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Generalized Taylor expansions of singular functions
by

GRZEGORZ EYSIK (Warszawa)

Ahstract, A definition of hyperfunctions on a sum of linsar subspaces of C" is given. Methods
for computing the Mellin transforms of singular functions and their boundary values are presented
with application to asymptotic expansions of solutions of certain differential equations.

The Mellin transform of a bounded function f on R, (vanishing at infinity)
was defined in the classical form as the integral

Tf(x)x”‘ldx (Rez > 0).
0

Tn his monograph [10] A. H. Zemanian extended the above definition to
certain classes of distributions on R_.. The Mellin transformation so defined
does not distinguish the singularities of distributions at zero from those at
infinity. To study the singularities of distributions at zero B. Ziemian defined in
[11] the space M'(J,) of Mellin distributions on the cube J, = (0, ¥]". By the
Mellin transform of a function f bounded on J, he understands any
holomorphic extension of the function

Mf(Z) = § L)X xy ™
e

defined for Rez, < 0,j=1, ..., n By using this formula he defines the Mellin
transform 4 U of a distribution UeM’(J,). The singularities of the function
MU serve to obtain a generalized asymptotic expansion at zere of U.
The aim of this paper is to establish generalized asymptotic expansions at
zero for certain classes of Mellin distributions. We rely on the Taylor-Ziemian
formula (see [12], Th. 5), valid for distributions U such that #U is
a holomorphic function on suitable wedges in C". The boundary valus of .4 U
is the spectral hyperfunction which occurs in the Taylor--Ziemian formula.
In Section 1 we present selected results from the theory of hyperfunctions.
The space of hyperfunctions can be defined on a real analytic manifold in C" of
dimension n ([7]). A real linear subspace L = C* of dimension n in real position
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236 G. Lysik

in C" is a special case of such a manifold. We treat a hyperfunction g on
L= A"*(R" as an equivalence class [G], of an A-meromorphic function G,
where A is a nonsingular complex matrix. Afterwards we define hyperfunctions
on a sum L, U... UL, of linear subspaces of C" in real position. We assume
that L; = A; "(R"), where all 4; (j=1,..., k) are diagonal complex matrices
with positive *determinants and L;n L, = [0} for j,l=1,..,k j# L This

extension of the definition of hyperfunctions is needed to define and compute ‘

(in Section 4) the boundary value of the Mellin transform of the fundamental
solution of the singular Laplace cperator '

~ Y e\
A=)€1§1 "FJCZa—xZ.

In Sections 2-4 we present methods for computing the Mellin transforms of
distributions and their boundary values. In Section 3 we reduce the com-
putation of certain n-dimensional Mellin transforms to one-dimensional ones
(computed in Section 2). The results obtained are used to find the generalized
asymptotic expansions of the fundamental sclution of the Laplace operator
and of solutions of certain singular differential equations of the first order.

Throughout the paper we use many definitions and facts stated in [12] and "

we assume that the reader is familiar with that paper.

The author wishes to express his gratitude to his teacher Prof. Z. Szmydt
for her unestimable amount of help and criticism during the preparation of this
paper. Furthermore, he wishes to thank Prof. B. Ziemian for suggesting the
problem and many stimulating conversations.

0. Notation. Throughout the paper we use the following vector notation; if
a,beRu{—o}u{+ool,a=(a,...,a,),b=(b,..., b,) then a < b (resp.
a < b) denotes that a, < b, (resp. a; < bj) for j=1,....n

We set R = {xeR" O0<x}, J=(0, 17", J,=(0, r]" for r > 0.

If r>0 then r denotes the vector r={r,...,#)eR%; in particular
1=(1,...,1).

Z is the set of integers, N the set of positive integers and N, the set of

nonnegative integers.
We write
xF=xi.. X for xeR%, zeC";
for ze(C\{0})", e Z";
for xeR%;
for yeR".
The vector notation is also used for differentiation. Namely, if aeN§ then
Q“‘ =Df.,.Di", where D;=d/ox;j=1, , n;
D= Dp3... D, where D, =x,8/0x;,j=1,...,n.

In particular, we write 4 =y 7, (x;8/8x)".

z% = gL 2t
Inx = (lnx,, ..., lnx,)
e¥ = (e, L., en)
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4o stands for the characteristic function of a set & < R" ‘

We apply the notation commonly used in the theory of generalized
functions and in complex analysis. ¢(W) denotes the space of holomorphic
functions on an open set W < C". The value of a generalized function U on
a test function ¢ is denoted by Ule].

1. Hyperfunctions. The Mellin transforms of distributions studied in this
paper are holomorphic on suitable wedges. It is natural to regard them as
defining functions of hyperfunctions on certain linear submanifolds of C". To
this end we recall some necessary definitions.

DernimioN 1. Let L be an R-linear subspace of C" of dimetsion n. We say
that L is in real position in C" if L= Q(R"), where O is a linsar complex
isomorphism of C".

Then L+iL = C" and L does not contain any complex line.

Throughout this section L stands for L = A"HR™, where 4 is an nxn
nonsingular complex matrix.

Let ¥, be an open subset of L. Set

W, = V,+il; Wy = {zeW Im{Adz); #0} for j=1,...,m

WA= ﬂ WAJ; WA"‘::: ﬂ WA,j for kﬁl,...,n.
- G
A function Ge®(W,) is called A-meromorphic on Wi

DerNTTION 2. We define the space B,(Vy) of hyperfunctions on V; as the
quotient space

B(V) = O S, OW,.
k=1

Thus, a hyperfunction geB, (V;} is regarded as a class g =[C], of
a function G, A-meromorphic on Vil o

Let A and A be nonsingular complex matrices, L = AYRY, L =4 (RY.
Let Ged(W,), g=[Gl eB4(V) Observe that GoAd ‘oAde®(Wy). This
ensures the correctness of the following definition:

) god™ oA = [God 0 A118B4 (%),

where ¥y = A~*0A(V;). Tn particular, god™" = [GoA™ ] eB(R).
If L =L then the map

@ B,(L)syg—god tode By (L)

gives an isomorphism between B, (L) and By (L).
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Let us set
I,={yeR" gy;>0 for j=1,..., n},
L e)e{—1, 11"
Iy,= AN,
Observe that the set W, splits into | Juer~ 1,132 Wa.e» Where Wy, = Vi +il,,.

DerNITION 3. Let I'; = L be a convex cone and suppose He (Vg +il'y).
Choose a mattix A4 such that I',, = 'y for some sc{—1, 1}". We define
b, (H), the boundary value of H as an element of B 4(Vy) defined by the

function
g - {zgn (e)-H

where 2= (g, ..

on WA'L’:
on W, for & #e.

