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On the density of log concave seminorras
on vector spaces

by
T. BYCZKOWSKI (Wroclaw)

Abstract. Let E be a complete separable metric vector space and let 4 be a measurabie
seminorm on E. Suppose further that § = in is a series a.s. convergent with respect to g with
independent components which are log concave and finite-dimensional. We prove ~that
F(t) = P{g(S) < 1} is positive and continuousily differentiable for all > 0.

Let g be a symmetric Gaussian measure on a separable Banach space
(E, ) and let F(t) = p{xeE; x| <t}. It is well known [5], [8] that
F(#) >0 for all >0 and that the function F is absolutely continuous on
(0, oo). M. Talagrand {7] claimed that F'(¢) is continuous on (0, o). Unfor-
tunately, the statement on p. 7, L 15 of [7] is erroneous and it does not seem
possible to rectify that argument. .

The aim of this note is to prove that this claim is true, even in a greater
generality, namely for log concave measures.

We begin with introducing some notations and terminology. By E we
denote a complete separable metric vector space endowed with its Borel
o-algebra 4. A probability measure u on (E, £;) is called log concave [2], [6]
if for any Borel subsets 4, B and all 4, 0 <l <1,

#AA+(1=2)B) > p(AY u(B)*~*.

The log concave measures are closed with respect to convolution and weak
convergence [2]. It is also well known that when E is locally convex then all
Gaussian measures are log concave [2]. When £ = R” then a full probability
measure # (i.e. one with suppu = R" is log concave if and only if it is absolutely
continuous with respect to the Lebesgue measure and its density g is of the
form

g(x) = Cexp(—Q(x)

where Q > 0 is a finite convex function such that limjyi. . Q(x) = coc and € > 0
is a suitable constant [1], [6].

.
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Now, let g be a measurable seminorm on E, that is, a Borel measurable
function g: E—~R™* «{co} which is subadditive and positively homogeneous.

Next, suppose that (X, is a sequence of independent E-valued finite-
dimensional random vectors such that § =} X, converges in E a.s. We will
assume throughout the paper that § converges also with respect to g. When the
X, are additionally symmetric, this is equivalent to a.s. g-separability of E with
respect to the distribution of § [3].

Now, set S, = Y71 X;, R,=Y2,., X, and let g, u, v, be the dist-
ributions of &, S,, R,, respectively. For-arbitrary u, t > 0we set F() = p{q < 1}
and

F;Su(t) = nu{(xa y)EEn XER; q(x+y) <, q()’) < u}
J mixeE; gx+n<tivdy= [ Fit)v{dy)

lasm {gsu}
where E,, E" depnote the linear span of suppu,, suppv,. respectively.
Analogously,
Fisult) = p{(x, y)e E, x E";

{ Fiv.(dy).

{g>u}

glx+y) <t, q(y) > u}

Before formulating and proving our theorem we make some comments
explaining the idea of the proof. As usual, we try to reduce our problem to
a finite-dimensional situation, which can be handled by applying pelar
coordinates. To do this we write F(t) in the form

F(t) = Ficu()+ Fgs(0),

where t > 0 is fixed and 0 < « < ¢. Then the jumps of F'(t) can be estimated by
the sum of the corresponding jumps of 4 a<u(t)/dr and the function dFy}. ,(1)/dt.
Since F,(t) is expressed as an integral of the distribution funétion Fi(r) of
a finite-dimensional random vector S,, shifted by ye E", and integrated over
{g < u}, the jumps of its derivative can be estimated using polar coordinates.
More precisely, we have the following result, proved in [4]:

LeEMMA. Let (X)) be a sequence of independent finite-dimensional random
vectors with values in E such that ) {2, X, converges with respect to q. Assume
that the p, are full and that they have bounded and continuous densities. Then for
every t >0 and every 0 < u <t the function Fy,(t) is positive and absolutely
continuous for large n and has left and right derivatives with respect to t satisfying

