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Complex interpolation and I7 spaces

by
M. ). CARRO and J. CERDA (Barcelona)

Abstraet. A variant of the first Calderon interpolation method is defined in connection with an
analytic functional, for complex interpolation families in the sense of Coifman, Cwikel, Rochberg,
Sagher and Weiss. Some of its interpolation, duality and reiteration properties are described and
applied to the identification of the interpolated space for a family of IF spaces.

§1. Imtroduwction. In this paper we consider interpolation spaces for
interpolation families of Banach spaces in the sense of [4]. Our method is
a natural extension of that of Schechter [7] and Lions [5].

Throughout the paper we shall use the notation 4= B to indicate
a two-sided inequality, that is, there exist two constants C and C' such that
CALB<CA4. '

Let D denote the disc {|z| < 1} and I'its boundary, and let {B(y}; yeI'} be
a complex interpolation family (c.if) on I with #” as the containing Banach
space and # as the log-intersection space, in the sense of [4]. That is:

(2) The complex Banach spaces B(y) are continuously embedded in ¥ (|| -{l,
will be the norm on B(y) and |||y the norm on ¥7),

(b) for every be(),or B(y), yeI' —||bll, is a measurable function on T,

© B = {be(V,erbly); [rlog™ [Ibll,dy < oo}, and there exists a measurable
function K(y) on I' such that

{log" K(y)dy < oo and b,y < K@ell, ae y (bed).
}

In [4], for every ze D, the Banach space B[z] = {f(z); fe#} is defined
with the norm |[b||, = inf{||f||¢; f(z) = b}, where F = #(B(-), I')is a Banach
space of # -valued analytic functions f on D with a.e. nontangential boundary
values f(y) = ¥ -limg., £ (£), that can be described as the completion of the
gpace

N
Fus{g= 3 @ )by bjedd, p;eN*(D), esssslppllg(v)ll, < w},
j= i et
with the norm ||f|lg = esssupyer |Lf (7)ll,-

1980 Mathematics Subject Classificatiog (1985 Revision): 46M35, A6E30.
Research partially supporied by DGICY'T/PS87-0027.
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Let T be an analytic functional on D. Although many of the results still
hold true in the general case (see [2], [3]), in this paper T will always have
“finite support”. That is, it has a representation of the form:

1 T{p)=

*—I e(&)hp(5)dl Ve HD)

where h = Pr/Qris a rational function with poles z;in D and X < D is a circle

¢ =re" (0 <t < 2m) containing these poles. Hence, T can be represented as
@ T == z Z a;6%(z))
We can associate to T the analytic functional § with hg = Q7 *, that is,
@(%)
3) S(p) = -m—, dé.

Let R be an analytic functional on the band 9 < Rez < 1. For interpolation
pairs (4,, A,) of Banach spaces, the interpolation space [4,, 4,1z has been

defined as an extension of the Calderén method [4,, 4,1, ([7] and [5]). Here

R(f) is considered instead of the evaluation f(6).
In the same way we define, for the cif. {B(y)}, the spaces

BIT]1={T(f) feF}, with [|bllin=int{|fls; fe&F, T(f)=>b}.
If T = 6'(z,), these spaces are related to those defined in [6] as
Bgzu) = {{u, U), aFEgz—: F(ZO) =u, F,(ZO)(lwlzolz) = U}

and, in fact, we shall use similar techniques to those developed in that paper.
We would like to thank the referee for his detailed comments and
suggestions.

The space B[T] is a Banach space and, as in [4] for B[z] (T = 4(z)), the
following theorem is easily proved.