It can be proved that this definition is independent of A and I, in the sense
that if I'y, = I', is another convex cone, A" (I') <« I'y, H' = H| then

br,L(H’) = bp, (H) in the sense of the isomorphism (2).
With this definition of boundary value, if g = [G],eB,(V}) then

G) g= 2,

ee{— 1,1}

]
P
Ve+il'e

sgn(e) “br (G u)s

where G, .= Gly, -
Also if I' is a convex cone in R", He@(V+il") then

4 br(H)oA = by-1ry(HoA).

Let K; be a compact subset of L. By Bg, (L) we denote the space of
hyperfunctions on L with support contained in K;.

Let KoK ;x...xK, be a compact subset of R", where all K,
(j=1,...,n are compact in R. Set

U= O (QK)xCF forj=1,...,n;

n
Ukszj fOl‘ k=1,...,n.
ot
We define the space of hyperfunctions on X as

- BE)=0([1(CO\K)) T o).
i=t K=1
We have
ProrosiTioN 1. The natural mapping B(K)= f — [ e B (R") induced by the map
O(]] (C\K))>F - Fe O((C\RY"
=1

is an isomorphism.
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Let K. be a compact subset of C". We denote by (K ) the space of
continuous linear functionals on /(K =indlimO(U), where U runs
through complex neighbourhoods of K.

Set K, = A *(K), where K is compact in R", 4 is a nonsingular complex
matrix.

Let fe.s'(K). We define a composition f oAdes? (K, by

oAyl =E§a—|fwo/r1] for e (K.,

Trworem 1. Let K < K, x ...xK, be compact in R", where all K,
(j=1,....n) are compact in R, K= A~YK). Then
I
(5) B(K,) = o' (K ).
The isomorphism I, is defined as follows: if g, € B(K ), gy =[Gla with
Get{A™ ([T5=1(C\K))) then
1,(g) = g6 (Ky

with g, defined by

detd
(6) g [0 = (== | GOV for Yed(K,),

|detA4| ¢,
where €, = A"Y®), € =6 % ... X6, €, s a curve encircling K; ohce in the
anticlockwise direction (j =1, ..., %) and €, is contained in the set of holomor-
phy of .

Conversely, if g,e<#'(K ) then
LiYg) =g where gy=[Cls
[det Al —1

2} = g (A —2 .

™ G =gl =a7]

The function Ge@(4™ ([T} (C\K J)) defined by (7) is called the standard
defining function of the hyperfunction ¢ with respect to the matrix A.

Proof By Theorems 2.14, 2.15 of [4] there exists an isomorphism I
between B(K) and &'(K) given by I fi) = fed'(K), where 5 =0[Fla
e B(K), Fe®([[j=1(C\K}), and

L0l = (=17 [F@g(@dz  for pesl(Ky),
¥ 5

=%, %...x%C,1s contained in the set of holomerphy of - Thus I, .deﬁned
on B(K,) by I,(g) =g, where g,=1 (g,0A~ "o, establishes an isomor-
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phism between B(K,) and &'(K A). Let yes/(K,). We obtain

PAGE A|1(g,,oA Yot =1 f God  aoA e
R L

[detA| ;i) -
An easy proof of the second part of Theorem 1 is left to the reader.

The representation (3) of a hyperfunction g as a sum of boundary values of
its defining function G is very convenient because under some growth
conditions, the boundary values by, (G, are distributions.

DEFINITION 4. Let I', be an open cone in L= 47 '(R"), H E@(L-I-IT'L); We
say that H is of polynomial growth (near L) if for every open set ¥, € L and
a cone [T, € I', there exist constants C, N such that

|[H(2)| € ClIm(4dz)|"" for ze V,+if";,, Im(4z)} close to zero,

or equivalently _
|HoA™1(2)| < C|lmz|™  for ze AV, +il), ﬂr;’lz! close to zero..
By Theorems 9.33, 3.1.15 of [2] and (4) we get the following
TueoREM 2. Let I'y be an open cone in L. If He O(L~+il'y) is of polynomial
growth then by (H)eD'(L) and -

(8) by (H)[Y] = [Hod™ 'x+ippod (x)dx

3
A(J‘Lgylao ldetAi

Jor YreD(L).
ExaMpLE 1 {[12], Ex. 3).

©) . 270 & (

More generally, for a nonsingular
[(42) ],04™" = [y Thus

—2mi)" 3 gy

complex matrix A we have

La ( 27“’)

(10) B,(Lya[(A2)” l]A Id Tl (0) {0})

Furthermore, if H is a function holomorphic in a neighbourhood of a point
- te AR then

— 2y

(11 [H@E@)AE-0)" ']A“ et

H@og e ({C}

icm
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ExampLe 2. Let acINj. Then
{12 [(— ez ™" "y = D[z g & (—2mi)y 53,

More generally,
(13) [(;1‘)|“|oc!(Az)"““]A = [(~ ) alz" "] 04 & {(—2miy dE o A.
Observe that if A = diag(ay;=y,.. . then
1
ey o)
(].—.[ a4y )ldetA.| E

=1

(14) dhod =

ExampLi 3, Let A be a nomsingular, diagenal complex matrix, «eNg.
Then

det A
(3] '
|detA|6€°)e‘W ({0}).

Proofl. It is sufficient to note that for a matrix 4 = diag(aj),-,__l_,,;,,, the
function

(15) B, (L)e [(—1)*alz™" %], 5 (= 2m)"

27V = detA.(lﬁ_[ %)(dz)™!

is A-meromorphic and then use the formulae (13), (14).

THEOREM 3. Let Ay, A, be nonsingular, diagonal complex matrices. If
a function G is A,-meromorphic on C" and supp[Gl,, = {0} then for some
A, -meromorphic functnon W such that [y],, =0, we have

(16)  the function G—yr is A,-meromorphic, supp[G—¥1,, = {0}, and

detd,047?!

detdyoAr 1

[G— f/’]A, =

in the sense of equality of the corresponding analytic functionals.

Proof. To begin with we assume 4, = Id and write 4; = 4. Let F be an
< {0} Acccordmg to the charac-
terization of hyperfunctions with support at zero (see [37) there ex1st constants
C, (xeN%) such that 11m|a|4_.m(|ca|av yiel = 0 and

[Fha = %n C, -

So by (12) we have
R C,(—1)ea!
F@y =Y~ “amy

EEH

27 7% (2)s

where [¢]4 = 0.
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Applying (15) we find that the function F—¢ is A-meromorphic,
supp[F—¢], = {0} and
, det A
[F-el &

Y C,o0 & det4
|det Al ;=

«¥{0) — |dCtA! I:F]ld'

Suppose now that G is A,-meromorphic with supp[G],, = {0}. Then the
function F = GoA7* is Id-meromorphic with supp[Fl, = {0}. Applying the
case just proved with the matrix 4= A4,047" we see that for some
Id-meromorphic function ¢ such that [¢l, =0, the function F—¢ is
4,047 *-meromorphic, supp[F~¢], .. < {0} and

2041

detA,0A47?
[Fm(p]fiaoAl—l = m[mm-

Since [Fl,, = [G],,045" and

[F—ol, ::= [G““POAi]AZOAl_ia [pod,l,, =[¢luod, =0,
2! i

we get the assertion with i = ¢od,.

