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Bounded sets in projective tensor products of
hilbertizable locally convex spaces
by
KLAUS-DETLEF KURSTEN (Leipzig)

Abstract. The main results of this paper imply a positive solution of A. Grothendieck’s
problem of topologies for pairs (E, F) of hilbertizable Fréchet spaces or of complete hilbertizable
locally convex spaces with continuous norms and with the property that the closed linear span of
any bounded subset is a Fréchet space (w.rt. the induced topology). Further results concern
bounded and compact subsets of the quasi-completions of projective and inductive tensor products

and an approximation of bilinear forms defined on ExF by bilinear forms defined on
complemented Hilbert subspaces.

1. Introduction. The “problem of topologies™ investigated by A. Grothen-
dieck in [4] is whether the closed convex hulls of tensor products of bounded
sets form a fundamental system of bounded subsets in the complete projective

tensor product E®@ F of locally convex spaces E and F. We will prove here
that this is so in the following two cases:

1. E and F are hilbertizable Fréchet spaces.

2. E and F are complete hilbertizable locally convex spaces w1th con-
tinuous norms and with the property that the closed linear span of any
bounded subset is a Fréchet space.

In agreement with the terminology in [11, 15], locally convex spaces with
the property that the closed linear span of any bounded subset is a Fréchet
space (w.r.t. the induced topology) will be termed quasi-Fréchet spaces or
(QF)-spaces. The concept of hilbertizable locally convex spaces is taken from
[7]. It coincides with the concept of generalized Hilbert spaces used in [6].

Concerning the case of hilbertizable Fréchet spaces, A. Grothendieck
published without proof a more general statement, which may be formulated as
follows:

(¥}  Suppose that E is a hilbertizable Fréchet space and that F is an arbttrary
Fréchet space. Then each bounded subset of E®,F is contained in the
canonical image of a bounded subset of EW® F, where W is a suitably
chosen closed bounded disc in E and Ey, denotes the linear span of
W endowed with the gauge functional of W as a norm.

_And in fact, & proof of («) will be given here.
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186 K.-D. Kiirsten

It was remarked by J1.-P. Jurzak in [9] that the solution of the “problem of
topologies” in the case E = F is a domain of an Op*-algebra endowed with the
graph topology (cf. [14] for the corresponding definitions) has applications to
problems concerning the predual and the dual of an unbounded operator
algebra. In fact J-P. Jurzak used (+) as a theorem. A proof in the case of
Fréchet domains of Op*-algebras was given by the present author in [12].
Another special case of (), the case of E and F being separable hilbertizable
Fréchet spaces, was proved by J. Taskinen in [16]. During the preparation of
the final version of the present paper, J. Bonet, A. Defant, and A. Galbis [2]
gave another proof in the case of E and F being general hilbertizable Fréchet
spaces.

The results concerning Fréchet domains of Op*-algebras were generalized
by the present author in [11, 13] to quasi-Fréchet domains. This generalization
includes standard examples, having inductive limit topology, such as the
Schwartz space of C*-functions with compact support, direct sums of Hilbert
spaces (or, more generally, of quasi-Fréchet domains), or test function algebras
of quantum field theory (cf. [3, 17] for the definition of test function algebra).
This motivates the consideration of quasi-Fréchet locally convex spaces.

Note that the assumption concerning the existence of continuous norms
cannot be omitted becaunse of A. Grothendieck's counterexample

(E 0@ (H C).

The present paper is organized as follows. Section 2 contains the proof of
{). Section 3 contains the solution of the problem of topologies for pairs of
complete hilbertizable (QF)-spaces with continuous norms and a somewhat
more general result concerning bounded subsets in a certain space of nuclear
operators. Section 4 contains three further applications concerning an ap-
proximation of bilinear forms on hilbertizable Fréchet of (QF)-spaces by
bilinear forms which may be represented by operators acting between Hilbert
spaces, bounded subsets of an inductive tensor preduct, and compact subsets of
a projective tensor product.

2. Proof of Grothendieck’s statement. In this section, we prove A, Grothen-
dieck’s statement (x) formulated in the introduction.

