icm

STUDIA MATHEMATICA 99 (2) (1991)

On topologizable algebras

b

V. MÜLLER (Prague)

Abstract. We construct a commutative algebra which is not topologizable as a topological algebra (with jointly continuous multiplication) and a commutative topological algebra which cannot be topologized as a locally convex algebra.

Let A be an associative algebra. By [2] it is always possible to define a topology on A which makes A a locally convex algebra with separately continuous multiplication (i.e. x_{α} , x, $y \in A$, $x_{\alpha} \to x$ implies $x_{\alpha}y \to xy$, $yx_{\alpha} \to yx$).

On the other hand (cf. [3]) in general it is not possible to introduce a topology on A which makes A a locally convex algebra with jointly continuous multiplication (i.e. $x_{\alpha} \to x$, $y_{\beta} \to y \Rightarrow x_{\alpha} y_{\beta} \to xy$). The aim of this note is to exhibit two examples which continue these investigations.

In the first example we construct a commutative algebra which admits no topology. This gives a negative answer to the question raised in [2]. In the second example we construct a topological algebra which admits no locally convex topology.

All algebras in this paper will be complex (this condition, however, is not essential).

We say that an algebra A is topologizable (topologizable as a locally convex algebra) if there exists a topology on A which makes A a topological (locally convex) algebra with jointly continuous multiplication.

It is easy to see that an algebra A is topologizable if and only if there exists a system \mathscr{V} of subsets of A (zero-neighbourhoods in A) satisfying

- $(1) \qquad \bigcap_{V \in \mathscr{V}} V = \{0\},\$
- (2) $\lambda V \subset V$ for every $V \in \mathcal{V}$ and complex number λ , $|\lambda| \leq 1$,
- (3) each $V \in \mathcal{V}$ is absorbent,
- (4) for every $V \in \mathcal{V}$ there exists $W \in \mathcal{V}$ such that $W + W \subset V$,
- (5) for every $V \in \mathcal{V}$ there exists $W \in \mathcal{V}$ such that $W : W \subset V$.

For basic properties of topological algebras see e.g. [1].

THEOREM 1. There exists a commutative algebra which is not topologizable.

¹⁹⁸⁵ Mathematics Subject Classification: Primary 46J05.

Proof. Denote by N the set of all positive integers and by \mathscr{F} the set of all sequences $f = \{f_j\}_{j=1}^{\infty}$ of positive integers. Consider the linear space A of all formal linear combinations of elements c, $x_i (i \in \mathbb{N})$ and $a_f (f \in \mathscr{F})$. We define a multiplication in A by

$$cz = zc = 0$$
 for every $z \in A$,
 $x_i x_j = 0$ $(i, j \in \mathbb{N})$,
 $a_f a_{f'} = 0$ $(f, f' \in \mathcal{F})$,
 $x_n a_f = a_f x_n = f_n c$ $(n \in \mathbb{N}, f \in \mathcal{F})$.

Clearly these relations define uniquely a multiplication on A which makes A a commutative algebra (for the associative law note that the product of any three of the basis elements is zero).

We prove that A is not topologizable. Suppose on the contrary that there exists a system $\mathscr V$ of zero-neighbourhoods in A satisfying (1)–(5). Let V, $W \in \mathscr V$ satisfy $c \notin V$ and $W \cdot W \subset V$.

For $n=1, 2, \ldots$ choose $s_n>0$ such that $x_n \in s_n \cdot W$. Let $f=\{f_n\}_{n=1}^{\infty}$ be a sequence of positive integers with $f_n>ns_n$. Then $a_f \in r \cdot W$ for some r>0. We have

$$c = \frac{1}{f_n}(x_n a_f) = \frac{rs_n}{f_n} \left(\frac{x_n}{s_n} \cdot \frac{a_f}{r}\right) \in \frac{rs_n}{f_n} \cdot W \cdot W \subset \frac{rs_n}{f_n} V.$$

Since $c \notin V$ we have $rs_n/f_n > 1$ and $r > f_n/s_n > n$ $(n \in \mathbb{N})$, a contradiction.