Lemma 1. Let A, (1==1,..., k, k= 2) be diagonal, complex matrices. Set
L= A" (R and suppose L, nL, =
Apmeromorphic function on C* (I =2, ..., k) and the function G = G+ ... +G,
is A -meromorphic on C" then supp[G],, < {0}.

Proof. By (1) it is sufficient to prove the lemma when A4, = Id. Let
Az = diag(a;,j}j=1 !!!! n for [= 2, res k, al,j = fxi’j'i"iﬁl,j, Zj == .xJ+ iy_y for
=2, ..,k j=1,..,n By assumption G, ({ =2, ..., k) is holomorphic on
the set

{zeC" Im(4;2);#0 for j=1,...,n}

= {zeC": oy ;y;+ Pi;x;# 0 for j=1,...,n}.
So

Gel)(

i

{szC: OC:,}J’j'l‘ﬁl,jxj #* 0})

S~
—1=

i=1

At the same time, Ge®([[}-i{z;eC: y;#0}). Because R"n L, = {0}
(I=2,..., k) and the matrices A, are diagonal we have §, ;% Ofor I =2, ..., k,

j=1,..., n. Using these facts and the Hartogs theorem we get G 0((C\{0})")
and this proves the lemma. ’

Lemma 2. Let A, (I=1,..., k, k 2 2) be diagonal complex matrices such
that Lyn Ly = {0} for LI =1,...,k I # 1, where L, = A7 'R} (I =1, ..., k).
Let , (1==2, ..., k} be Aj-meromorphic functions on C" such that the function
Yy o=y L+ is Ay-meromorphic on CUIf [ 1, =0for =2, ..., k then
[‘/’1]41 =0.

{0} for I=2,...,k If G, is an -
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.....

I=1,..,k j=1,...,n Observe that L, = [[}=1 L;; { = 1, ..., k}. We have
e O T=1(C\Ly) (=1,..., k). Since L, Ly, = {0} for 11" it follows by
the proof of the above lemma that y,e@((C\{0})) (I=1,...,k). So by

assumption [¥,1, =0 =2, ..., k) and by a version of Proposition 1 for the

matrix A,, we conclude that [i/] ,,, treated as elements of B({0}), are equal to
zero. Thus, the same is true for [y,],, and we get the assertion.

Now we are in a position to prove the main result of this section.

TueorEM 4. Let A, (I =1, ..., k, k 2 2) be diagonal complex matrices with
positive determinants. Let L= A7 '(R") (I=1,.... k) and Lyn Ly = {0} for
LV, ..,k U1 Let G (I=1,..., k) be A-meromorphic functions on C". If
Gy + ... + G =0 then supp[G]l, = {0} for I=1,..., k and

[G‘]A1+"'+[Gh]/1k:0

regarded as the sum of the corresponding analytic Sfunetionals.

Proof Since G, = —G,~...—G, is an A -meromorphic function, by
Lemma 1 we find that supp[G,]1,, < {0}. Analogously, supp[G],, = {0} for
I =2,..., k. By Theorem 3 there exist A-meromorphic functions ¥, such that

V.14 =0, G—y, are A -meromorphic functions, supp [G,~ ], = {0} and
[(G—¥]4, =[Gl forl=2,..k
Thus
[Gyday ¥ [Golust+ - +[Gida, = [Gd, +LCGa— o )a + oo + G4,
—[fa+ - i, =0,
because the fonction ¥, = ¥, + ... +V, is A,-meromorphic and by Lemma 2,

[‘#1141 =0

The above theorem ensures the correctness of the following definition.

#

DEeFINITION 5. Under the assumptions of Theorem 4, let supp[G.,, be
compact for [=1,..., k Let G=Gy+... +G

We define the boundary value b(G) of G as a hyperfunction on Ly ... Ly
by
(17) b(G) = E(}J.]AJ + '. et [Gk:lAk
where the right hand side is regarded as the sum of the corresponding analytic
functionals. '

2. Generalized Taylor expansions of functions in dimension n = 1. The theory
of hyperfunctions simplifies essentially in dimension n = 1. A hyperfunction
f on an interval [a, o) (€ R) can be regarded as an element of the space

B[u,m) = @(C\[(], OO))/(U(C).
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Thus f € B« i8 represented by a function Fe O(C\[a, o0)), which is obviously
Id-meromorphic on C. One can write the Taylor—Ziemian formula ({121, Th. 5)
in the following manner.

THEOREM 5. Let UeMi,((©,r]) be a Mellin distribution such that
MU e0(C\[a, ©)). Let T = b(AU) = [# U], be the boundary value of AU.
Then for every ¢ > 0 there exists a Mellin distribution Re Mig1, such that
(18) U=T,[x¢(]1+R,

where i is the characteristic function of the interval (0, r] and T, is a hyperfunc-
tion supported by {a, a+o] (regarded as an analytic functional in the variable o)
equal to

l

CL,=5T with Q,, = {xeR: a < a+a}.
¢ 2mi g, :
The decomposition (18) is unique modulo hyperfunctions with support at a+g.

PROPOSITION 2. Let ceR, 0.<r < e If Ref <0 then
(19) Ay x)(=Inx+))z) = 1 Gj? g’“‘lg_cp—rg_:dg
I'(—6) 5 g—z
Jor ze C\[0, ).
More generally, if Re@ < keNg then
@) M) = s T (g
for ze C\[0, ).

A (x)(—Inx+c)) is an 1d-meromorphic function with the boundary value

(21) F?iie)e”“’g;"_l ‘ for 80,1, ...,
@) oni k}"fo (';:) KR for 0 =meN,,
where ) -

ey’ Tt = {(Q)_G_l ;Z; g :g for Re0 <0,

Q:G-—l B d k (_ul)kQ;G:Fk—l
F(—B)_(dg) ( F(—B+R) for Refl < keN,.
Proof By substitution ¢t = —In(xe 9o (x < &) in the integral

r(=0) = [t te'dt (Ref <0)
0
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we get
l 2]
(22) (—lnx+e)f? =——= [ 0 "e™®xtdg. for 0 <x <¢, Ref <0,
=0y, .
Hence, we have (19) for Rez < 0, Next we observe that the integral on the right

hand side of (19) defines a holomorphic function on C\[0, o).
To get (20) we use the formula

23) (—lnx+c) = ,H(:i}f___ TQ—U-i-k—i _df_(ewwxﬁ.)dg
r(—0+k dg*

for 0 < x < ¢, Ref <k,

which is an easy consequence of (22).