Since E 1s a hilbertizable Fréchet space, we can {and do) fix a sequence (E,)
of Hilbert spaces and a sequence (Q,) of continuous linear operators
Q. E— E, such that the sequence of seminorms {||Q,"|) is increasing and
defines the topology of E. We also fix an increasing sequence (g,) of seminorms
generating the topolegy of F.

Let . be a bounded subset of E®_F. Then the values

A= 1+ sup {(Il- | g, ® 2)(2, ®IdR)(3): s},

are finite. (p @ g denotes the projective tensor product of seminorms, Id,, is the
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identity map on F.) We set
g,=2""(A)" .
Now we consider the linear subspace

Hyi= {60,001 @k and 3, [8,0,0)* < o}
=1

of the (complete) orthogonal sum of Hilbert spaces
H:=Y®E
n=1
The following argument shows that H, is complete: Given a Cauchy
sequence ((2,0,00%1)i>1 in Hy, the sequences (Q,@)i%, are Cauchy se-
quences in E,. This means that {¢,) is a Cauchy sequence in E. Denoting its
limit by ¢,, we have

; IlanQn(q)k_(PO)Ilz hm Z ”3 o, {(Pk ‘Pt)”z < g,

W op=1

lim Z 12, Qul i~ @o)lI* =

ko p=q

which shows that (5,0,(¢,— @))% and consequently also (g,Q, @), are
elements of H, and that (¢,0, )2 is the limit of the given Cauchy sequence.

Let P denote the orthogonal projection of H onto H,, considered as an
element of £ (H, H,) {the space of continuous linear operators mapping H into
Hg). Let Y be the linear map of H, into E defined by ¥ ((¢,0,0)% 1) = (. Since

12,01l < (&)™ 1eaQn @)1 | iz,
Y is an element of #(H,, E). Further, we define the operators
Jm: Epsf—(f)i=1€H,
where f,=f and f,=01i n#m

Given se .,
(I 2 ® a){(J, 2, ®TdR)6) < (10, | D)) < Amastnan-
Consequently,

I @
(”“H®QI)(28(J Qn®IdF(s) Z + ;16H2ﬂ<w'
n=1 n= n +

This implies that the series Y ¢,{J, 0, ® Id,;}{s) converges absolutely in H &, F
for all se.# and that the set

R:={ 21 &,(PJ, 0, ®1dp)(s): se#}

is a bounded subset of H,®,F.
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Since Y is injective, Y®1d, is a topological linear isomorphism of H,, ®,F
onto E, &, F, where W < E is the bounded disc {Yf: feH, and | f] <1}.
Consequently, (Y®Id)(#) is the canonical image of a bounded subset of
Ey®,F. ‘

Now it suffices to show that

oo

(1) - Y. 6,(YPJ,0,01dp)is) =
n=1

for all se.# (which implies .# = (Y® Id!l(g?)). In order to do this, we use the
fact that E'®F is dense in (EQ_F) wrt the weak topology
o((E®,FY, E®F)because E has the approximation property (see [10], §43.2,
(12)).

Let geE', he F', and se .4 be given and let s = Y ;% ; {t, @y, be a represen-
tation of s such that

3 10.%l @ity < 0
k=1

for all n, leN. There exists me N such that h{y) < mg,,(n) for all ne F. Setting
Yo = foﬂ hin, )y, we obtain

1nroll < m(1Qs | ® 4)(S) < Mimainm-
Consequently, the series > 5., &,7,Q,¥, converges absolutely in H, and

[>s)

Z SnJHin!fQ = (SHQMQIIO):J:]. EHO’

n=1
YP Y 8,000 = .
n=1

Thus we obtain

oo

G@mn(Y &(YP1,0,@1d)(s) = }ai Sn(g®h)(§ (YPT, 0,40 ®m,)
r=1 k=1

r=1

il

= &g(YPI,0¥0)

n=1

= 4(vP i ey 0ulo) = 9l0e) = (9 @ BYS).

This implies (1) because E'® F’ separates the points of E_F. This completes
the proof.