AFyeu)” _dFye, (0% _ 2u dFje,)"

1 0< <
) dt dt - t—u dt

Remark. The above result was proved in [4] under slightly different

assumptions. What remains -to be shown here is that Fig, is positive for
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large n. This, however, follows at once by the obvious inequality

FZSS(E) twu}v {Q’ }:
if we recall that 4(R,)—0 as.

mig <

~ Now, the next and most essential problem is to estimate the derivative of

Fr..(0). Recall that g(R,)— 0 a.s., which implies that F..,(t}—0 as n— co. The

difficult part of the proof is to show that this is also true for the derivative of

Fi..(t). More precisely, we only have to consider the left derivative. Oddly

enough, the corresponding statement for the right derivative is much simpler.
We are now able to state and prove our theorem.

THEOREM. Let (X)) be a sequence of independent finite-dimensional random
vectors with values in E such that S =% {2, X, converges as. with respect to
a measurable seminorm g. Assume that the distributions of X ; are log concave and
full. Then the distribution function of q{S) is differentiable at every point t > Q
and its derivative is continuous on (0, o),

Proof. We divide the proof into several steps.

1. For all n and for every t >0 and u > 0 we have
@ , F(t) = Faeu{t)+ Fis (1)

Assume that 0 < u < t. Then, by the remark made after our lemma and the log
concavity of F(f) and F7,(t) (as a function of £) we infer that for n large enough

“these functions have left and right derivatives at . Becauvse of (2) the function

Fo. {0 has the same property. Using the log concavity of F once again we also
have
dF{t)+ dF(n)”
P

Therefore, using (1} and (2) we obtain for O< u <t

- + n - 1 +
Ode(t) _dF{y) de‘P"(t) v 2u dFj<,(t) _
dt dt dr t—u dt
Since obviously '
dFpe, ()" dF(z)+
TR T

and u is arbitrary such that 0 < u < 1, to prove the theorem it is enough to
show that for every such u

. NG
3) lim—du

=0,
o0 dt -

Note that the difficulty of analyzing F}. ,{t) and its derivatives stems from the
fact that it is no longer log concave.
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2. Let u and ¢ be fixed positive numbers such that u < i First, observe that
if for all n large enough Fy..,(t} = 0 then (3) is obviously fulfilled: Therefore,
passing to subsequences if necessary, we may assume that Fj..,(t) > 0 for all n,
Uunder this assumption we show that

€Y lim sup R Him sup M«-

AHeD @l \ t = au

Note that the right-hand side of the above inequality involves
easier to deal with, being a log concave function of {u, 1).
To show (4), let s be a fixed positive number such that s < t. Then for every
positive h, h < 1, and arbitrary Borel subsets 4, B < E* we have
() A=hMx, 9 gbc+y) < t, yedf+h{lx, y); g(x+)) <t—s, yeB}
= {(x, ¥); q(x+y) <t—hs, ye(l—hA+hB}.

‘By log concavity of u we get
(6) ] (t—hS)V (dy) = (f Fo@yvady)' - "(I Fyt—spv,(dy)).

(L—h)A+hb

Fj <, (1), which is

Now take positive u, w such that 4 < w and take 4 = {yeE" q(y)> u} dnd
- B={yeE"; q(y) < w~u}. Then -we clearly have e E" q(y) > u—hw}
(1 WA+hB. The mequahty {6} then yields

Foou-mlt—hs) 2 (Fomu(®) "' (Fhcw-ult~9))".
.Since we have assumed that Fj, () > 0, the right-hand side of the above
inequality becomes positive for large n and we can take logarithms of both
sides to get

1
(N 0F ot —hs)—InFpo (0] = InFlep - o(t—8)— InFo (1),

Setting P(t, u) = I Fy. ,(t), we can rewrite the left-hand side of (7) in the form

1

—{‘P(r—hs u—hw)—{t, u].