Since
e—-z gz
b(r ) = [r ] = 2nid, for ¢ >0,
0~z 02l

(21) follows from (20).
If §=m me{0,..., k—1}, then formula (20) takes the form

. it o dm+1 e—cqra-—z d
24 A () (—Inx ey ) z) = (1) ——-;;—( ) Iy
4 (G0 P)e) = (=0
o dm e r F
= dz"\ —z

Prorostrion 3. Let ¢ceR, 0 <r < ¢, Then

and consequently we get (21’)'.

A0l 1 ; ___'Y MZ+T1H .f.i._ e LT E P
(25) (" ) In{~ nx»l«a))(z)—-gr ! e\ =2 ¢

for zeC\[0, o0), where y is the Euler constant, and
(26) b (./iz’ (7 (o)n(—lnx+ c))) = - 2mi(yd g —e e h,

d Ing for ¢ >0,
ore 07 b mm ==
where Q% deQ"’” Ing, {0 for 9 <0.

Proof Observe that

0
In(—Inx+c) = b%(~1nx+c)"

g=0
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So we use (20) with k=1 to get

Y e
Ay (x)In(—Inx+c))(z) a—g . ( e 6+1)>

4y,
s=ode\ 0—z

y o, % d fe ert™®
=2r7"+ [Ing— d
z - ;E nQdQ( 0z ) ¢

" for r < €,

Rez < 0.

Next we observe that the integral on the right hand side of (25) is convergent

for r < ¢, 26 C\[0, o). The boundary value (26} is derived immediately from
(25).

Temorem 6. Let ceR, keN, Red < 0. Let a,eC (jeN,) be such that

A =limsuplaj** < co. Let
= 4]

fx)= 3% a(—Inx+c)f’~M

j=e

, -4
for 0 < x < e *F,

o

FHe) = ¥ g

or peC.
& T -6 for ¢

Then

() f* is an entire function,
(ii) for every &> O there exists C, such that

If*(0)l € o™l for geC,

"CQQ z

(i) A (' f)z) = I 07" %)
() b(# () —21516"gf*(9)e"9 1-

Proof. (i) and (i) follow by Theorem 5.3.1 of [1] Let Rez < 0. Using (20)
we get

do for r <e™*¢, zeC\[0, o0),

18

MINz) = 2, apd () (x)(—

: Inx+ )’ H)(z)

.
]
o

o0 —Cg WY
—otrj-18_ T d
o

r (k]

[,

it
is

g S@peTEz

0 01 () deo.

O 8

Since f* satisfies (i) the last in_tegra_l defines a holomorphic function on
C\[C, ©). The boundary value of .#(}f) is derived from (jii).
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ExampLE 4. Let ceR, Reft <0, b> 0, r < &% Then
H (G~ Inx +6)* +b7))(z)

w w10 (bg)z-f >e~var@—z
— ) 26~—1 ()_‘ - Cl
@7 £L (,-go jJT@=20) 9=z °°
w g cepes
(274) = (Zb)e~|-1/2 F\(/—EOj IQ-O 1/2 J_ 0-13 (bQ) dQ,
0
where

N C v om (__1),[ C 2
0= (5) £ mrrols) =

is the Bessel function of order veC.

Proof. Let x <e™b Then
o«
{(—lnx+ep?+b7 = Z ( )b’“ ~Inx+ )3,
Hence by Theorem 6 we have (27). To get (27) we use the deﬁnltlon of the

Bessel function and the duplication formula for the I' function ([9], formula
6.3.13)

2.’;—1
@20 = -mfF(C YP(E+1/2)  for 20 #0, —1,
ExaMpPLE 5. Letc b= 0. Then
M (x)ln((~1nx+t)2+b2))(z)
21 d (e"“ﬁ') 1( © (1)t 2.) e_“‘?]
2 {1 Ing | —— |+~ " (ho)* do
28) Fa g[n Yde\a—z) "o El 2 o g—z
2y d {e=®\ 1-—cosbg e””ﬂ]
/ =y + : dg.
(28) . |2§|:111L ig(g z) . Py a
Proof Let ¢>b=0, x <1 Then

— ]t _
In{(—lnx +¢)? 4+ b%) = 2 (~Inx+c)+ Z ( J) b (=l e)
J=1
Hence by Theorem 6 and Proposition 3 we get (28). Letting ¢ — b we get (28)
for ez h.

3. Generalized Taylor expansions of functions in arbitrary dimension. To
find the Mellin transform of a given distribution Ue M'(J) it is necessary to
compute an n-fold integral with a parameter. That integral can be computed
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only in special cases. In this section we find it for the distributions of the
following two forms:

L f (5= (%)),
2. f(— Zj=1aylnx)),

where [ is a one-dimensional Mellin distribution.

Let us observe that a fundamental solution of the iterated Laplace operator
is of the first form. Furthermore, one can derive its generalized asymptotic
expansion at zero. Distributions of the second form are solutions of certain
singular differential equations of the first order.

3.1. Functions of the form (3«4 (a;x)%). To compute the Mellin trans-

form of a function h of the form b = f (3 -1 (a;x), where f: RJr - C a; >0,
a; >0 for j=1, , we observe that for ¢ > 0 the set

n
Q,={xeRi: ¥ (ax)y/ <t}
j=1 -

is a bounded neighbourhood of zero in R%. Since our aim is to find the
asymptotic expansion of h at zero we compute the Mellin transform of the
function yp h and its boundary value. To this end by integration along the level
sets of the function k'we reduce the calculation of 4 (x, h) to .#f and then find
the boundary value of .#(xph).

First of all we establish the following

ProrositioN 4. Let t>0, x>0. Let g: Ry =R, be a homogeneous
function of degree o such that the set

Q, = {xeR%: g{x) <t}

is a bounded neighbourhood of zero in R%.. Let h= fog where f: (0, t] =R is
a function such that feM)(0, t]) for some weR. Then

29)  Altah)E)

1 : .
—— M) [ (cosgl) ™ sing) Y (G g,
o @m/2yn~1
for zeC"® sucl_n that Re(z,+ ... +z,) <'occu, Rez, <Q(j=1, ..., n), where §(¢’)
= g(cosgai, sing, cos@,, ..., (sin@)), with ¢’ = (cpl, s @) 2= (Zg, e
y Ly l) 1’ R" i Ck ZJ kZ for k—l

Proof. Let us first assume n = 2. Introducing the polar coordinates
Xy =TCOS¢p, X, =rsing, the variable w=r"g{cos¢,sing} and setting
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r, = [t/g(cos @, sin @)]*"* we find

Yauxs X S (g0cq, X)X 1xg =, dx,

S— 8
O’—-—:S

nfd ry
= | § /(rglcos o, sin@)){rcos @)%~ *(rsinp)~ =" rdrde
o 0
£1
j~—f(w)w‘ 7y ~zala=l gy,
o

nfa .
» j‘ (cos )% " (sin @) %" 1[g{cos p, Sin_(p)](“ +alle e
]

Observe that the second integral is absolutely convergent for Rez; <0,
Rez, < 0. If n > 2 the proof goes along the same lines.

