.

Then A’ is a half sphere. Suppose {y,} & A’ with y, L5 X Let {Fa & S(X) be

the Fréchet differentiable points such that ||ly,— #,i < llx—y,ll/r, and let £, be
the unique supporting functional of S$(X) at j,. We claim that {f,, z) > 0 for
large n. In fact, let # be small enough such that K = co” (FPAB(S, m)) # O,
Since fis a w*-strongly exposed point of F,, /¢ K. By the w*-compactness of K,
we can find a g, eK such that :

—a = {gy, 2y = sup{{g, 2> ge.K} <0.
Let
= {yeS(X,): (g, y> <L W}
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It is obvious that A" = A’ It follows from the choice of f, that

1 = <fn= yn> = <f;;7 jjn> <jn1 J_/n-'_ n> = leJFn_-yn” > 1~£I=-D€!ix_ynl|’

for large n, and since y, I, 4 x, {f,, x> —1. Let f, be the normalization of the
restriction of f, on X,. Then from the above (f}, y,»> > 1—4a|lx—y,l. Use
Lemma 3.6: we have {f,,z> =0, and so {/,, z> =0.

Note that since X is an Asplund space, there exists a w*-convergent
subsequence of {f,} which converges weak™® to some Ae X [26]. Without loss
of generality, let {f,} itself be this subsequence, ie. f,."‘*h Then he¥, (by
Lemma 3.4) and {k, z> = 0 (by the above proof); (3.4) hence implies that b= = f

Qur goal is to obtain the following equivalence statement for U-spaces.
THeOREM 3.7. Let X be a Banach space. Then the following are equivalent:

i) X is a U-space;

(i} There exists a function ¢: S(X)— S(X*) such that p(x)e ¥, and (1.1} is
satisfied for [ = @{x) (instead of ¥ feV);

(iii) There exists o dense G, subset D < S{X) and o function @: D — S{X*)
such that @(x)eV, and (1.1) is satisfied for xeD and f = ¢(x).

Proof It is clear that (i) implies (i), and (ii} implies (iii). To prove (iii)

implies (i), we first claim that X is uniformly nonsquare. Indeed, for 0 < e < 1,

let 5 be chosen to satisfy the conditions in (iii). If X is not uniformly nonsquare,
then for the above &, there exist x, ye D such that $||x+ |, 3||x—yj| > 1-5.
Hence by (1.1}, {¢,, ¥ and {@,, —y> = 1 —¢; this is impossible. It follows that
X is reflexive, the set of Fréchet differentiable points F' of S(X) is a dense G, set,
and the w*-strongly exposed points of bounded closed convex sets K in X*
coincide with the strongly exposed points of K. Without loss of generality, we
assume D = F and hence {¢(x)} =V, for xeD.

Now for any & >0, let §;, >0 such that for any xeD, yeS(X) with
lc+3)/2l > 1—6,, <@, ¥> > 1—2/2. Let 8 = min{d,/2, ¢/2}. Then for any
xe8(X), and for any strongly exposed point feV,, Lemma 3.3 implies that
there exists a sequence of Fréchiet differentiable points {x,} & D such that
X, —urx and ¢, —» f. Suppose yeS(X) and |[{x+ v)/2|| > 1 ~&. Take N such
tha_t lxy—xll < é and K¢, ~f, ¥>i < 6. Then

llGew + P21 > [i0e+ w2l = ey —x)/2]) > (1—8)—8/2 > 1 =8,
and hence
<f9 y> = <(prﬂ y>+<j‘_¢)xw1 y> > 1_"8/2_'5 > 1--‘8'

Note that V, is the closed convex hull of its strongly exposed point £, hence we
have {f, y> = 1—¢ for all feV, and (i) follows.

§4. Ultraproducts and uniform normal structure of U-spaces. Let F be
a filter on an index set I, and let {x},.; be a subset in a Hausdorff topological
space X. Then {x,},; is said to converge to x with respect to #, denoted by
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limg x; = x, if for each neighborhood U of x, {iel: x;eU}leF . A filter % on
I is called an wlirafilter if it is maximal with respect to the ordering of set
inciusion. An ultrafilter is called trivial if it is of the form {4: 4 < I, iye A} for
some igef. We will use the fact that if % is an ultrafilter, then (i) for any 4 = I,
either Ae% or INAe¥; (i) if {x,}; has a cluster point x, then limy, x; exists
and equals x.