Turorem L1. Let {A(y)} and {B(y)} be two cif. on I, with the containing
spaces U and ", and the log-intersection spaces =/ and B, respectively. Let
L: %~ be a bounded linear operator and suppose that L(<f) < [Myer B(y) with

ILall, < M{y)|ail,

where log M (y) is integrable. Then L: A[GT]— B[ T is bounded with norm less
than or equal to 1, where

G(z) = exp( | —log M(y)dH (7))

ae yel

1 e+

and H, (y) = _e‘TT_—HE is the Herglotz kernel.
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Observe that using that T= G~ 'GT we find that A[T] is contained in
A[GT] with norm less than or equal to sup,q,, 7 |G(2)] and therefore by the
previous theorem we see that L; A[T] - B[T] is bounded with norm less than
or equal to SUP.cuppr |G E)].

The following proposition for the case of a couple of Banach spaces is due
to Schechter (see [7]). The proof in our case is completely similar and we only
include a sketch of it

PROPOSITION 1.2. For T as in (2), B[T]
HOTMS.

= Y=o B8P (z)] with equivalent

Proof. The proof is a consequence of the following facts:

a) For any bounded analytic function @ on D, B[wT] is continuously
embedded in B[T] with norm less than or equal to sup,.p,|w(z).

by Let w(f} = £—z. Then B[(z)] = B[wd'(z)] is continucusly embedded
in B[6'(z)] with norm less than or equal to 1+|z|. Similarly, for m < n,
B[6™(z2)] is continuously embedded in B[8"(z)].

¢) There is a bounded analytic function w=cw; (0<; <

m{j)) such that 6%(z) = wT. =

§2. Duality and reiteration. The following “fundamental inequality” will be
useful in the sequel.

nand 0<|

Proposimion 2.1, There exist a compact set K < D and a constant C > O
such that

NT(fNigry € Csup GXP(] log [/ (2}l AP (7))

zeK

where P,(y) is the Poisson kernel.

(fe5),

Proof. We can suppose T = &"(z).

First, let us see that there is a compact set K < D such that B[wT] is
continuously embedded in B[T] with norm less than or equal to
Csup,. lw(z)], for any bounded analytic function w(z} on D. :

I beB[wT], let feF with ||flls < |bljwr+e and T(wf)=05b. Then
1Bl < T h o Cln, p)le® P(2)| |/ P2, and using the Cauchy inequalities
on a circle K with center z together with b) of Pxo_positicm 1.2 we get
1B} < Cs0pseg [N S ]l5-

Now et w(z) = exp({rlog!lf (), dH,(7). Then

bl = flo T (@ *Nllery € Csupla@llloT (@™ i
&ek
< Csupjo@)lllw™ s
. &K
and we get the desired inequality. m

To characterize the dual of the space B[[T] we shall consider the class #7(T)
of functions H: D — g8 (the algebraic dual of %)} with the following properties:
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(a) For each be®, <b, H(:)>eN* (D).
(b) |H]ly = sup esssup[<b, H)I/Ib]l, < .

O#bedf  yel

L 22 (f, H)()
C) S (f: H) =T i
( ( ) Iny Qrle”)
Here, for any fe#, the “boundary values” (f, H)(y) are defined in the
following way: _
Let f = #-lim,g, with g,€%. We have _
lim {1g, (1) —g.(), HO)dy = 0
nm I
and we can assume that lim, {g,(y), H(»)> = (f, H)(y) exists a.e., and that the
limit is independent of the particular sequence (g,),.
% being dense in #, # is dense in B[T7]. Therefore, a continuous linear
form ueB[T] is determined by its values on &, In the next theorem, the

analytic functional § defined in (3) is used to determine those ue &#* that belong
to BLTT.

THEOREM 2.2. ue B* belongs to B[TY if and only if there exists an He W
such that

(4) ulb)T(p) = S(b, Hyp)  (be#, peH(D)).
Moreovgr, bl apry = inf{||H||y; H as in (4)}.

Proof. From condition (4), we see that u(T(g)) = S({g, HY) for ye@.
Hence, :

(T ()] < CSUgKQ(ZL Hzp| < CllHlly lglls

€7dy =0 whenever T(f)=0, fes.