CoroLLARY 1. Let f: (0, £] - C be a function such that f € M{(0, 1) for
some weR. Then

' - tz, —Zy —Zy
for z& €" such that Re(zy + ... +z,,)< 2w,2;,#0,2,4,....j=1,..,m where

B = {xeR%: % </}

and

r)...re,)
By s 0= 5 TR

is the Euler function in n variables.

Proof. It suffices to apply Proposition 4 to the function g(x,, ..., x,)

=x?+ ... +x? and use the formula (see [9))
/2
| (cos ¢)™% "1 (sin )~  dop = $B(—{,/2, —{a/2)-
0

By the change of variables y;= (a2 )42, dx]—Z(aJou}) Ly2a=idy,
(j=1,...,n we get from the above corollary

CoroLLary 2, Let a;> 0, ;>0 for j=1,...,n Let f be as in Corolla-
ry 1. Set

n

Q= {xeRi: ¥, (ax) <t}
J=1"

5 - Studin Mathemution $9.3
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Then

6D Mla F (3 @r)E)

J
ait...an 4 z —z -z
= roaf (4 2B —, ., —
&'.1...0!,, %) Ay Oti D€n

for zeC" such that Re(z /a, + ... +2,/00,) < @, gifay # 0, L, ... (f=1,...,m

PrOPOSITION 5. Let DeR. Then

1 B(—z,/2,...., —2,/2)
A A

(32) M (g3 - X)) =

for zy+ ... 4z, #20,2,#0,2,4,... (j=1,..., ). Denote by H the function
on the right hand side of (32). H is an o = (A, ..., A, }-meromorphic function
(for the definition of o/-meromorphicity see [12], Section 3), where 4

(1 0 ... 0
01 0
Aj = 11 ... 1| row
0 0 1

The boundary value of H equals
(33) p4HE) =(@n)(T, ..., T)

. ! G
with T} = Z (kl, o }Ej’ . kn) 5(m ..... #n)s

where Y denotes the summation over all I =1,...,n, 1 # ] and over all kyeNy;
w, = 2k, for 15 J, %, =20+2k;— 3}y 2k, and

0 no 0k
'(kl,...,ﬁj,...,kn)“ﬂ( k, )
14

-1
=Yk forj=1..,n
v=1

wEJ

(the hat denotes suppression of the factor under it).

(") For n =3 see Corollary 3.

icm
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1f0 = meN, then H is an Id-ﬁeromorphic function with the boundary value

m
&
(#1sevmsdtn)
ke 1)

where S demotes the summation over all I=1,...,n—1, k=0,1,...
=k — =k =2k for =1, .., m— 1, K, = m—2ky— ... —2k_;.

Proof Let f{r)=r" for re(0,1]. Then feMi((0,1]) and .4/ (2)
= 1/0—12).

Applying (30) with ¢ = 1 we get (32). Now we study the function H. Recall
that the function I is holomorphic outside the points 0, ~1, —2, ..., where it
has simple poles. So it can be represented as

(=1 20
K [+k

with @, e O((C\{—Ng}) v {—k}), ®(—k) =1 for keN,. Moreover, rgy#0
for L€ C\(—N,). Using the definition of the Euler function in n variables we
infer that the possible singularities of H may occur only ifz,+ ... +z, =20 or
Z;= 2k, for some kjeNg, j= 1,..., n. We also see that H is &7 -meromorphic.
Next, we observe that the boundary value b® (H) is zero at the following points:

@ z,+ ... +2,=20 and z;¢2N, and z,¢ 2N, for some ,jef{l, ..., n},
B '

(i) z,+ ... +2z, % 20 (in this case, if Z,62N, for j=1,...,n then H can be
written in the form H(z) = H(z)(z—2)"", where H(#)=0. So by (11) its

boundary value at £ is zero).

(33) b (H) = Qi)' 7 (k
.

rg= (keNo)

It remains to consider the points zeC" such that z;+...+2,= 28,
7; = ;= 20+ 2k;~ Y =1 2k, for some je{l,...,n}, zy=2k for I=1,....n
1+#j, where kieNy (I=1,..., n}.

In a neighbourhood of such a point the function admits the following
representation:

o 12 (=1 &, (—z/2) T(—,/2) 1
H(z)_Z"'1 11;11 k! (—z/2)+k T(-80) 20-z—~...-z,
14 .
. 0 1 . ! (ﬁk[(mzl/z)
T Nkyy s Ky k) 202 — 2 e —z 42k,
1]
Note that
bAJ L * ﬁ ! = (2751)" 5‘,¢ )
20—z, —...—2, iwy —Z+2k et
I#j

for j=1,..,n with % =2k, for I # j, ;= 20+2k;— Yu1 2Ky
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So summing over I=1,...,m I'# ] keN, we get formula (33).
1f = me N, then we use the properties of the generalized Newton symbols
to get (33). \
Applying Proposition 5 with specific values of ¢ we obtain the Mellin

transform of the fundamental solution of the iterated Laplace operator
A% (2k < n) and its boundary value. In particular for n = 3, f = —1/2 we have

COROLLARY 3. We have

}_ B(—z,/2, —12,/2, —2,4/2)
4 =z —zy,—zy

G4 My, 6 xF )T =

BY

.I{(XE;, (3 +xZ+x3)712) is an of =(A,, Ay, A,)-meromorphic function, where

111 100 100
A;=]01 0|, 4,=|11 1], 4;=|0 1 0],
001 00 1] 111

and its boundary value equals (2ri)*(T,, Tz., T;) with .