Let {X .}, be a family of Banach spaces and let I (I, X,) denote the
subspace of the product space equipped with the norm {|(x)]] = supr I%(] < <0.

Dermirrion 4.1 [7, 24]. Let % be an uoltrafilier on J and let
Ny = {(x)el {, X): limy |Ix;}} = 0}.

The ultraproduct of { X}y is the quonent space [ (I, X)/N, equipped with the
quotient norm.

We will use (x))y, to denote the element of the ultraproduct. 1t follows from
property (i} above and the definition of quotient norm that

(4.1) [Kox el = limg {|x]l-

In the following we will restrict our index sei [ to be N, the set of natural
numbers, and let X, = X, ieN, for some Banach space X. For an ultrafilter
% on N, we use X, to denote the ultraproduct. Note that if % is nontrivial,
then X can be embedded into X, isometrically.

Lemma 4.2 [24]. Suppose % is an ultrafilter on ™ and X is @ Banach space.
Then (X%)q = (X,)* if and only if X is superreflexive; and in this case, the
mapping J defined by

<J((fi)qz)= (xi)w> = limg, f;, xp,  for all (x)ye Xy,
is the canonical isometric isomorphism from (X*),, onto (X,)*.

TreoreM 4.3. Suppose X is a U-space. Then for any ultrafilter %% on N, X4, Is
also a U-space.

Proof. Since a U-space is uniformly nonsquare, it is hence superreflexive
[8], and by Lemma 4.2, (X,)* = (X*)g. For any ¢> 0, let d be as in the
definition of U-space, i.e.

42) Vx,yeSX), x-+p) >1-8 = (f,y>>1-s V/[feV,.

Let (Xys (V) € S(X ) and [[(0)q + ()2 > 1—8. Without loss of generality
we may assume ||| = ||yl = 1 for all ie™. Then from (4.1), J = {i: {[(; 4+ /2l
> 18} ed, and I # &, For each ieN, take an f, eV, . Since {{f,Ju: (xJa>
= limg {f,, %> = 1, ([ ) € Vixpe- From (4.2), we have <f;c y» > 1 —i, for all
iel,so {f)u (yi)q,> = limg{f,,, ;> > 1 —e. By letting ¢ S(X,)-> S(Xa)* )
defined by ¢((x)s) = (frJar () €5(Xy), Theorem 3.7(ii) implies that X, is
a U-space.

4 — Studia Mathematica 99.1
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TueoreMm 4.4, If X is a U-space, then X has uniform normal structure.

Proof. Suppose X does not have uniform normal structure. We can find
a sequence {C,} of bounded closed convex subsets of X such that for each n,

{4.3) 0eC,, diamC, =1,
4.4 rad C, = inf sup |[x—y|| > 1—1/n.
x&Ch yeCp

Let % be any nontrivial ultrafilter on N, and let
C = {(x,)q: x,€C,, neN}.

Then C is a nenempty bounded closed convex subset of X,,. It follows from
(4.1), (4.3} and (44) that diamC =rad C =1, so X, does not have normal
structure. On the other hand, from Theorem 4.3, X, is a U-space. This
contradicts Theorem 3.2, and X must have uniform normal structure.

Theorems 1.2(ii) and 4.4 yield

COROLLARY 4.5. Both uniformly convex spaces and uniformly smooth spaces
have uniform normal structure.

§5. J(X) and uniform normal structure. It was proved in [12] that if X is
a two-dimensional Banach space whose unit sphere is defined by a right
hexagon, then J(X)}=3/2. Hexagon plays an important role in normal
structure as shown in Lemma 2.3. In the following we will pursue this
connection further.

LemMA 5.1. Let X be a Banach space, and let 0 < & < 1. Suppose there exist

Xy, X, and x, in S(X) satusfymg the conditions in Lemma 23. Then
J(X) > 3/2—14¢.

Proof. Let y=4%{x,+x;). Then
0 —x1) —%3ll = (e, —x3)/2— x| = 1—a/2,
and 1—a/2 is bounded by $(1+e).