It is plau31ble that the above expression converges, under appropriate
assumptions on ¥, to what we would call the left-hand directional derivative of
¥ in the direction of {(—s, —w). If this indeed were the case, the left-hand side
of (7) would become

® () Pty (g P

Taking into account the form of ¥ and the fact that
5F3>u(t, u)“ ___BFZSu(Is u)‘

ou du
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we would then obtain
N PO 0
o wliel S b 00 Py —) (0],

Observe now that the expression on the right-hand side of (9) is of the form
z[lnx—Inz] with z = F () —0, so it converges to 0, too, as n— o0. Thus, we
would finally obtain
‘ oFt. ()" w, (®)
R i

which clearly yields (4). It thus remains to show why the left-hand side of (7)
can. be replaced by (8) and this is done in the next step.

3. In this step we complete the proof of (4) by supplying technical details

lacking in the last part of the previous step.
We first write the left side of (7) in the form

%[H’(t—hs, u—hw)—¥(t—hs, u}]+%[¥’(twhs, u)— Y, uyl.

Observe that, as h—0, the second term coﬁverges. to
t,u)” N E) R
(O _ (g Tl )

Next, using the fact that (3F}«,(t)/8v) (Fzg,,(t))‘1 is nonincreasing as a function
of v, and that —38F"..,(1)/6v = BF;<,(t)/0v is nondecreasing as a function of ¢,
we estimate the first term:

G'P(t hs, v)

1 u
—[‘I’(t——hs u—hw)— F{t—hs, u)] :T j

—hs)

% j (F2so(t—hs)) ™ do

amsumw(t—hs}- \ il b Fae(t—hs)
v (Foawml—h) 3 | T ih

du
aF"Su hw(t) " 1 * F;Su t)
<w ‘I—a{;_(Fq\,, _pw(t—hs) ™" j i (t hs)
Now, as Ji—0, the last expression converges to
BF"\,,(t)
du

This clearly justifies the inequality (9) and ends the proof of (4).

L ]

(Fe>ult) ™
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4. Next, we show that Fj,(f) is asymptotically flat in u for every ¢, that is,
3F;\ﬂ(t)

n-—'m du

{10) =0,

To show this we tepeat Step 2 with different sets 4 and B in (6):
A={yeE% q0)<u),  B={yeE’; a(y) <u-w},
where 0 < w < . Then for every positive b, h < 1, we have
{yeE"; q(y) Su—hw} 2 (1—h)A+hB.
Hence, replacing in (6) (t—s) by (i-+s) we now obtain

Frsu—m{t+hs) 2 (Fic () " (Frcu-w(t+3)"
This again yields

1
(11) };[InF"s,‘_,,w(t+hs) InFie, ()] 2 mFq,_{t +5)~InFpe (1),

Recall that for every positive ¢ and u the function Fi¢,(¢) is positive for large n,
so the above inequality makes sense then. Puttmg D(t, u) = InFyg,(t) we
repeat the arguments of Step 2. As before we anticipate that the left-hand side
of (11), after letting & — 0, can be replaced by a directional derivative of @ in the
direction of (s, —w). The proof that this is indeed the case is postponed until
the last step. Thus, the inequality (11) will yield

Sangu(f)+ wansJ(f)_
ot du
Since Fjcy—y(t+8)—> F(t+s)and Fie, ()= F(t) as n— o0, the expression on the

right-hand side of the above inequality becomes positive for large n. Thus, we
will obtain

>F2<u(t)[1nF fu— w(t”‘l"S) IIIFZQ,,(I)].

. u AN . n< + +
lim sup—é1 Whm sup oF 6"(1) : dFd(t) :
n=+co oo i1 W L

Since s >0 is arbitrary, this will give (10) and complete the proof of .the
theorem.

5. In this step we show that the left-hand side of (11), after letting h— 0, can
be replaced by

anSH(I)-F ansu(t)_ n -1
a W e (Fqsu(t)) .