3. Bounded sets of nuclear operators. The main result of this section gives
a characterization of bounded subsets in a certain locally convex space of
nuciear operators which turns out to be a subspace of the complete projective
tensor product of a pair of hilbertizable (QF)-spaces with continuous norms.
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Before stating this result, we introduce some more notations. Given an
absolutely convex O-neighbourhood U in a locally convex space E, gy, denotes
the gauge functional of U, E, denotes the quotient space E/(qy)~ " (0) endowed
with the norm defined by g, and @, denotes the canonical quotient map
E — E,. By a Hilbert (resp. Banach) disc in E we mean a closed bounded
subset M < E such that the linear span E,, of M admits a structure of 2 Hilbert
(resp. Banach) space with unit ball M. The identical imbedding of the Hilbert
(resp. Banach) space E,; into E will be denoted by J,,. The dual and the
completion of E will be denoted by E' and E, resp. The strong dual, Mackey,
and weak topologies will be denoted by 8, #, ¢, resp. Given locally convex
spaces E and F, 4 (E, F) denotes the linear space of all nuclear operators from
E into F. The nuclear norm of a nuclear operator T acting between normed
spaces will be denoted by v(T). The transposed of an operator Te #(E, F) will
be denoted by T :

THEOREM 3.1. Suppose that E and F are ‘hilbertizable (QF)-spaces with
continuous norms. Let a subset M < ¥ (Ej, F) be given such that the operators
0, S(Qy) (Se#) are nuclear and that

sup{v(Q,S(Qy)): Se.#} < o

for arbitrary absolutely convex O-neighbourhoods U = E and V < F. Then there
exist Hilbert discs M c E and N = F such that # is contained in the set

2) {JyRUy): ReN((Ey), Fy) and v(R) < 1}

Proof Let 1f and B be 0-neighbourhood bases in E and F, resp., such that
the mappings Q, and Q, are injective and that the completions of Ey, and
F 3, are Hilbert spaces for all Uell and Ve B. Let Uyel and Ve B be fixed.
Note that

10y S(Quo) Fil < IfIsup{¥(Qy S(Qu,)): Se -},

which implies that

No:={8(Qu.) f: Se#, fe(Eg,) and |Ifll <1}

is a bounded subset of F. The closed linear span G of N, is a Fréchet space. It
follows from injectivity of Qy, and semireflexivity of E that the range of (Qy,) is
dense in Ej. This implies further that the range of S is contained in G for all
Se.#. Similarly, '

My:={S'(Qv,) g: Se#, ge(Fy,) and {jgl| < 1}
is a bounded subsct of E and its closed linear span D is a Fréchet space
containing S'{F") for all Se.#. \
Let (I7,) and (V) be sequences in U and B, resp., such that U, 4, < U,

V41 < V,and that U, ~ D and V, ~G are O-neighbourhood bases of D and G,
resp. Let E, and F, be the completions of Ey, and F,), resp. Consider the
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operators
0, Eap—Qu,pek,, R Fay-QpyeF,
Define the constants
Ayi= 1+sup{v(R,S(Q)): Se.#},

Now we consider the linear subspace

g,i=2""(4,)"*

Hy:={(e,0,¢)z1: 9D and 3 ll&,Q,0]* < oo}

n=1
of the {complete) orthogonal sum of Hilbert spaces
=]
H=Y®E,.
r=1
By the argument already used in Section 2, H|, is a closed subspace of H. We
denote by P.the orthogonal projection of H onto H,, considered as an element
of #(H, H,). Furthermore, we define the operator
Y: HOB(SnQn(P):Ll - ¢EE=
which is easily seen fo be continuous. It may be written as Y = J,, ¥, where
M is the Hilbert disc
M ={Yf feH, and |f] <1}

and Yj is an isometry of H, onto E,,. Similarly, the orthogonal projection of
the Hilbert space

Ki= Y@®F,
n=1

onto its closed linear subspace

Ko:={(s,R, ¢ YyeG and Z le, R < oo}
will be denoted by Q. The operator
zZ: KOB(San‘//):IDal_)E[’EF

belongs to £ (K, F) and may be written as Z = J,Z,, where N is a Hiibert
disc in F and Z is an isometry of K, onto F. We also consider the operators

Ini B3 f = (f=1eH, L Faf—(f)5t. ek,

where f,,.:0 if n#¢mand f,=1
Given Se.#, the operator

= S eunZoQL RSO P (LY

" am=1
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is nuclear and satisfies v(T) < 1 because

z gnsmv(RmS(Qn)’) < z £,E max{n m} Z Ep& ‘a‘nj'm “<-1

nm=1 nm=1 =1

It suffices now to show that S = JNTS(J - To do that, let feE and
he(F .Y be given, Set g = (R,) h. Since the range of § is contained in G and

i lew R S(YPJ, QY f1* < Z (&) 1R S(Q)H 1673 f 112

Z (&) (4

maxfm, n}) “ JM)sz < 00,

it follows that

o

(enRuS(YPS QY fNomi = ¥ enl R S(YPL, Q)

m=1

belongs to K,. This implies
4y, Z 6nlnR,S(YPJ, Q.Y f = S(YPL,Q,)f.