Fig. 1

Let w=A(y~-x,) be on the line segment [— X13 %3], A comparison of
similar triangles yields :
Hy—x)~wll _1-a/2
[Iwil 1
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It follows that (1—-A)/A = 1 —a/2 and hence /4 = 3/2—c. Also hypothesis (iif)
of Lemma 2.3 and Lemma 2.1 imply {iw| > 1 —2e, and therefore we have

1 3
ly=2x:ll =< lwll > 5—4e.

Similarly ||y +x,|| > 3/2—4e. If we let y' = y/||lyje S(X), it is clear that
Iy +x, 01 2 lly+x.0l Y —x ]l 2 lly—x|l

(forif z,, z, are the intersections of a straight line and the unit sphere $(X), and
if z(t) == z; +(z,—2 )¢, t = 0, is one of the half lines outside the sphere, then
z(t)]] is an increasing function of ). This implies J(X) = 3/2—4e¢.

We now proceed as in §4 to obtain the uniform normal structure for
J(X) < 3/2. We first prove a result for ultraproduct.

THEOREM 5.2. For any Banach space X, and for any nontrivial ultrafilter % on
N, J{X,) = J(X).

Proof. For any &3>0, choose x,y so that |ixj,|yl<1 and
llx £yl = J(X)—e. Let x; = x, y, =y for ieN. Then [|(x)qll, [(¥a!l < 1 and
1(¢)g (V) ll 2 J(X)}—s. This implies that J(Xg) = J(X ) s for any & > 0.
To prove the reverse inequality, we can choose

IGdalls ldall €1, [{x)a £l > J(Xg)—
From property (i) of ultrafilters (§4), and by (4.1), we know that the subsets
{ieN: |Ix,/| <1}, {ieN: (ly]l < 1} and {ieN: |[lx;+ ]l > J(Xp)—e} are all in
4. Hence their intersection M is nonvoid. Let ie M. Then

loe, = yill A g+ yill > J(Xg)—s.
This implies that J{(X) > J(X,)—e for any ¢ > 0.

THEOREM 3.3. Let X be a Banach space with J(X) < 3/2. Then X has uniform
normal structure.

Proof. Note that J(X) < 2 if and only if X is uniformiy nonsquare {12].
Now since J{X) < 3/2, X is reflexive [15]. Lemmas 5.1 and 2.3 imply that
X has w-normal structure, and hence normal structure. By using the same
proof as for Theorem 4.4 and making use of Theorem 5.2, we conclude that
X has uniform normal structure.

Let 5(c) be the modulus of convexity of X. The relationship of J(X} and &(s)
is ag follows:

THEOREM 5.4, Let X be a Banach space, Then J(X) = sup{e: §() < 1—¢/2}. "

Proof. Let &, = sup{e: 8(e) € 1—g/2}. We first show that J(X) < g,. Since
J(X) < 2 [12, Theorem 2.5], the inequality is obvious if &, equals 2. We can
hence assume that &, < 2, For any ¢ > &,, and for any x, y in §(X), either
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x—y|l < & or ||[x—y|| > &. The latter case implies, by the definition of &, and
the choice of &, that é(e) > 1—¢/2. 1t follews that
I—fix+y)/2)| > 1-¢/2,
ie. |[x+y|| <& We have in either case
' e +yll A fle—yil <e.

This implies J{X) < ¢, and since &> g, is arbitrary, J(X) < &,.
To prove the reverse inequality, we let 0 < n < &,/3, and let & = g,—7.
There exist x, y in §{X) such that |x—y|| >¢ and

1= i+ p)/21] < 8(e)+11,
ie {lx+y{l > 2—28(g)—2%. This implies that
JX) 2 llx+¥ Allx—pll = min{2{1—8(e)~n), £} = min{e—2y, &} = &,—31.
Since n > 0 is arbitrary, J(X) > &,, and the proof is complete.
COROLLARY 5.5, Let X be a Banach space (dim X 2 2). Then

) J(X) = /2; and
(i) for 0 <e<2, 8() > 1—¢/2 if and only if J(X) <s.
Proof (i) follows directly from Theorem 54 and a result of Nérdlander

[20]: for any Banach space X with dimX > 2, and for 0<¢ < 2,
0{e) € 1—(1—e2/4)"2. (ii) is an easy consequence of Theorem 5.4.