Remark. Let X be a linear space of infinite dimension and let $\mathcal{L}(X)$ be the algebra of all linear mappings acting in X. By [3], $\mathcal{L}(X)$ cannot be topologized as a locally convex algebra. Using analogous method as in Theorem 1 it is possible to show that $\mathcal{L}(X)$ is not topologizable. In fact, even the algebra of all finite-dimensional operators in X is not topologizable.

THEOREM 2. There exists a commutative topological algebra which is not topologizable as a locally convex algebra.

Proof. Let K be an uncountable set. Denote by \mathscr{D} the set of all functions $d: \mathbb{N} \times K \to \mathbb{N}$. For $d \in \mathscr{D}$, $n \in \mathbb{N}$ and $k \in K$ we shall write shortly d_{nk} instead of d(n, k).

Clearly for every $d \in \mathcal{D}$ and $n \in \mathbb{N}$ there exists a subset $K_{dn} \subset K$ and a positive integer d_n such that card $K_{dn} = d_n$ and $d_{nk} = d_n$ for every $k \in K_{dn}$. Let A be the linear space of all (finite) linear combinations of elements c, x_{nk} $(n \in \mathbb{N}, k \in K)$, a_d $(d \in \mathcal{D})$ and y_{dnk} $(d \in \mathcal{D}, n \in \mathbb{N}, k \in K_{dn} \subset K)$.

We define a multiplication in A by

$$cz = zc = 0 (z \in A),$$

$$y_{dnk}z = zy_{dnk} = 0 (z \in A, d \in \mathcal{D}, n \in \mathbb{N}, k \in K_{dn}),$$

$$a_d a_{d'} = 0 (d, d' \in \mathcal{D}),$$

$$x_{nk}x_{n'k'} = 0 (n, n' \in \mathbb{N}, k, k' \in K),$$

$$x_{nk}a_d = a_d x_{nk} = \begin{cases} d_n y_{dnk} & (d \in \mathcal{D}, n \in \mathbb{N}, k \in K_{dn}), \\ 0 & (k \notin K_{dn}). \end{cases}$$

Clearly A is a commutative algebra. To define a topology on A we shall need the following notations:

Let \mathscr{L} be the set of all complex-valued functions $\lambda: k \mapsto \lambda_k$ defined on K with finite support. For $\lambda \in \mathscr{L}$ and $i \in \{0, 1, 2, ...\}$ define

$$m_i(\lambda) = \min_{\substack{M \subseteq K \\ \text{card } M = i}} \max_{j \in K \setminus M} |\lambda_j|.$$

Clearly $\max_{i \in K} |\lambda_i| = m_0(\lambda) \ge m_1(\lambda) \ge \dots$ and card $\{j \in K: |\lambda_i| > m_i(\lambda)\} \le i$.

LEMMA 3. Let $\lambda, \mu \in \mathcal{L}$ and let $s, t \in \{0, 1, 2, ...\}$. Then

$$m_{s+t}(\lambda+\mu) \leqslant m_s(\lambda) + m_t(\mu)$$
.

where $\lambda + \mu \in \mathcal{L}$ is defined by $(\lambda + \mu)_k = \lambda_k + \mu_k$ $(k \in K)$.

Proof. Suppose $j \in K$, $|\lambda_j + \mu_j| > m_s(\lambda) + m_t(\mu)$. Then either $|\lambda_j| > m_s(\lambda)$ or $|\mu_j| > m_t(\mu)$. Hence

$$\operatorname{card} \{j: |\lambda_i + \mu_i| > m_s(\lambda) + m_t(\mu)\}$$

$$\leq \operatorname{card} \{j: |\lambda_i| > m_s(\lambda)\} + \operatorname{card} \{j: |\mu_i| > m_t(\lambda)\} \leq s + t,$$

and we conclude that $m_{s+t}(\lambda + \mu) \leq m_s(\lambda) + m_t(\mu)$.

For
$$\lambda \in \mathcal{L}$$
 define $h(\lambda) = \sum_{i=0}^{\infty} (i+1)m_i(\lambda)$.