Let now fe # and g, €% such that f = lim, g, and S((f, H)) = lim, $(<g,, HD).
It is clear that w(T(f)) = S((f, H)) defines ueB[TT, and el gy < CJlH||y
Conversely, let ue B[T]'. From Proposition 2.1 and Jensen's inequality, we
have

(5) (T < C; lg@ll, dy  (ge®).

The Hahn—Banach theorem allows us to extend uo T from % to a continuous
(with respect to the above integral norm) linear form w on the space of

functions g(y) = 37, ¢,(y)b,, with b ;€% and ¢,(y) measurable on I, such that
the integral norm is finite.

For each be & we define, on the space L{b) = I}(T", |I6]l, dy}, the continuous

linear functional ¢ -»w(pb). Then there exists a unique measurable function
H(b,-) on I" such that

B, < Clitll, (yel), wiob) = ot)Hb, 1)dy (o eL(b).
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For any @€ H™(D) and @z} = exp(~ [rlog Ibll, dH, (1),
w(pe,b) = ub)T(@os) = [ 00, (H (B, Y)dy.

The function ¥, (z) = [ Qr(y)¢,(y) H(b, y)dP,(y) belongs to H*(D), because
0, T =0 implies P(—n)=0(n=1, 2, ...}, and on I we have the nontangen-
tial limit values ¥, (y) = Q@ (¥}, (1)H(b, y).

If we define (b, H(z)) = ¥,(2)/(p,(2)z) we have Hew (T) and

Sb. Hy0o,) = ;H(b, NeM o) dy = ub) T (o y)

for any @& H"™(D). Thus, we get (4) by a density argument. m

Remark 1. In the case of an interpolation pair, M. Schechter. [ 7] described
[A4q, 411k as the space of all elements we(d,nA,)* with the property
for some hed (45, AY),
whete F (Ap, A1), as F(Ay, A;) and F(A,, 4,), is defined in [1].

But observe that although for x = R(g) with g = Y'\.; a,0,in %(4,, A4,) the
function {g(2), i (z)> is well defined and (6) implies u(x) = R({g, #'>), when
fe#F(A4,, A,) the function {f, "> has to be defined as {f, ¥’y = lim, {g,, I'>

for f = lim, g, and g,6 #(A,, 4}, and a second condition, corresponding to ()
in the definition of #°(T), is needed. This condition is the following:

(7) R({f, W»)=0 whenever T(f)~=0.

If #(Ay, A5: R) is the space of all functions he % (4),
have

[Ag, A Tx = {ue(don4,)*; uR = IR for some heF(Ag, Ai; R)}.

Let now o I'—[0, 1] be a measurable function, (4,, 4,) an inter-
polation pair of Banach spaces and A, =[A,, A, 1s. Then A@) = Auey,
yel', defines a cif and it is known that A[z] = A,, (see [4]), for
w(z) = fra(y) AP, (). ‘ B . .

To identify A[T] we consider w(z) = u(z)+i&(z), an analyu:: function
w: D2 (2= {z; 0 <Rez < 1}), and we define the analytic functional R on
& as R(p) = T(pom).

PROPOSITION 2.3, [Ay, A g is contintiously embedded into A[T], with norm
less than or cqual to 1. m

) satisfying (7), we

The converse may not be true. In fact, if T = &'(z) and w'(z} = O then § = 0
and the result fails. ' .

We shall suppose, from now on, that w'(z) # 0 for z in the support of T

In the following theorem we impose the condition of 4,4, be:mg dcnSf: in
Ay Ay, This condition could seem superfluous due to the fact tha‘t in [7] it is
said that under the natural hypothesis of 4,n A4, being dense in both 4,
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and 4, this always happens. However, the proof of this is done by duality and
as we rention in Remark 1, it seems that an extra condition for the dual space
is needed and with it the above mentioned density cannot be deduced.