This will complete the proof of (10) and end the proof of the whole theorem.
Note that we deal here with a concave function @, which makes things a little
easier than in Step 3.
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First, we write the left-hand side of (11) in the form

- (12) %[@(t+hs, u—hw)— (1, u-—hw)]—l—%[cﬁ(t, u—hw)—&(t, w)].

Now, it is clear that, as k-0, the second term above tends to

6FZ<,,(t) )

ad(t, Wy~ <
= (—w)————
cu

(—W}M—aa“"— (Fau®)™!

Next, using concavity of & we estimate the first term of (I12):

t+hs k
—[di(t-]—hs u—hw)—o(t, u— hw]—rl— _[ Qﬂ‘;;_ﬂ

_ SaFZSu—hw(f)+

dr

o —hw)"
=S (I, “ W) (FESumhw(t))_l

= at - ot
BF ()" ‘) _
B M

at

This clearly completes the last step.

Remark. (i} If we only assume that the series § = Y2 X, converges a.s.
in E and ¢(S) is a.s. bounded, then g(R,)-+¢ a.s.,, under the assumption that the
X, are symmetric [3]. If ¢ > 0 then F(t) = 0 for ¢ < ¢ and F' may have jumps.
In this situation, the above proof yields the following estimate of the relative
size of the jumps of F':

dar (s~ e drint
dt Tt—c dt

forall t>e.

(i} Note that the whole proof remains valid also for a-concave measures,
for —oo < a0 [1], [2] These measures, however, are not closed under
convolution. In this case instead of distributions of series § = ) /2 X; with
independent components we may consider random vectors § having the
following property: for all n, S = S, + R,, with S, finite-dimensional and full, S,
S.. R, a-concave, and ¢(R,)—0 in probability as n— oo, This property,
however, still seems to be too restrictive.

At the end we mentioﬂ one of the central problems in this area (posed by
M. Talagrand).

ProprEM. Suppose that u is a Gaussian measure on a separable Banach
space (E, | [}). Is then the function (0, co)at—F(i) real-analytic?

The author would like to express his gratitude to Dr. Michal Ryznar for
stimulating conversations on the subject.
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Tmproved ratio inequalities for martingales
by
MASATO KIKUCHI (Toyama)

Abstract. We show that the martingale inequality
E[{MyL exp(ad M) o/ME)] <€ Cop ELXMOE]

is valid only for 0 < ® < n%/8. In a previous paper [3] we proved it for sufficiently small o > 0. Our
new result is a sharp estimate on e

1. Introduction. Let (@, §,(F)zo. P) be a filtered probability space
satisfying the usual conditions. Throughout this short note, we deal only with
continuous (local) martingales adapted to the filtration (=0, and such
a (local) martingale is called “(local) martingale” simply. Moreover, unless
otherwise precisely stated, we assume that (local) martingales vanish at t = Q.

As usual, for every martingale M = (M ),z 0, We set M = sup, ¢, 1M and
denote by <M) its quadratic variation process. The following result, which is
an improvement of results in Gundy [2] and Yor [5], have been established in
[3]: for sufficiently small o >0 and every p> 0, we have

(0 <p<c0)

(1) E[MEexp(aMb/{MyE] € Cop EIMET],
2) E[{M)E2exp(a(Mo/ME)] < Co , ELXMYEL,

where C,, denotes an absolute constant depending only on « and p. Note that
it is not necessarily the same from line to line, and we shall use this notation
also in what follows. We should be careful with the difference between the
powers of ratios appearing in (1) and (2).

2. Statement of results. Our new estimates for the inequalities (1) and (2),
which are themselves our main object, are the following.

TuroreM. {i) If 0 < x < 1/2, the ratio inequalities
(3 E[M*exp(aM¥ /(M) )] < Coz E[MZY]
(39 E{CMYEPexpeMA2 /(M) )] € Cop E[XMOER]

(r >0,
(p>0)
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