Similarly,

o

SﬂJnQnSlg = Z EanQnS’(Rl)’h

n=1

3
[fagk

belongs to H, and

} ,
YPY 6,J,0.89=5g.

a=1

Thus we obtain

G Tore ) = i 5,20

o0

= g( Y, S(YPI,Q,)7)

n=1

o

Y enlnRoS(YPI,0Q.)f)

= f(YP Y, &J,0,59) = f(59)=a(3).

ne=1 ' :
Since this equality is satisfied for all f in E' and g in the range of (R (which is
dense in Fj), it follows that JyTy(J,) = S. This completes the proof.

Remarks. 1. Theorem 3.1 is also valid for hilbertizable Fréchet spaces
E and F (with or without continnous norms). This can be seen, e.g,, by starting
with decreasing sequences (U,} and (¥} of O-neighbourhoods defining the
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topology of E and F, resp., such that the completions of Ey,, and Fy,, are
Hilbert spaces and by applying then similar arguments to the proof of Theo-
rem 3.1.

2. The seminorms

A (Ep, F)28 — (QVS(QU)’)’

where U < E and V < F are absolutely convex O-neighbourhoods, define
a locally convex topology on A4 (Ej, F), which will be denoted by . Theorem

3.1 means in particular that the sets (2} form a fundamental system of bounded

subsets in A7 (Ep, F)[t,].

3. In the special case when E has dimension ome, one obtains the
well-known result ([8], 6.5.6, [6], 1.9) that the Hilbert discs form a fundamental
system of bounded subsets in F.

Tt is well- knov\m that spaces of nuclear operators are isomorphic to
subspaces of prOJectlve tensor products under suitable assumptions. Before
stating a version of this fact sufficient for our purposes, we. define a subspace
E®F of the complete prcuectlve tensor product by :

E®1:F:= {Z'C,,GD,.@'J/": (Cn)EIl and
n=1 '

(@,), (¥,) are O-sequences in E and F, resp.}.

. PROPOSITION 3.2. Suppose that the locally corvex spaces E and F satisfy the
following three conditions:
(a) E is semireflexive.
(b) Each 0-sequence in F is contained in a Banach disc.
(c) E or F is a projective limit of normed spaces with approximation property.

Then the canonical map EQF — ¥ (Ej, F) extends to a topological linear
isomorphism i of E® . F onto A (Ej, F)[z.].

Proof Assumptmn (c) implies that the canonical mapping E®,F
A (E)p, F‘) Is injective (see [7], 18.3.7 and 16.1.5). Assumptions (a) and (b)
imply that the elements of 4(E}, F) are exactly the operators

[+4]

Esf Z Cn S (@)Y

n=1

where (¢))el, and (¢,) and () are O- sequcnces in E and F, resp. This
establishes the algebraic 1som0rphlsm :

¥ E®ﬂF — A (Ep, F)[,.].

In order to show that y is a topological isomorphism, it suffices to establish
that '

@@a)) = v(QVX(t)(QU)’) (teEQF)
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for absolutely convex 0-neighbourhoods U « E and ¥ < F such that Eq, or
Fon has the approx:matlon property. But this:follows from 15.4.4 in [7] and
from the isometry Eq, &, Fo, = A (Ew)'s Foy)-

To finish this section, we consider the case of complete (QF)-spaces with
continuous norms. It turns out that A" (Ej, F) is isomorphic to E & _F and that
A. Grothendieck’s problem of topologies has a positive solution in this case.

PROPOSITION 3.3. Suppose that E and F are complete hilbertizable
(QF)-spaces with continuous norms. Then N (Ejy, F)[z] is complete.