As a direct corollary of Theorem 5.3 and Corollary 5.5(ii), we have

COROLLARY 5.6. Let X be a Banach space with 5(3/2) > 1/4. Then X has
uriform normal structure. :

CorOLLARY 5.7. Let X be a Banach space and suppose there exists -
0 < &< 3/2 such that 5(c) = &. Then X has uniform normal structure.

Proof ¥ X does not have uniform normal structure, then 8(3/2) < 1/4. Tt
is known that d(e)/s is an increasing function for 0 < & < 2 [18]. We have
d(e)fs < 8(3/2){(3/2) < 1/6 for all 0 < & < 3/2. This contradicts the assumption.

§ 6. Isomorphism and J(X). Let X be a given Banach space and let 2 be the

class of Banach spaces isomorphic to X. Let 4 be the semimetric on % defined
by

T AY, Z) = inf{In||T|-|T"Y]: T: Y—Z is an isomorphism}.

Let X, Y be Banach spaces and let 7© X — Y be an isomorphism. In [12], we
proved that

J(X)+2
J(N+2

(6.1) TR~ < <liTI-NT-4).
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THEOREM 6.1. If J(Y) < 3/2, and if

7
A(X, Y) <ln————2(j(Y)+2),

then X has uniform normal structure.
Proof By (6.1)
J(X) < (expd(X, V) (J(N+2)-2 < 7/2—2=3/2.
Hence Theorem 3.3 implies that X has uniform normal structure.
In this section we will improve (6.1) with ¥ =1, or L,.

Lemma 6.2 [3, 23]. Let X be a two-dimensional Banach space, and let K |, K,
be closed convex subsets of X with nonvoid interiors. If K, < K,, then
r{K,) <r(K,), where r(K,) denotes the length of the circumference of K,
i=1,2. ‘

LemMA 6.3, Let X be a Banach space, and let u, ve X . Then for any a, b = 1,
([ | -+t —wi| < Hau -+ bol| + ||law— bl

Proof We can assume that a 2 b2 1. Then the triangle with vertices
bu, bt and —bv is contained in the triangle with vertices au, bv and —bv, so
from Lemma 6.2, we have

|2 40| 4o — v]] < {bu+ bol| + ||bu—bu|| < ||aw + by||+ ||au— by||.
TuEoreM 6.4, For any isomorphism T from X to I, 1<p <0,
JX) < || T {THlmax {2177, 214}, where 1/p+1/g = L.

Proof. Suppose p = 2. By applying the method of Lagrange multipliers to
the function F(s, t) = s+1 subject to the constraint s*+:* < 2* for 5,1t 2 0,
F(s, t) assumes its maximum value 2-2'2 at the point s=1t=2"" where
I/p+1/g = 1. For p 2 2, the Clarkson inequality [6] implies

I+ P+ lix—yllP <27, Vx, yelSQ,).

For x, yeS(l,), let u= Tx/||Tx||, v = Ty/ITyll, a =T ||| Tx||, and b=
IT=*I*[|Tyll. Then a, b > 1, and by Lemma 63, we have -

20l +oll A fa—olty < Ju+ ol + e — o] < llaw+ bol| + lau — bu]
s | T T+ Tyl 11T Toe— Tl
< IT TGP+ P+ floe = Il < 1T [T)-2- 2.

Since the above u, v cover all the elements of §(X), as T is an isomorphism, we
have J(X) < ||T)- 1T 1| - 2.
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For 1 < p<2 the Clarkson ineqﬁality (6] becomes
Ix+yIP+llx—ylF < 22, Vx,yeSQ).
- By the same proof, we have
[SUTI-IT 2207 e = 2T | T |- 217),

and hence the same conclusion holds.

fl + vl + flu— ]

CorROLLARY 6.5. For 1 <p < o0, 1/p+1/g=1, if A(X, 1)< min(l/p, l/g)
xIn2, then X is uniformly nomsquare,

Proof. Recall that X is uniformiy nonsquare if and only if J(X) < 2 [12,
Theorem 3.47. 1t follows from Theorem 6.4 that

J(X) < (expA(X, [))max {217, 214} < min {27, 218} . max {217, 214} = 2,
Thus J(X) is uniformly nonsquare.