& —172%\ ‘
= ( . ; )5(21,2:.—1—2j—2n=
0 J:

("1/2)5
s \ Lk (21,— 1 ~ 21— 2k, 2K)>

‘ —1/2)
T. A P TR .
3 W ( k,j (—1—2k~2],2k,2)

PROPOSITION 6. Let n= 2. We have

=

w18

&

—B(—2,/2, ~2,/2)

(z1+2,)*
Sor zl—}-zzjE 0, z,¢2N,, z,¢2N,. Moreover, ‘/Il(x”-ln(xﬁ-i—x%)) is an
o = (A, A,)-meromorphic function, where :

11 19
A = =
! |:0 1} A2 |:1 1]’
and its boundary value equals —4n*(T,, T,) with ‘

(1
j 5(-2_].23’):

65 M (15, I (x +33)() =

T, = —20Q+ Y
' i=1
(36)

w (1 +‘1
=208+ X (1Y Oe2j,~ 20+

J=1

Generalized Tuylor expansions 253

Proof. Let f(r)=1nr for re{0, 1]. Then feMi((0,1]) and .#f(z)
= —1/z%. So by applying (30) we get (35). Now we study the function

“B(=z,/2, —5yf2) _ ~T(=2/AT(=2,/2)
_(31+32)2 (z1+22)2F((wzlﬂzz)/2)'

In the same manner as in the proof of Proposition 5 we deduce that H is
«/-meromorphic with possible essential singularities only at the points zeC?
such that z, +z, = 0 and both coordinates are even integers. Next, we observe
that H admits the following representations: : :

H(Ql, z,) =

(1Y I(—299 (22
itz +Zz)(zz—2f)¢o((“z1““Zz)/Z)

in a neighbourhood of the point z; = —2, z, = 2j, jeN (&, are defined in the
proof of Proposition 3);

H(zy, z;) =

(—i>‘1+1 O (~z/D(—2,/2)
! (2, — 2z, +Zz)@o((“z1 "‘Zz)/z)

H(zy, z,) =

in a neighbourhood of the point z, = 2, z; = —2j, jeN;

I S LN e
172 %(21'1'22)2122 (150((—31-}22)/2)

in a ‘neighbourhood of the point z; =z, =0. We have

' 1
Al o )= —4n28_ i
B ((z1+zz)(zz"‘zj)) o

1 -
Ao = — AP b, for jeN:
? ((21“21)(214“22)) T 0p24,—2jp 10T J ‘

= __..__,.,.1 e | = 1 ._____!____._ ‘lAz __,..__1__..
b ((z1 +zz)z1z2) h (bA ((z_l+z,_)lzz)’ b (z1(21+z2)2))

= 458} oA

Since ®,(—j) = 1 and I'(j} = (j—1)! for jeN, we find that the boundary value
of H is given by (36).

for jeN;

By Theorem 5 of [12] and the above. proposition we have the follow-
ing generalized asymptotic expansion at zero of the function In(x} +x3):
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COROLLARY 4. For every keN there exists a Mellin distribution R & M{_ 2,

(,;é’; 0, 2k)-flat at zero, where o =(A,, 4,), A; = [0 1] A= |t ‘:], such
that
k— 1( 1)J+1 x, N2
2lnx, + Z B (f) +R(x) for xeBf, x, < xy;
1
In(x}+x3) = o
. k~1 (_1)J+1 xl 2§ .
2Inx, + Y, — = +R(x) for xeB{, x; €x,.
F=1 2 "

Now we present without proof another interesting example.
ExaMpPLE 6. Let n =2, —1 <8< 0. Then

1 B(=2i/2, —2,/2) do.

GN My (~Inbd +33))) = 575 £ ™ . 2g~z1~—z2

(4,, 4;)-meromorphic function
[11 cl’] with the boundary value (—4n?/I'(~0))x

Moreover, M(xaf~(mln(x§+x§))ﬂ) is an of =

where 4, = [f) i], Ay =
(T, T3), where

o o0 [+s] 0 [+a] A "
=2 ( ) [0 O apiaande, Ty= Y () [ 27" 0y -2prpde.
]=0 0

]

. J=0

3.2. Functions of the form f(— ", a, ;Inx;). The method given in Section
3.1 cannot be applied to compute the Mellin transforms of functions g of the
form f(—3%-1alnx), with f: RY > C, a;>0for j=1,..., n since the set
Q = {xeR%: — Y-, a;lnx, <t} is not a bounded neighbourhood of zero in
R, In this case we can integrate over B, = B(0, t}n R% passing to polar
coordindtes (as was done in dimension n = 2 in Example 12 of [12]). As it leads
to laborious calculations we present only the final result for the function
fin=1r% Ref <0:

n

Jt(xw-(— 3 a;lnx)Y)z)

J=1

1 ]‘D —o-1 Blla0—2)72, ...

== ? (ﬂ"Q - zﬂ)/‘?)
I E ) dg

(a+ ... +a)e—z,~ ...~z

n

One may compute the boundary value of this function by using the propertles
of the function B.

Here, we give another method by choosing the cut-off function y" =y,
instead of y_.. We divide the cube J, into n! disjoint (modulo sets of measure

zero) subsets Z,,, where gen(n) (n(n) denotes the set of permutations).

icm
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ProPOSITION 7. Let A; = (0, 1) with QR 1eRIY (j=1,...,n). Let
cexn{n) and
As1)
4, = ={2p)i=1....
Aa(n)
Set '

Z,=ixeR4: x ﬂt‘*J,0<t,s1,l=1,...

f=1

Zop =2y, Jor r< 1.
If Ref < O then
(38) 1z, (= L Inx))@
i=1

—-9 1( A (Z Q)) l’."Q’zi_,u—anQ

O‘——-;S

for zeC" such that (4,2); ¢[0 w), =1,

Moregver, #(yz, *(— 2 5=11nx)) ¥) is an A —meromorph:c function with the
boundary value

Phinl

IE( )0 .[ @) dQ-

Prool Let o =id. We change the variables x, = [[5=1¥; U=1,..., 1),

dx = ([T3=t i J)d.V and apply (19) with ¢= —n™* 2= qlnyj’“'i. Set y'
(}’z:- =J’,.) z "“(221--- ) We Obtdm

(39)

“ﬂ(xzm.r'( - '21 In xj)o)(z)
i=
r n
=n’ .[ j(_"lrU}J —n"t Z lnyj,f‘“1)"(y)*(~4mz}—1dy
©411 0 =
- ] f@ "0 ()~ (Ajgle = @y = 1 g dody'.
F( 0 (011n I o Q'“zl_---""Z"

Now we change the order of integration to get the right hand side of (38) with

o = id.
For an arbitrary permutation o € n(n) the proof of (38 goes -along the same
lines. To compute the boundary value of the function given by (38) we observe

that det4, = 1. So by (11) we have
b"“((—AU(zmg})“1?"'“"“‘“"2“) 2y 3.y for g = 0.
Thus, the boundary value of (¥, (- $u_y Inx,)’) is given by (39).
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Summing both sides of (38) over all permutations oen{n) we get
COROLLARY 5. Let Ref <0, r < 1. Then
) n 1T EL T T I
(40) M~ Y nx )W) =——r [ 07 —eo———dp
( ( jgl J) )( F( 9) j. (Q_zl)“‘(g—zn)
Jor zeC" such that z,¢[0, ), j = 1, ..., n. Moreover, #{y"(~ Y=, Inx ) is
an Id-meromorphic junction with the boundary value given by (39).