LEMMA 4. If
$$\lambda$$
, $\mu \in \mathcal{L}$ then $h(\lambda + \mu) \leq 4[h(\lambda) + h(\mu)]$.

Proof. We have

$$h(\lambda + \mu) = \sum_{r=0}^{\infty} (2r+1)m_{2r}(\lambda + \mu) + \sum_{r=0}^{\infty} (2r+2)m_{2r+1}(\lambda + \mu)$$

$$\leq \sum_{r=0}^{\infty} (2r+1)[m_r(\lambda) + m_r(\mu)] + \sum_{r=0}^{\infty} (2r+2)[m_r(\lambda) + m_{r+1}(\mu)]$$

$$\leq \sum_{r=0}^{\infty} (4r+3)[m_r(\lambda) + m_r(\mu)] \leq 4[h(\lambda) + h(\mu)].$$

We now continue the proof of Theorem 2. Let $u \in A$, i.e. u can be expressed as

(6)
$$u = \alpha c + \sum_{n \in \mathbb{N}} \sum_{k \in K} \beta_{nk} x_{nk} + \sum_{d \in \mathcal{D}} \gamma_d a_d + \sum_{d \in \mathcal{D}} \sum_{n \in \mathbb{N}} \sum_{k \in K_{dn}} \delta_{dnk} y_{dnk}$$

where α , β_{nk} , γ_d , δ_{dnk} are complex numbers such that only a finite number of them are nonzero. For u of the form (6) define

$$f(u) = |\alpha| + \sum_{n \in \mathbb{N}} h(\{\beta_{nk}\}_{k \in K}) + \sum_{d \in \mathcal{D}} |\gamma_d| + \sum_{d \in \mathcal{D}} \sum_{n \in \mathbb{N}} \frac{2}{d_n + 1} h(\{\delta_{dnk}\}_{k \in K})$$

(we put formally $\delta_{dnk} = 0$ for $k \in K \setminus K_{dn}$).

The function $f: A \to [0, \infty)$ has the following properties:

- (a) $u \in A$, $u \neq 0 \Rightarrow f(u) \neq 0$,
- (b) $f(\varepsilon u) = |\varepsilon| f(u)$ for each complex number ε and $u \in A$,
- (c) $f(u+u') \le 4[f(u)+f(u')],$
- (d) $f(uu') \leq 8f(u)f(u')$.

The first two properties are evident, property (c) follows from Lemma 4. To prove (d) suppose that $u, u' \in A$ are of the form (6) (i.e. $u' = \alpha' c + \sum_n \sum_k \beta'_{nk} x_{nk} + \ldots$). Then

$$\begin{split} f(uu') &= f\left(\sum_{d,n} \sum_{k \in K_{dn}} d_n y_{dnk} (\beta_{nk} \gamma'_d + \beta'_{nk} \gamma_d)\right) \\ &= \sum_{d,n} \frac{2d_n}{d_n + 1} h\left(\{\beta_{nk} \gamma'_d + \beta'_{nk} \gamma_d\}_{k \in K_{dn}}\right) \\ &\leqslant 8 \sum_{d,n} \left[|\gamma'_d| h\left(\{\beta_{nk}\}_{k \in K_{dn}}\right) + |\gamma_d| h\left(\{\beta'_{nk}\}_{k \in K_{dn}}\right)\right] \leqslant 8 f(u) f(u'). \end{split}$$

Let $V = \{u \in A: f(u) < 1\}$ and $\mathscr{V} = \{tV: t \in (0, \infty)\}$. Then \mathscr{V} satisfies conditions (1)-(5) so A with the topology given by \mathscr{V} is a topological algebra. Let $M \subset A$ be the subspace generated by the elements of the form

$$c - \frac{1}{d_n} \sum_{k \in K_{dn}} y_{dnk}, \quad d \in \mathcal{D}, \ n \in \mathbb{N}.$$

Clearly M is an ideal in A.