Proof Let(Sy)a be a Cauchy net in A"(E}, F)[r,]. Then, given f eE’ and
geF', the nets (S; f)ses and ((S;Yg)ses are Cauchy nets in F and E (= W)
resp. Thus we can define linear operators S: E'— F and T: F' — E by settmg

Sf = llinSéf, Tg =1im{S,)g.
5

These operators satisfy g(Sf) = f(Tg) for all feE' and geF'. Consequently,
S 1s weakly continuous. Using semireflexivity of E and F,.we conclude that
Se F(Ey, F).

Also, given absolutely convex O-nelghbourhoods U< Eand V < F, the net
(Q,,S,S(QU) Jsea is @ Cauchy net wr.t. the nucleay norm. We regard @y as an

operator mapping F into the completion Fy, of Fyy. Thus there exists
SUVE./V((E(U)) ﬁ;:)) such that

() lim V(QvSa(Qu)' —Sup)=0.

It is easy to see that Sy = (4. S(Qy). The set # = {S} satisfics, therefore, the -
assumptions of Theorem 3.1. Applying this theorem, we see that §e A" (Ej, F).
Finally, (3) implies that § is the 11m1t of the given Cauchy net. This completes
the proof.

Combining Propositions 3.2 and 3.3, we see that E @,!F is isomorphic to
AN (Ey, F)[x,] if E and F are complete hilbertizable (QF)-spaces with con-
tinuous norms. Applying Theorem 3.1 and Remark 2 after it, we obtain the
following result. '

CoroLLARY 3.4. Suppose that E and F are complete hilbertizable
(QF)-spaces with continuous norms. Then the canonical images of unit balls of
the spaces E,@,Fy, where M E and N < F are Hilbert discs, farm
a fundamental system of bounded subsets in EQ F.

4. Some applications. Here we apply results of the previcus section to
obtain three further results, The first one concerns an approximation of
elements of #(E, Fj) (and, more generally, of bibounded bilinear forms on
E % F) by operators acting between Hilbert spaces. The second one concerns
bounded subsets of the quasi-completion of the inductive tensor product
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E,®,F,. The third one consists in a description of compact subsets of E® _ F.

leen locally convex spaces E and F, let #(E, F) denote the space of

bilinear forms y on E x F which satisfy

4 P :=sup{lylp, Y): peM,yeN} <

for all bounded subsets M = E and N < F. The topology of bibounded
convergence on #(E, F) (gzenerated by the seminorms (4)) will be denoted by 1.
%;.(E, F) denotes the subspace of all jointly continuous bilinear forms. If we
identify Te % (E, Fy) with the bilinear form y;: (¢, ) > (To)(), F(E, Fj)
becomes a finear subspace of #(E, F} which contains #,(E, F) and 7, induces
on #(E, Fp) the topology of uniform convergence on bounded sets. We will
use notations such as y(4-, B} for the bilinear form (@, ) = y(Aep, Byf).

TreoREM 4.1, Suppose that both E and F are hilbertizable (QF)-spaces with
continuous norms or that both E and F are hilbertizable Fréchet spaces. Let
a bounded subset .# < #(E, F)[z,] and a t,-continuous seminorm p on #(E, F)
be given. Then there are projections Ps Z(E, E) and Qe ¥ (F, F) such that

6 sup {p{y(-, )~ (P, @)

and such that the ranges of P and Q are isomorphic (as topological linear spaces)
to Hilbert spaces.

Proof Let Hilbert discs M c E and N < F be chosen such that

p@) < sup{ly(e, W)I: peM, YyeN} ={y({Jy, -, Iyl

Let D and G be the closed linear spans of M and N in E and F, resp. Since
D and G are Fréchet spaces, the set of bilinear forms

DxGalg, y)=v(e. ¥)

is unifofmly continuous, i.e., there are absolutely convex O-neighbourhoods
UcE and ¥V o F such that

(@, ¥l < [Quol Qv

for all ye . #, ¢ €D, and Y e G. Moreover, U and ¥ may be chosen such that the
completions E;) and ﬁv] of Eq, and F(y, are Hilbert spaces. We regard @, as
an element of #(E, Ey,)). Then the operator A:= @, J,, acts between Hilbert
spaces. We will use its polar decomposition A = W|4| (where |4| = (4* 4)!/?)
and the spectral representation |4 = { 1dX,. For neN, we define the operator