Now, assume that Ref < &, ke N. Applying (20) instead of (19) in the proof
of Proposition 7 and summing the result thus obtained over all permutations
cen{n) we get

ProprosiTION: 8. Let Re@ < k, keNy, r< 1. Then
@1 A (-(— Z Inx )?)(z)

(-‘—1)" o —0+.k—1 dk( FTIIT T 2n )
= e |4
Fi=6+8 ) ¢ dF\ie =z (e—z)

Jor z;¢[0, o), j=1,...,n. The boundary value of this function is equal to

@riy T ki kY <
e CAP W S

la| =k
1
where (k) = L
. o (xl‘ N4 !

(42)

By the change of variables xj! = ¥;, where a;> 0 for j = 1 ., h, we get
from (40) .
CoroLLARY 6. Let Re@ <0, r<1, a,>0 for j=1,...,n Then
n 2] @14 tanlg—z1~ .~ 2p
@3) H(y(— Y alnx))e) = —o-1 T
b= B a0 = g L = @

Jor z;#[0, ), j=1, ..., n: Moreover, #(y"(~ Y=, a,lnx)’ ) is an Id-mero-
morphic function with the boundary value

@mi -

(44) F( 0} I mem 5(“10 ''''' anﬂ)dg'

Prorosition 9. Let r < 1. Then

(45) .,ﬂ’(xr.ln(— J>=:1 Inx)}(z)

_ _,},r-—zl «z,,+j d( ruq 1= .. 2h ) ,
(—zy)--(—z,) %e@za o=z :
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Jor z;¢[0, c0), j=1,...,n The boundary'ualue of this function equals

(40) (2mi)*(— 7 gy~ Ian ... do)-

imian
Proof We have

In(— Z lnx)) = ( Z Inx;) )|0 0

Let r < 1. Using (41) thh k=1 we derwe ‘

( " ln(— Z ]“xf))
_ mi __Q—G i rnn—-z1—...—zn
h iao(r(“f)*‘l))aao de((emzl)---(awz,,)) 4

o0 d rno—z1—...~z"
= 1Y) Pt L ARE— |
g(w nQ)dQ((szl)-u(emzn)) ¢

Hence we get (45} for r < 1. Next we observe that the integral in (45) is

convergent also for r = 1. From (45) we immediately deduce the boundary
value (46).

Now we can write the generahzed agymptotic expansion at zero of the
function In(— 3= lnx)).

CorOLLARY 7. For every p > Q there exists a Mellin distribution R eM t~pps
(Id; O, p)-flar at zero such that

(47 In(~— i Inx) = ~—y+(i Inx,) f Ingx§..
i=1 =1 o

Jor xe(0, 1),

Remark 1. Functions of the form f(— Y=; a,Inx), where f is a differen-
tiable function, are solutions of singular differential equations of the type
301 b,(x,8/8x,)U = 0. For instance if n =2 then

d
( -_a.“—xz-é}:) ((—Inx;—Inx,)) =0

Yox,

.x%dp+ R(x)

in a neighbourhood of zero in R3.

4, The Mellin transform the fundamental solution of the two-dimensional
singular Laplace operator and its boundary value. It is well known that the distri-
bution E(y,, y,) = (41) " *In{y} +y3) is a fundamental solution of the two-dim-
ensional Laplace operator. Changing the variables y, = —Inx;, y, = ~Inx, we
see that the distribution

1 1 ,
i F(xy, x5) = y In(ln?x, +10?x,)e D'(R%)
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is a fundamental solution of the singular Laplace operator, iLe.

(1) () b

One of the goals of this section is to study the regularity at zero of solutions
of the equation

(48) AU = f, where fe M'{(J).
"To this end we localize F to a neighbourhood of zero in R%. First we recall

some definitions ([5], 6], [8])
For we( Ru{ w})* set

M[m](J)“" ﬂ ‘M{a(‘]r}s

a= ¢
8" p(x)
ox?

By a Mellin multiplier we understand a function ¢ smooth on J, such that
multiplication by ¢ is a linear continuous operation from M, 0 My, for
every weR"

By duality multiplication by ¢ is continuous from M, to M{e,. The space
of Mellin multipliers coincides with the space M;_,, ([8], Th. 4).

TaeoreM and DermnimioN ([5]). Let w,, o,e(R U {+w}), w= min(w,,
@), 1, t>0, UeMyyy/,), VeMip,J,). Write xy=(X(yy, ..., X,5,) for
x, yeR" Let Wo]l=U,[V,[e)] for peM,yJ,). Then W is a well
defined distribution, We M{,,(J,). We call W the Mellin convolution of U and

V and denote it by Ux, V.
We also have
MU, V()= AU(z) 4V (z) for Rez < w.

TueoreM 7. Let o eR U {+00})%, o =min(w,, 0), t>0, feM,,(J)
Let @(x;, x5) = @,(x)o,(x;) with p,eC°R,), ¢ (x)=1 for x€(0,1],
@, (x)=0for xzr, r>1. Then Co :

, e
“) B0 saf )= 145

where g EM[—m-l](Jn)-

M[QI(J)—{(PEM[H,](J) =0 forj=1,...l, n, pENO}.

xXj=rg

It is natural te call the operator (4n)” ! @F *
Laplace operator. :

Proof. Observe that FeC=(RI\{L,1}), x, FEM(O) (J,). Since p is a Mel-
lin multiplier we have @F e Mo)(J,). By the linearity of 4 we get

' & parametrix of the singular

A1 N
(50) a (ErpF) = dy+R with R=34((¢—1)F).

icm
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Observe that Re M;-q(J,). Let g = R»,, f. By Corollary 3 of {5] and (50) we

have
i(Lor fl=4d ! F
—_— * ) _— =
1 PF e [ = fg.
By Corollary 4 of [S] it follows that ge M- o—n(J,)-

Remark 2. Since the operator~d~ is - hypoelliptic on R% there exists
a function U, € C*(R%) such that AU, =g (see [2])}. Thus, the distribution
= (4n)" *@F *,, f— U, is a solution of the equation (48).

ProrosiTioN 10. . (x, F) is the function defined by the formula

—2y—In2
d
mewig)> ¢

(51 Ml PYes, 20) ==
= g—ighuiz, = g—ig or z, = ¢+ig}).