THEOREM 2.4, A[T] =[A4,, 4,1z with equivalent norms in the following
cases:

(a) The function o attains the values oy = sup,.ra(y) and o; = inf,.-o(y), and
ApnAy is dense in A,,MA4,,. :

(b) There is a simply connected domain Q containing the support of T' whose
boundary X is a simple rectifiable closed curve in D such that Ay~ A, is dense in
Ay Ay, With ag = Supes af€) and o, = infyza(£), and o is dense in ez A[E]
in the following sense: For each be ey A[E] there is a sequence (a,), in .of such
that

lim [ lla, — bl du, (&) = O,
L ¥

where du. is the harmonic measure on X at zef.

Proof. Let T = 6" (2).
(a) We have to see that A[T] <[4, 4,],. First, we observe that
A = Az, A, is contained in [Ag, A Ju., (see [4]). Now, we have

R{p) = T(pow) = 8" (pow)(z,)
=2 0P (alzp)) e w) = (;cj(w) 8l (@),
J
and by Proposition 1.2, [4,, 4 ]y, is contained in [Aq, A 150, ,,» for every

J 2 0. Therefore ¢ is contained in [A4,, 4,],. Moreover, since .o is dense in
both A[T] and [4,, 4,1, it suffices to prove that

lallse.ane < Clialkny,  (aes),

Le.,

(8) Hg (Mo, a1 < Cliglls (€% = G({AN).

Using reiteration, we show that 4,,n4,, is continuously embedded in
CA4q; A;Juyy = A(y) with norm less than or equal to 1 for any yel', and that
g = J=1®;a;6% can be approximated by functions of the same class but with
a;€ Ay A,. Thus, to prove (8) we can assume that this condition is fulfilled.

Let uefdo, A,]r with u(g™(2) = [|g" @)lao.n1.- Then there exists an
he # (Ao, A1; R) such that #'R=uR, ie. R{<a, h'> @) = u(@) R(¢p} for any
aed,nA,. Since R(W) = 6" (z){¥ow) and '(z) # O we have K (w(z)) = u and
hP(w(z)) = 0 for 2 <j< n+1. Therefore,

”g(n)(z)”[Ao.Aﬂu = <]1.’(CD(Z)), g("](z)> = <hlom= g>(")(2)
< Cesssup [KH (@), 900 < Illsliglls
and (8) follows. '
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(b) Let B(&) =[4y, A ]us, £€Z. We have to show that A[T] = B[T].
For each ae A[T], let fe#(4(-), ) with T(f) = x. Then f|,€ % (B(-), 2)
and || floll#zsm.n € 1 fll#wae.n. Thus xe B[T] and |x|lar < [X]agr-

For the converse we shall use duality. If T = 5"(z;), then §=T in
Theorem 2.2 and hence, using this result and the Cauchy formula for the nth
derivative on 2, we find that there exists He%  such that

j<g(§), H(E))
b (& —'Z)M !

< C,E_HQ’(‘S)”B(Q dé,

(%) IT@am = T(Kg, HY) < € df’

where g = V.1 ¢;a; with a6/ and ¢,e N*(Q).

Let fe#(B(+), Z) with T(f)=x and g, = Y5 ¢, b,e¥(B(-), Z) with
fe#lim,g,. We can assume by, € # and ¢;,6 H* () (the proof is similar to the
case T = 8(z,) [4]). Now, given ¢ > 0, take a;,&.s# such that

[ llam—bjline d€ < e(N (W ll@;ll..)-
£

When & = 1/k, we have, for the corresponding G, = ijﬂajm
| NG uw(E) ~ g, () gy dE < 1/k
x

and, from (9),
NT(Gu) — T (Gl agn < € £ G}~ G (N iey 4

< C{1/k+ [ 19,0 — g Oling 4 + 1/h)
X

< C(1/l+1/h+ g, — gmlizosern)-
Let ae A[T] be the limit of the Cauchy sequence (T(G,)),. Then
I T(Gud — T(@ M prry € CJI1G il &)~ 9, (Dllwiey 4 < 1/k,
E v

and if x = B[T}-lim,T(g,), then a=x= B[T]lim, T(G,). Therefore,
xed[T]. = :

Remark II. In case (b) of Theorem 2.4, the condition that & is dense in
(Neex A[€] is not surprising. It is the hypothesis needed in the reiteration
theorem of [4]. If we define B({) = Ay, £eZ, we can expect, from (a), that
B[T] = [Ag, A,]1z. Hence, [Ay, A lp = A[T] if and only if A[T] = B[T]
and this is a reiteration result.