Pn:ﬁJM( j‘ A_ldX)’)W*Qu-

(1m0}

Then P, e #(E, E). Using the fact that
W*QuJy = 14| =

syedf} <1

(ye.#)

{1dx,,

icm
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we get
P,) = JM((UI ‘J‘_ldXA)W*QUJM( ] ATHX)WHQy = P,
n, c0) {1/n,%0)

Pay=Ju( [ dx,).
(1/n,0)
Consequently, J,, maps the Hilbert space ( | dX,)E M) onto the range of P,

. L (Ln;o0)
and an inverse mapping is given by

P.E)so—( | A"YdX )W*Qu0.
(1/n,00)
Thus the range of P, is isomorphic to a Hilbert space. Moreover, given ye.#,
we obtain the estimate
P, ) =y(Pys ) < [WEA=P)ye, Ty)|

= [lp(7a (§ axi). Bl

0,1/n]
= “QUJM o _L ]dXﬂ. ” 19y Ixll < (I/M)|QpInk

Constructing projections @, € #(F, F) in a similar way, we obtain further

PPy ) =3Py, Qo)) < (UMIQu P pall < (1/m)liQy T ol

Taking P = P, and Q = Q,, where n is sufficiently large, we obtain (5). This
completes the proof,

Remarks. 1. The bilinear forms (P, Q) constructed in the preceding
theorem are jointly continuous. Consequently, the completion of #,(E, F){t,]
or of ¥(E, Fj)fr,] coincides with #(E, F)[1,]. Also »(P-, Q') may be
represented by an operator T, mapping the Hilbert space P(E)} into the dual of
the Hilbert space Q(F) such that

y(Po, Q¥) = (T, Pe)(Qyr).

2. Applied in the case when F has dimension one, Theorem 3.1 shows that
there exists a net (Py)se Of projections Pye Z(E, E) such that the spaces P,(E)
are isomorphic to Hilbert spaces and such that limyP;o = ¢ wr.t, the
assocmted bornological topology of E and uniformly on bounded subsets of

E (cf [7], 130 and 11.2).

Next we consider bounded subsets of a certain inductive tensor product.
We define a subspace E ® F, of the complete inductive tensor product
B ®,F , of the assocmted Mackey spaces of E and F by

E,®.F,={ ;l ¢, @Y, (c,)€l, and (¢,) and (f,) are

O-sequences in E and F, resp.}.
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TeEOREM 4.2. Suppose that E and F are hilbertizable (QF)-spaces with
continuous norms., Then the identity map on E®F extends to a linear
isomorphism I of E, ®,F, onto E & F which is continuous and has the property

that the restriction of I~ £ to the closed linear span of an arbitrary bounded subset

of E@_F is continuous. Moreover, Eﬂ® F, and E®,F are (QF)-spaces.

Proof Since the topology of the inductive tensor product is stronger than
the topology of the projective tensor product, the identity map on E@F
extends to a continuous linear map I of E, ®, F, onto E®,F. :

Let a bounded subset .# of E®_F be glven Let bounded subsets M < E
and N c F be chosen such that .# is contained in the closed convex hull of
M®N. Let D' = E and G = F be Fréchet subspaces containing M and N, resp.
The identity 1mbeddmg of P®G into E®F ektends to a continuous linear
mapping Ips of D® G into E, &, F, because D® G=D, ®, G,. Further-
mere, the composition Iolpg 1s the continuous extenswn of the identity
imbedding of D®,G into E® F. Since D® G is a topological subspace of
EQ.F (by [61, Proposition 4.3), IoIpeis a topologlcal linear 1somorphlsm of
D® G onto its image. This implies in particular that E®,Fis a (QF}—space
Since

EF,_®1F# = UID.G(D®n6)3

where the union is taken over all Fréchet subspaces D« E and G F, I is
injective. Now it follows that the restriction of I™* to the canonical image of
D® G is continuous and that E,®F, is a (QF)- space This completes the
proof.

Remark. Suppose that the assumptions' of Theorem 4.2 are satisfied. Then
E,®F, and E®,F are quasi-complete. Hence they are the guasi-completions
of E, ®F and E®,F, resp.

Finally, we obtain a descnption‘ of compact subsets of E ®,F. We will use
the following essentially known resuit applied in the more trivial case of Hilbert
spaces.