1 1
+ an—( - b -
g do\(zy—0—ig)(z;~0+ig) (z;,—eg+ig)(z;
and holomorphic on the set

C™\ | ({zy, = o+ig or z,
e=0

Proof. Denote by %, (xesp. x, ) the characteristic function of the set
{0<x;€1,0<x, €x,} (resp. {0 <x,<1,0<x; <x,}). Changing the
variables x, = x, X, = xy, dx,dx, = xdxdy and applying (28) with ¢ =5
= —4Iny we obtain for Rez, <0, Rez, <0

11

M(o,1 F)z,, 25) = 1n2j jx_z‘"“"ly““'ldxdy

+jj111(( 1nx~—l1ny +é;111 y) “"1‘72—1dxy—z2~1dy

1w ¥
- 2= -2 | j{lnoc-—(
(21 +z)zz oo da\o—z,—2,
1 afz
L2 S ) i
_f 1 U2 —2Zy

Now we change the order of mtegrauon, put o/2 == ¢ and use the formulae

1 -1 2j+1
[(ny)*ye=" ‘dy—(21)'( )
0 2,40

(see (24)) and

Z( 1)}»1( )Zj; 02
=1 - (z,—0—iQ)z;—e+ig)
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to get

—In2-2y % d ( 1 )
(o1 F) 21, 2:) (7, 425}z, (!; QdQ (20—2,—2,)(e—2;) ¢

2
e+ig)zy

+2 I(Zz

—dp
g—ig)(z,— “"Q)(Z1 +2,-20)

The absolute convergence of the integrals on the right hand side legltlmates our
calculations.
Analogously, we have

ln2~2y _°° d( 1 )d
( +2,)z; 20—z, —z;){e~24) ¢

V”(XLUDF){Zl L] 22)

e o
2 i(zl'—g—ie)(zl—ewe)(zl—e)(zl+z2—2e) %

Define
Ql 2 1

H(z,, z,,0) = -
Ay Y s

o+iedz—0)
Adding A (xo,.F) to #(xy,F) and integrating by parts we find
—In2—-2y

d 1
%7, +2“9d (( )(zzme)>d‘“’

21
+2j _H(zls 22: Q)dQ
082"

—In2-2y @ d 1
=——42 lng—(m—)d
2,7, e\ o0/

= d
~2 [Ing—(H(z,, z,, 0))de
0 do

dl{(XJiF)(ZU Z,) =

which is equal to the right hand side of (51), because for k = 1, 2

—0)(z—
Let

1 1 ( 2 1 1
e—io)(z,—e+ie) 20*\z—e z—e—ip zZ—e+ig)
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Define for t >0
11'12 2y j ( ' 1
ZyZ o Cdo\(z,—e—i)za—

't d 1
Hazy, 25) = [Ing— - )"
240215 23) g ng((zl-—g+lg)(zz—g—19)) ¢

By Example 3 we see that H,, is 4,-meromorphic on C? and
[Hlnt]Al = 4“2(1112""2}')5(0.0)

Hl.t(zls 22) =

— }dg,
Q+1Q)> ¢

t
+4n? I an((l;}“ i)agﬂa.o“ia) +(1 "i)éig'*-l?a.a“ie))dg-
0
Analogously, H,, is A,-meromorphic and
[H,, l]A; = Ax? j IHQ((l —1)6? oa etip +(1+10) %a ig.0+i0) )dQ

Thus, we have

THEOREM 8. For every t > 0 the boundary value (in the sense of Definition 5)
of the function

o d 1 l

« d 1
— {Ilnp— - _)d
{ Qde((zl—eﬂa)(zz“@“la @

is equal to

(52)  4m*(In2+27)d0, )+ 4nc> j Ing((1 463 iy +(1 =D o~y )de

+4n2jlng( _’)52 3na+ia) +(1 1)6&'-91)0.9“0))‘19'
0

References

[1] R. P. Boas, Entire Functions, Academic Press, 1954,

[2] L. Hormander, The Analysis of Linear Partial Differential Operators 1, IT, Springer, 1983.
[3]1 A. Kancko, Fundamental principle and extension of solutions of tnear differential equations
with constant coefficients, in: Lecture Notes in Math, 287, Springer, 1973, 122-134.

[4] H. Komatsu, Relative cohomology of sheaves of solutions of differential equations, ibid.,

192-261.
[5] G. Lysik, On the siructure of Mellin distributions, Ann. Polon. Math, 51 (1990), 219-228.



262 G, Lysik

[6] O. P. Misra and J. L. Lavoine, Transform Analysis of Generalized Functions, North-
Holiand, 1986.

{71 M. Sato, Theory of hyperfunctions, 11, 1. Fac. Sci. Univ. Tokyo 8 {1939/60), 387436,

[8] Z. Szmydt, Paley-Wiener theorems for the Mellin transformation, Ann. Polon. Math. 51
(19903, 313-324. ‘

[91 A. Wawrzyhezyk, Group Representations and Special Functions, PWN and Reidel,
Warszawa 1984,

[10] A. H. Zemanian, Generalized Integral Transformations, Interscience, 1969,

[11] B. Ziemian, Taylor formula for distributions in several dimensions, Bull. Polish Acad, Sci,
Mah. 34 (1986}, 277-286.

[12] —, The Mellin transformation and multidimensional generalized Tavlor expansions of singular
functiong, J. Fac. Sci. Univ. Tokyo 36 (1989), 263-295.

INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES
S$niadeckich 8, 00-950 Warszawa, Poland

Received May 22, 1990 (2693)
Revised version September 28, 1990

icm

STUDIA MATHEMATICA 99 (3) (1991)

The Mellin analytic functionals
and the Laplace-Beltrami- operator
on the Minkowski half-plane

by

MARIA E. PLIS (Krakdw)

Abstract. In this paper the theory of Fourier analytic functionals is developed. These
functionals are generalizations of some Fourier hyperfunctions. Then the Mellin analytic
functionals theory is developed and Paley-Wiener type theorems for Fourier and Mellin analytic
lunctionals are proved. The Mellin transform for Mellin analytic functionals is defined. These
notions are applied to solve the Laplace-Beltrami equation and to study its selution in the space of
Mellin apalytic functionals.

0. Introduction. In this paper we introduce the notion of a Mellin analytic
functional and we develop a theory of such functionals with a view to
applications in the analysis of singular differential operators such as, for
instance, the Laplace-Belttami operator on a hyperbolic space.

In Section 2 we define the space of Fourier analytic functionals which are
related with some equivalence classes of holomorphic functions of exponential
type. These functionals are generalizations of Fourier hyperfunctions whose
defining functions are of infraexponential type (Kaneko [1], Kawai [2],
Zharinov [6]). More general analytic functionals with noncompact carrier were
considered in Zharinov [6], Sargos~Morimoto [5] and Park-Morimoto [3].

It is shown in Section 3 that the Fourier transformation and the inverse
Fourier transformation operate on Fourier analytic functionals. We prove
Paley-Wiener type theorems for the Fourter transform of Fourier analytic
functionals in Section 4.

In Section 5 we introduce the spaces of Mellin analytic functionals by using
the substitution w=e %= (e"%, ..., ™"} in some Fourier analytic func-
tionals. Mellin analytic functionals cotresponding to Fourier hyperfunctions
are called Mellin hyperfunctions.

Section 6 contains the definitions of the Mellin transform of Mellin analytic
functionals by evaluating the functional on the functions ¢ (w) = wo L We
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