THEOREM 6.6. For | < p < o, Theorem 6.4 and Corollary 6.5 also hold if |
is replaced by L,. )

§7. Some remarks and open questions. Let K be a bounded closed convex
subset of X, and let D(K) = sup{|lx~y||: x, ye K} be the diameter of K. For
cach' xe K, let r(x, K)=sup{[x—yl: yeK}, and let R(K) = inf{r(x, K):
x& K}, the Chebysheo radius of K [14, p. 178]. In [5], Bynum introduced the
following normal structure coefficient of X:

N(X) = inf{D(K)/R(K): K bounded closed convex subset of X}

‘He showed that if X, Y are isomorphic, then N(Y) < {exp 4(X, N (X). It is
knowr} that N{(L,) = N(I,) = min {2/, 2%/} [21]. It will be interesting to know
any d}rect connection of J{X) and N(X), for any Banach space X.

- Itis known that uniformly nonsquare does not imply normal structure, e.g.
let X =(l,, |I"[) where |[-]| is an equivalent norm of [, defined by

Ibell = max {jlx*[iz, ™15}

[4, 257. Hence there exists X such that J (X) <2 and X does not have normal
structure, |

QuestioN 7.1. Is J(X) < 3/2 a sharp condition for (uniform} normal
structure? In other words, is 3/2 the largest such constant?

- Note that the above example still has the fized point property by a result of
Lin [17;]. We pose a more restricted form of the well known open problem
concerning reflexive spaces, or superreflexive spaces.

. QuEsSTION 7.2. Does J(X) <2 {equivalently, X is uniformly nonsquare)
imply the fixed point property?
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In all the classical spaces, e.g. [,, L, spaces, we have J(X)=J(X*).

" Recently, Prus has given an example of a Banach space X such that J(X)

# J(X*). We ask

QuEesTION 7.3. What is the relation of J(X) and J(X™)? What is the dual
parameter corresponding to J(X)?
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Complex interpolation and I7 spaces

by
M. ). CARRO and J. CERDA (Barcelona)

Abstraet. A variant of the first Calderon interpolation method is defined in connection with an
analytic functional, for complex interpolation families in the sense of Coifman, Cwikel, Rochberg,
Sagher and Weiss. Some of its interpolation, duality and reiteration properties are described and
applied to the identification of the interpolated space for a family of IF spaces.

§1. Imtroduwction. In this paper we consider interpolation spaces for
interpolation families of Banach spaces in the sense of [4]. Our method is
a natural extension of that of Schechter [7] and Lions [5].

Throughout the paper we shall use the notation 4= B to indicate
a two-sided inequality, that is, there exist two constants C and C' such that
CALB<CA4. '

Let D denote the disc {|z| < 1} and I'its boundary, and let {B(y}; yeI'} be
a complex interpolation family (c.if) on I with #” as the containing Banach
space and # as the log-intersection space, in the sense of [4]. That is:

(2) The complex Banach spaces B(y) are continuously embedded in ¥ (|| -{l,
will be the norm on B(y) and |||y the norm on ¥7),

(b) for every be(),or B(y), yeI' —||bll, is a measurable function on T,

© B = {be(V,erbly); [rlog™ [Ibll,dy < oo}, and there exists a measurable
function K(y) on I' such that

{log" K(y)dy < oo and b,y < K@ell, ae y (bed).
}

In [4], for every ze D, the Banach space B[z] = {f(z); fe#} is defined
with the norm |[b||, = inf{||f||¢; f(z) = b}, where F = #(B(-), I')is a Banach
space of # -valued analytic functions f on D with a.e. nontangential boundary
values f(y) = ¥ -limg., £ (£), that can be described as the completion of the
gpace

N
Fus{g= 3 @ )by bjedd, p;eN*(D), esssslppllg(v)ll, < w},
j= i et
with the norm ||f|lg = esssupyer |Lf (7)ll,-
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