§3. Interpolation of I7 spaces. Some of the results that we obtain in this
section are closely related to those in [6].

Let 1 < p(y} < o0 be a measurable function on I' and, for a fixed o-finite
meagure space (Q, X, u), consider the interpolation family of Banach spaces

0= (D), yel}.
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We want to extend to this family the following results, using now our
method of interpolation.

(A) [I°(), (], = B(w), with 1/p=(1-0)/po+0/p, @< <1).
(®) [O1[2] = [17 (), B (@l = 2P (), where a(?) = 1/p() = rp()™"
xdP.(y) (see [4]).

We begin with the case T = 4'(9).
TaeoreM 3.1. fe[IF°(u), B (W)]sw if and only if [ =fy+[ loglfy| with fo.
fi i P(u) and 1fp = (1—0)/py+6/py (0 <0 <1). Furthermore,

| £ 1l = inf{”fo +f1105||f1”p”p+%g‘£|P0—P1E“l||f1||p5 S =Jo+f1log UH}-

Proof. {a) For any fe[Iw), (i) and ‘Feﬁ'(ﬂ"', 4y such that
F'(0) = f, consider the set A = {weQ; F(f, w)=0} and write

F(¢, @) = G(£, o}E -1 () +F(S, w)lae(w).

We have F/{0, ) = G(8, -)1,(-)+f 14(-). In view of (A), it is easily scen that
the first term is in 17{y) since G(&, )1, is in & (IF°, I¥) as a function of £.

To see that the second term is of the type f; log|f,| with f, & I¥, we consider
the function

H(E, w) = [[F(O)]

F(0, o) [IF(0, @)\ ~ap:+ipapiror)
( )(I( )1) L (@),

IF (0, IF ()],

(This function plays an important role in [6].)
As a function of §, He F (I, I}, ||H||5 = |F(O)|l, = [IF{H)lle; < |IF]l & and

H'(8, ) = MF(#)(log|F(0)|—log|[F (D)) 14- With M = p(py—p )PPy}
Define

f§ = (FO1e—H@)ezp = f 14— MF(O){log|F (O —Log|F (O )L se-
Since F (6 ie—H(B, ') =0, we see that f§ belongs to I¥. Moreover,

1 1
Lral, < max(] )”F]A‘: Hily < Zmax( OO)IIFII@

Therefore,
f=F(0)=GO)1+f L= GO ,+f8+H(0) = fo+f, log| fi]
with fy = MF(0)1, and fo = GO 1,+E—f logl|lfill,, both in IP(y).

To estimate the norms observe that

”fo +f1 loglifill, “p GO +SEil, <3 max(]‘é‘b‘: é)”F”F

whenever F'(f) =f.

J™ e Y o ST logl /Tl with Tim,, [
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To prove the converse result and the corresponding norm inequality
consider f, and f, in I¥, [ =f +f log|f,| and

(1 —=&)p1 +Epaipipor)
(0 . (&) = t!f|l,,|g|(”ifl'|> S
J1lp

A straightforward calculation shows that this function belongs to # (I#°, If),
il = /11l and F(De[I, ']z, But F(0) = M f(log|f;|—log|l/; I},
and hence f = f, 4/ logl|l fill, -+ M~ F/(#) belongs to [, II'],,. The norm
inequality follows from this decornposition of f.

The case p, or p, = o follows as usval m

Remark HI {a) Substitution of F' and H' by the higher order derivatives

and induction give the result for T = §"(0):
1
Lo, B Yaoney = {f3 /= 3 filloglfilY, - with fielf(w) (j=0, ..., m}.
i=0

To prove it, let us see that if fes
e U D(0)].