LeMMA 4.3. Suppose that G is a Banach space with bounded approximation
property. Then, given a compact subset M < G, there exists a compact operator
Te (G, G) such that

Mc {Tp: G and |lo| <1}

Proof. Arguments of the proof of Theorem 2 in [1] based on the
generalized Cohen factorization theorem for Banach modules ([5], Theorem
32.22) show that each compact operator A from a Banach space D into
G admits a factorization A = TS, where Se.2(D, G} and Te #(G, G) are
compact operators. In order to establish the lemma, it suffices now to apply

this factorization to the operator Jy: Gy — G, where N < G is a compact disc
containing M.
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ProrosiTiON 4.4. Suppose that E and F are hilbertizable (3 F}-spaces with
continuous norms. Let a precompact subset 4 of E®_.F be given. Then there
exist Hilbert discs M < E and N < F and compact operators X e L (E,;, Eup)
and Ye £ (Fy, Fy) such that 4 is contained in the canonical image of the closed
convex hull of X(M)® Y (N), taken in Ey & Fy.

Proofl Since E®_F is a (QF)-space, there exists a O-sequence (¢,) in EQ F
such that .4 is contained in the closed convex hull of {¢,},%. Also there exists
a 0-sequence (g,) of positive real numbers such that ({e,)”'t,) is still a O-se-
quence. Applying the isomorphism E®,F = 4 (E;, F)[t,] and Theorem 3.1,
we find Hilbert discs M < E and N < F soch that {(g,) " t,}5%; is contained in
the canonical image of the unit ball of E,,& F,. Consequently, , {t,haty s
contained in the canonical image of some compact subset R of E,; &, Fy. The
compact set # is contained in the closed convex hull of M, ® N, for some
compact subsets M, = E,; and N, = F, (e.g., by [10], §41.4, (5)). By Lemma
4.3, there arc compact operators X € #(E,,, E,,) and Ye #(Fy, F,) such that
M, < X (M} and N, = Y (N). Since the canonical image of the closed convex
hull of X(M)® Y (N) is compact and contains {t,};L,, it contains .#. This
completes the proof.

Remark. Clearly the preceding proposition is valid also for hilbertizable
Fréchet spaces E and F.
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Bukhvalev type characterizations of Urysohn operators
by

SERGIO SEGURA DE LEON (Valéncia)

Abstract. The aim of this paper is to generalize to nonlinear operaters the criteria of integral
representability for linear operators due to A. V. Bukhvalov. We give Bukhvalov type criteria for
recognizing the order bounded Uryschn operators acting between ideals of measurable functions.

Introduction. The present paper is devoted to obtaining criteria charac-
terizing when a nonlinear operator has an integral rtepresentation as an
Urysohn operator. Roughly speaking, an Urysohn operator T is defined by
(TH(x):= jU(x, y,f(¥))dy, where the kernel U satisfies the Carathéodory
conditions (i.e., the function U(x, y, -} is contineous in R for almost all (x, y)
and the function U(-, -, #) is measurable for all teR).

Integral representation of operators have been of interest for many
mathematicians. Recall the nowadays clagsical results about intagral represen-
tability of continuous linear operators in IF spaces obtained in the thirties by
Dunford-Pettis and Kantorovich-Vulikh (see, for instance, [8]). In that time
John von Neumann [17] raised the problem of finding a characterization of
integral linear operators acting in I2. This problem was solved by A. V.
Bukhvaloy in [2] in the context of ideals of measurable functions; an
independent proof is due to A. R. Schep [22] (see also [3, 297). Let E and F be
ideals of measurable functions. Bukhvalov’s theorem states that for a linear
operator L: E — F a necessary and sufficient condition for L to be an integral
operator is the following:

Given a sequence (f,): in E such that 0< f,<g, f,—0 (x) implies
Lf(x) =0 ae

On the other hand, a large representation theory for nonlinear functionals
was developed in the late sixties [3, 6, 7, 9, 15, 16, 24, 27]. L. Drewnowski and
W. Orlicz [6, 7] obtained criteria similar to Bukhvalov’s for functionals. We
remark that the functionals they consider need not be defined on the whole of
an ideal of measurable functions, For the sake of convenience we shall not
consider this more general case.
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