Let $u \in A$ be of the form (6). If $\beta_{nk} \neq 0$ for some $n \in \mathbb{N}$, $k \in K$ or $\gamma_d \neq 0$ for some $d \in \mathcal{D}$ then $(u + \varepsilon V) \cap M = \emptyset$ for a suitable $\varepsilon > 0$, so $u \notin \overline{M}$. Similarly, $u \notin \overline{M}$ if $\delta_{dnk} \neq \delta_{dnk'}$ for some d, n, k, k'. Finally, if

$$u = \alpha c - \sum_{d,n} \sum_{k \in K_{dn}} \varepsilon_{dn} y_{dnk}$$
 and $\alpha \neq \sum_{d,n} d_n \varepsilon_{dn}$

we have $u \notin \overline{M}$ as $f((1/d_n)\sum_{k \in K_{dn}} y_{dnk}) = 1$ $(d \in \mathcal{D}, n \in \mathbb{N})$.

Hence M is a closed ideal in A and $c \notin M$. Let B = A/M and let $\pi: A \to B$ be the canonical homomorphism. Then B is a topological algebra and $\pi(c) \neq 0$.

We prove that B is not topologizable as a locally convex algebra. Suppose on the contrary that there exists a system W of convex zero-neighbourhoods in B satisfying (1)-(5). We shall need the following lemma:

LEMMA 5. For every $W \in \mathcal{W}$ there exist $d \in \mathcal{D}$ and $n \in \mathbb{N}$ such that $\pi(y_{dnk}) \in W$ for every $k \in K_{dn}$.

Proof. Let $W \in \mathcal{W}$. Suppose on the contrary that for every $d \in \mathcal{D}$ and $n \in \mathbb{N}$ there exists $k \in K_{dn}$ with $\pi(y_{dnk}) \notin W$. Let $W' \in \mathcal{W}$ satisfy $W'W' \subset W$. For $n \in \mathbb{N}$ and $k \in K$ choose $s_{nk} > 0$ such that $\pi(x_{nk}) \in s_{nk}W'$.

Choose $d = \{d_{nk}\}_{n \in \mathbb{N}} \in \mathcal{D}$ such that $d_{nk} > ns_{nk}$ $(n \in \mathbb{N}, k \in K)$. Then $\pi(a_d) \in rW'$ for some r > 0.

We have supposed that for every $n \in \mathbb{N}$ there exists $k \in K_{dn}$ such that $\pi(y_{dnk}) \notin W$. On the other hand, we have

$$\pi(y_{dnk}) = \frac{1}{d_n} \pi(x_{nk}) \pi(a_d) \in \frac{1}{d_n} s_{nk} W' r W' \subset \frac{s_{nk} r}{d_n} W.$$

So $s_{nk}r/d_n > 1$, $r > d_n/s_{nk} > n$ for every $n \in \mathbb{N}$, which is a contradiction.

We now conclude the proof of Theorem 2. Let $W \in \mathcal{W}$. Let $d \in \mathcal{D}$ and $n \in \mathbb{N}$ be given by Lemma 5. Then

$$\pi(c) = \frac{1}{d_n} \sum_{k \in K_{dn}} \pi(y_{dnk})$$

and $\pi(y_{dnk}) \in W$ for every $k \in K_{dn}$. Since W is convex and card $K_{dn} = d_n$ we have $\pi(c) \in W$ for every $W \in \mathcal{W}$, a contradiction with condition (1).

PROBLEM. Is it possible to construct separable algebras with properties of Theorem 1 (Theorem 2)?

References

- [1] W. Zelazko, Selected Topics in Topological Algebras, Aarhus Univ. Lecture Notes Ser. 31, 1971.
- [2] -, On certain open problems in topological algebras, Rend. Sem. Mat. Fis. Milano, to appear.
- [3] -, Example of an algebra which is nontopologizable as a locally convex topological algebra, Proc. Amer. Math. Soc. 110 (1990), 947-949.

INSTITUTE OF MATHEMATICS ČSAV Žitná 25, 115 67 Praha 1, Czechoslovakia

Received August 21, 1990 (2714)