Let FeF such that F®(0) = f and consider, as before, the decomposition
F{E, )= G, NE-ON1 {)+F1,(-) and the function H. Then

FOH0, ) = nG™ (0, )1 4(-)+(F 1 4ol -)— HY(0, )+ H(0, -).

The first iwo terms on the right are in IZO[8% ()] and the last one is of the
form f,(loglf,[F' with f,eIf(). So the first part of the proof follows by
induction.

Conversely, let fe3 " fillog| /)
instead of f;. We have

and F(0,-)=0, then F"(0)

7 and consider F(&) as in (10) with f,

Slogl ¥ = FO(0) +g

with ¢ = Y42t f¥(logl /Y and fFeIl(k). As before, an induction argument
finishes thmgs off.

{b) It is easy to see that the convergence to 0 of a sequence (/™),, in
[ (), jl(,u):lﬁ(n)w) means that there are decompositions
e=01n IF(u), for j=1,...,n

Using now (a), (b) above and also 1.2 and 2.4 we get the following result, for
Tusin (1) and wizp 0 (j=1.... 1)
Trorem 3.2, fePOTTY if and only if there exists a family of functions
S el (j=1,...,n and k=0, ., m(j)
such that
n i)

=YY feslloglfilt.

J=1 k=0

5w SBtudia Mathematics 99.)



66 M. J. Carro and J. Cerda

Furthermore lim,, f™ =0 in IPO[T] if and only if we have a decomposition

= Zkfh}(10g|fk,j[)k such that lim,, {7, =0 in ) for all j=1,.. ., n
aml k=0,..,m(j). =

We use now Orlicz spaces to indentify the space IPU[T].

We begin with T = &(z,) so that every feFO[d'(z,)] is of the form
f =g+hloglhl with g, he F=0(y).

"Let @(x) = x( ¢[) for x = 0, a continuous increasing function such
that @0)=0 and @(x)=w. I we define @) ="'V (p=plz,),
1 € p < oo) then ¢ has the same properties as ¢ and alqo r/J is convex in [0, 1]
and satisfies the 4,-condition.

We shall consider the Orlicz space

Ly = {f; [ measurable and | H{ SN dp < oo ).

L,(1) is an F-space (see [8]) with a basis of neighbourhoods of 0 given by
s [elfhdusry (>0,
2

From the indentity ¢(x(1+logx|)) = x* we get ¢(r) < ¥ and hence I#(y) is

continuously embedded in L ().
THEOREM 3.3. IFC'[6'(zy)] = L, (1) with equivalent norms.

Proof. Let fel, ), f>0, and consider g=¢ (/). Then
S =g(t+logg)) with g = ¢(f)}"Pell{w), and f&lF[F (z,)].
. Conversely, take [ = g+hloglh| in P (2,)] (g, hel?(u) and observe
that

(i1 + rogihl)dye = | I

and that IF(y) is continuously embedded in Ly (u). The'proof now follows using
Remark III (b). =

Remark 1V. Define @, (x) = x(m+|logx|)" and ¢,,(t) =
the above argument can be generalized to get

O[3 ()] = Ly, (1),

q)m ! (1)1“) Then

for all meN,

LPOLT] =} Ly (-
j=1
Remark V. If ¢,(x(n+/logx|)') =x7, it is easily seen that ¢, is
equivalent, at 0 and co, to the function ¢,(x)= (x(n-+llog x) ). Hence

FelF(u), B (1)]seony if and only if
f(n+{log|f1]) " e (),

and lim,, f,, = 0 in [Z°(u), I* (i) 500z, 18 equivalent to lim, £, (n+[log| Tl
=0 in the P(u)-norm.
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Remark VI. All the previous results hold true for vector-valued functions,
that is, in the case of the interpclation family

LE = {LFP(w); yel},

with B a Banach space. To see this, it is enough to change the absolute value |- |
to the corresponding norm || -||,.
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